CN103566780A - 一种氟取代聚芳醚复合阴离子电解质膜的制备方法 - Google Patents

一种氟取代聚芳醚复合阴离子电解质膜的制备方法 Download PDF

Info

Publication number
CN103566780A
CN103566780A CN201210265356.9A CN201210265356A CN103566780A CN 103566780 A CN103566780 A CN 103566780A CN 201210265356 A CN201210265356 A CN 201210265356A CN 103566780 A CN103566780 A CN 103566780A
Authority
CN
China
Prior art keywords
polyarylether
preparation
fluorine
replaces
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210265356.9A
Other languages
English (en)
Other versions
CN103566780B (zh
Inventor
尚玉明
王要武
王树博
刘永刚
王金海
谢晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210265356.9A priority Critical patent/CN103566780B/zh
Priority to US13/949,392 priority patent/US9379406B2/en
Publication of CN103566780A publication Critical patent/CN103566780A/zh
Application granted granted Critical
Publication of CN103566780B publication Critical patent/CN103566780B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Silicon Polymers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明属于功能高分子材料制备方法技术领域,特别涉及一种氟取代聚芳醚复合阴离子电解质膜的制备方法。该方法通过将氟取代聚芳醚溶于适当溶剂,加入适量含羟基的交联组分、催化剂及无机组分,得到制膜液,经热处理脱除溶剂,并在制膜过程中完成交联反应,得到交联结构的有机无机复合阴离子电解质膜材料。本发明原料易得、各组分分散均匀、操作简单,所制备的氟取代聚芳醚复合阴离子电解质膜具有良好的尺寸稳定性、机械强度、离子传导能力及低的钒离子渗透性。

Description

一种氟取代聚芳醚复合阴离子电解质膜的制备方法
技术领域
本发明属于功能高分子材料制备方法技术领域,特别涉及一种氟取代聚芳醚复合阴离子电解质膜的制备方法。
背景技术
离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。在聚合物电解质膜燃料电池(PEMFC)、直接甲醇燃料电池(DMFC)和全钒氧化还原液流电池(VRB)等新能源电池中,离子交换膜均是其关键材料,其既要分隔正、负极物质,又要传导离子,形成电流回路,是制约此类电池性能的重要因素。此类电池对膜的要求是高选择性、低膜电阻及足够的化学稳定性。离子交换膜根据其固定基团所带电荷种类的不同可分为阳离子交换膜和阴离子交换膜。
目前,上述几种电池所采用的离子交换膜是全氟磺酸类膜,它具有高的质子电导率、优良的化学稳定,在上述几种电池系统中能够实现基本应用。但因其化学结构本身的限制,也存在诸多缺陷,限制了电池性能的进一步提升。
由于全氟磺酸类膜的固定离子为磺酸根离子,其带有负电荷,因此全氟磺酸类膜是一种酸性的阳离子交换膜。在燃料电池PEMFC或DMFC中,由于全氟磺酸类膜的强酸性所带来的高腐蚀性,导致这两类电池的电极催化剂材料必须是耐腐蚀性良好的贵金属催化剂纳米Pt,而纳米Pt高昂的价格,导致这类电池的成本居高不下,影响了其大规模的商业化进程。而采用碱性的阴离子交换膜,可大大降低膜对催化剂材料的腐蚀,电池中可使用价格更低廉的银、铑、镍和钴等耐腐性较差的材料,这对大幅降低电池成本,促进其大规模商业化具有重要意义。
在全钒氧化还原液流电池(VRB)中,全氟磺酸类膜的固定基团为磺酸根阴离子,有利于电解液中的质子通过,但在质子通过的同时,同为阳离子的钒离子也可以通过,即发生钒渗透,造成了膜两侧电解液的交叉污染,使电池发生自放电,电池性能降低。同时,全氟磺酸类膜的制备工艺复杂,价格昂贵,膜成本在整个全钒液流电池堆成本中占40%以上,造成整个电池堆成本偏高,阻碍了VRB的大规模商业化推广。
发明内容
针对现有技术不足,本发明提供了一种氟取代聚芳醚复合阴离子电解质膜的制备方法。
一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于,该方法的具体步骤如下:
(1)在惰性气氛中,将氟取代聚芳醚结构阴离子聚合物溶于合适溶剂,配置成5 wt%~20 wt%的溶液,其中氟取代聚芳醚结构阴离子聚合物具有如下结构:
Figure BDA0000194183871
式中:Ar=
Figure BDA0000194183872
(TMPA)或
Figure BDA0000194183873
(TMBA),R=H 或功能基,功能基的结构为
Figure BDA0000194183874
(Ⅰ)、
Figure BDA0000194183875
(Ⅱ)、
Figure BDA0000194183876
(Ⅲ)、
Figure BDA0000194183877
(Ⅳ)或
Figure BDA0000194183878
(Ⅴ),其中,X为F-、Cl-、Br-、I- 或OH-中的任意一种;所述氟取代聚芳醚结构阴离子聚合物按照文献(刘国舜,多氟聚芳醚阴离子交换膜的合成与表征,[D]. 北京:清华大学,2011.)所述步骤进行合成;然后在缓慢搅拌加入交联组分至其溶解,得到透明溶液;其中交联组分的加入量为氟取代聚芳醚结构阴离子聚合物加入量的1 wt%~40 wt%;
(2)在步骤(1)中所得到的透明溶液中加入无机组分前驱体及水,在0 ℃~80 ℃温度下,搅拌反应1小时~6小时,得到溶胶混合物;其中无机组分前驱体的加入量为氟取代聚芳醚结构阴离子聚合物加入量的3 wt%~30 wt%,加水量为无机组分前驱体加入量的0.1 wt%~10wt%;
(3)将步骤(2)中所得到的溶胶混合物体系温度降至0 ℃~50 ℃后,加入适量交联催化剂,搅拌反应0.5小时~2小时,得到制膜液;其中交联催化剂的加入量为步骤(1)中交联组分加入量的0.5 wt%~10wt%;
(4)将步骤(3)中所得到的制膜液涂覆于基板上,在50 ℃~80 ℃温度下,保持3小时~24小时后,再在100 ℃~150 ℃温度下,保持8小时~24小时后脱膜,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
所述步骤(1)中惰性气氛为氮气或氩气。
所述步骤(1)中氟取代聚芳醚结构阴离子聚合物的功能化程度值(即聚合物结构式中R所代表的H与功能基团的摩尔比)为15%~95%。
所述步骤(1)中氟取代聚芳醚结构阴离子聚合物的数均分子量Mn=5000~200000。
所述步骤(1)中溶剂为二甲基甲酰胺、二甲基乙酰胺、1,2-二氯乙烷、乙腈、二甲基亚砜、二苯砜、环丁砜和N-甲基吡咯烷酮中的一种或多种。
所述步骤(1)中交联组分为聚乙二醇、聚乙烯醇和羟基封端聚二甲基硅氧烷中的一种或多种。
所述步骤(1)中交联组分的数均分子量Mn=500~300000。
所述步骤(2)中无机组分前驱体为硅酸四乙酯、钛酸四丁酯、甲基三乙氧基硅烷、甲基三甲氧基硅烷、丙基三甲氧基硅烷和丙基三乙氧基硅烷中的一种或多种。.
所述步骤(3)中交联催化剂为KOH、NaOH、K2CO3,Na2CO3、三乙胺和四甲基氢氧化胺中的一种或多种。
所述氟取代聚芳醚结构阴离子聚合物的表述可由几种结构因素(Ar-功能基-X-功能化程度)来表述,如(TMPA-Ⅰ-Br--50%)表示聚合物中的Ar为TMPA,并含有功能基I,X为Br-离子,其功能化程度为50%。
本发明的有益效果为:
本发明原料易得、各组分分散均匀、操作简单,所制备的一种具有互穿网络结构的氟取代聚芳醚阴离子电解质膜具有良好的尺寸稳定性、机械强度、离子传导能力及低的钒离子渗透性。
具体实施方式
本发明提供了一种氟取代聚芳醚复合阴离子电解质膜的制备方法,下面结合具体实施方式对本发明做进一步说明。
实施例1
在氮气气氛中,将100 g氟代聚芳醚阴离子聚合物(TMPA-Ⅱ-Cl--15%, Mn=5000)溶于二甲基甲酰胺,配置成浓度为5 wt%的溶液,在搅拌下缓慢加入40 g聚乙二醇(Mn=500)至其溶解,得到透明溶液;
向上述溶液中依次加入3 g钛酸四丁酯和0.03 g水,在80 ℃下搅拌反应1小时,得到溶胶混合物;
将体系温度降至50 ℃后,向溶胶混合物中加入0.2 g交联催化剂KOH,搅拌混合0.5小时,得到制膜液;
将制膜液涂覆于基板上,在80 ℃下保持3小时后,再在150 ℃下保持8小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
实施例2
在氮气气氛中,将200 g氟代聚芳醚阴离子聚合物(TMBA-Ⅰ-Br--95%,Mn=200000)溶于二甲基乙酰胺,配置成浓度为15 wt%的溶液,在搅拌下缓慢加入2 g聚乙烯醇(Mn=300000)至其溶解,得到透明溶液;
向上述溶液中依次加入60 g硅酸四乙酯和3 g水,在0 ℃下搅拌反应6小时,得到溶胶混合物;
将体系温度保持在0 ℃,向溶胶混合物中加入0.2 g NaOH,搅拌混合2小时,得到制膜液;
将制膜液涂覆于基板上,在50 ℃下保持24小时后,再在100 ℃下保持24小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
实施例3
在氩气气氛中,将100 g氟代聚芳醚阴离子聚合物(TMBA-Ⅳ-OH--50%,Mn=100000)溶于二甲基亚砜,配置成浓度为10 wt%的溶液,在搅拌下缓慢加入20 g羟基封端聚二甲基硅氧烷(Mn=800)至其溶解,得到透明溶液;
向上述溶液中依次加入20 g硅酸四乙酯、10 g丙基三乙氧基硅烷和3 g水,在60 ℃下搅拌反应4小时,得到溶胶混合物;
将体系温度降至10 ℃,向溶胶混合物中加入1 g Na2CO3,搅拌混合1.5小时,得到制膜液;
将制膜液涂覆于基板上,在60 ℃下保持12小时后,再在120 ℃下保持16小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
实施例4
在氮气气氛中,将150 g氟代聚芳醚阴离子聚合物(TMPA-Ⅲ-I--80%,Mn=150000)溶于N-甲基吡咯烷酮,配置成浓度为8 wt%的溶液,在搅拌下依次缓慢加入15 g聚乙二醇(Mn=2000)和30 g羟基封端聚二甲基硅氧烷(Mn=500)至其溶解,得到透明溶液;
向上述溶液中依次加入20 g钛酸四丁酯、10 g甲基三甲氧基硅烷和0.03 g水,在20 ℃下搅拌反应3小时,得到溶胶混合物;
将体系温度降至5 ℃,向溶胶混合物中加入0.5 g 四甲基氢氧化胺,搅拌混合1小时,得到制膜液;
将制膜液涂覆于基板上,在70 ℃下保持8小时后,再在150 ℃下保持10小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
实施例5
在氩气气氛中,将300 g氟代聚芳醚阴离子聚合物(TMBA-Ⅴ-F--88%,Mn=50000)溶于二甲基亚砜,配置成浓度为20 wt%的溶液,在搅拌下依次缓慢加入24 g聚乙烯醇(Mn=5000)和36 g羟基封端聚二甲基硅氧烷(Mn=100000)至其溶解,得到透明溶液;
向上述溶液中依次加入6 g硅酸四乙酯、18 g丙基三甲氧基硅烷和0.36 g水,在70 ℃下搅拌反应3小时,得到溶胶混合物;
将体系温度降至20 ℃,向溶胶混合物中加入1.8 g三乙胺,搅拌混合1小时,得到制膜液;
将制膜液涂覆于基板上,在50 ℃下保持16小时后,再在100 ℃下保持20小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
实施例6
在氮气气氛中,将500 g氟代聚芳醚阴离子聚合物(TMPA-Ⅲ-Br--45%,Mn=150000)溶于环丁砜与二甲基亚砜混合溶剂(体积比1:1),配置成浓度为15 wt%的溶液,在搅拌下依次缓慢加入50 g聚乙二醇(Mn=20000)和25 g聚乙烯醇(Mn=1000)至其溶解,得到透明溶液;
向上述溶液中依次加入25 g 钛酸四丁酯、75 g甲基三乙氧基硅烷和0.25 g水,在0 ℃下搅拌反应5小时,得到溶胶混合物;
将体系温度保持在0 ℃,向溶胶混合物中加入1.5 g K2CO3,搅拌混合2小时,得到制膜液;
将制膜液涂覆于基板上,在60 ℃下保持16小时后,再在110 ℃下保持24小时,脱膜后用去离子水洗涤除去杂离子,得到一种氟取代聚芳醚复合阴离子电解质膜。
表1为实施例1~实施例6所得到的一种氟取代聚芳醚复合阴离子电解质膜的相关性能数据,其性能测试方法参见文献【Feng SG et al.,Journal of Membrane Science, 2009, 335 (1-2): 13-20及Tian B et al.,. Journal of Applied Electrochemistry, 2004, 34 (12):1205-1210】,测试温度为30℃。
表1 互穿网络型氟代聚芳醚类复合阴离子电解质膜的相关性能
Figure BDA0000194183879

Claims (9)

1.一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于,该方法的具体步骤如下:
(1)在惰性气氛中,将氟取代聚芳醚结构阴离子聚合物溶于合适溶剂,配置成5 wt%~20 wt%的溶液,其中氟取代聚芳醚结构阴离子聚合物具有如下结构: ,
式中:Ar=
Figure FDA0000194183862
 或
Figure FDA0000194183863
 ,R=H 或功能基,功能基的结构为
Figure FDA0000194183864
 、
Figure FDA0000194183865
 、 、
Figure FDA0000194183867
 或
Figure FDA0000194183868
 ,其中,X为F-、Cl-、Br-、I- 或OH-中的任意一种;然后在缓慢搅拌加入交联组分至其溶解,得到透明溶液;其中交联组分的加入量为氟取代聚芳醚结构阴离子聚合物加入量的1 wt%~40 wt%; 
(2)在步骤(1)中所得到的透明溶液中加入无机组分前驱体及水,在0 ℃~80 ℃温度下,搅拌反应1小时~6小时,得到溶胶混合物;其中无机组分前驱体的加入量为氟取代聚芳醚结构阴离子聚合物加入量的3 wt%~30 wt%,加水量为无机组分前驱体加入量的0.1 wt%~10 wt%;
(3)将步骤(2)中所得到的溶胶混合物体系温度降至0 ℃~50 ℃后,加入适量交联催化剂,搅拌反应0.5小时~2小时,得到制膜液;其中交联催化剂的 加入量为步骤(1)中交联组分加入量的0.5 wt%~10 wt%;
(4)将步骤(3)中所得到的制膜液涂覆于基板上,在50 ℃~80 ℃温度下,保持3小时~24小时后,再在100 ℃~150 ℃温度下,保持8小时~24小时后脱膜,脱膜后用去离子水洗涤除去杂离子,得到一种具有互穿网络结构的氟取代聚芳醚复合阴离子电解质膜。
2.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中惰性气氛为氮气或氩气。
3.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中氟取代聚芳醚结构阴离子聚合物的功能化程度值为15%~95%。
4.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中氟取代聚芳醚结构阴离子聚合物的数均分子量Mn=5000~200000。 
5.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中溶剂为二甲基甲酰胺、二甲基乙酰胺、1,2-二氯乙烷、乙腈、二甲基亚砜、二苯砜、环丁砜和N-甲基吡咯烷酮中的一种或多种。
6.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中交联组分为聚乙二醇、聚乙烯醇和羟基封端聚二甲基硅氧烷中的一种或多种。
7.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(1)中交联组分的数均分子量Mn=500~300000。 
8.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(2)中无机组分前驱体为硅酸四乙酯、钛酸四丁酯、甲基三乙氧基硅烷、甲基三甲氧基硅烷、丙基三甲氧基硅烷和丙基三乙氧基硅烷中的一种或多种。.
9.根据 权利要求1所述的一种氟取代聚芳醚复合阴离子电解质膜的制备方法,其特征在于:所述步骤(3)中交联催化剂为KOH、NaOH、K2CO3,Na2CO3、三乙胺和四甲基氢氧化胺中的一种或多种。 
CN201210265356.9A 2012-07-27 2012-07-27 一种氟取代聚芳醚复合阴离子电解质膜的制备方法 Active CN103566780B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210265356.9A CN103566780B (zh) 2012-07-27 2012-07-27 一种氟取代聚芳醚复合阴离子电解质膜的制备方法
US13/949,392 US9379406B2 (en) 2012-07-27 2013-07-24 Method for making anion electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210265356.9A CN103566780B (zh) 2012-07-27 2012-07-27 一种氟取代聚芳醚复合阴离子电解质膜的制备方法

Publications (2)

Publication Number Publication Date
CN103566780A true CN103566780A (zh) 2014-02-12
CN103566780B CN103566780B (zh) 2015-06-10

Family

ID=49995207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210265356.9A Active CN103566780B (zh) 2012-07-27 2012-07-27 一种氟取代聚芳醚复合阴离子电解质膜的制备方法

Country Status (2)

Country Link
US (1) US9379406B2 (zh)
CN (1) CN103566780B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543425A (zh) * 2018-04-10 2018-09-18 常州大学 一种用于多酚类物质的分离膜制备方法
CN108559115A (zh) * 2018-05-03 2018-09-21 佛山九陌科技信息咨询有限公司 一种高尺寸稳定型聚芳醚电解质膜材料的制备方法
CN110323079A (zh) * 2019-06-28 2019-10-11 中国科学院青岛生物能源与过程研究所 一种耐高压阴离子交换电解质膜及其固态电池电容器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863636B (zh) * 2012-09-19 2014-07-23 清华大学 一种原位聚合法制备含氟聚芳醚复合阴离子交换膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273203A (ja) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology 架橋型高分子電解質膜
CN101367903A (zh) * 2008-08-07 2009-02-18 同济大学 一种基于半互穿网络的增强型复合质子交换膜及其制备方法
CN101891899A (zh) * 2010-07-06 2010-11-24 大连理工大学 一种离子液体掺杂杂环聚芳醚或其磺化物用于高温低湿离子膜及其制备法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235044A (en) * 1992-09-09 1993-08-10 Raychem Corporation Compounds having oxadiazole and triazene moieties, crosslinkable polymers therefrom, and methods therefor
US6201051B1 (en) * 1996-12-04 2001-03-13 Bayer Aktiengesellschaft Conducting organic-inorganic hybrid materials
DE19919881A1 (de) * 1999-04-30 2000-11-02 Univ Stuttgart Organisch-Anorganische Komposites und Kompositmembranen aus Ionomeren oder Ionomerblends und aus Schicht- oder Gerätsilicaten
CA2402840C (en) * 2000-03-22 2010-10-05 Victrex Manufacturing Limited Composite ion exchange material
FR2850300B1 (fr) * 2003-01-23 2006-06-02 Commissariat Energie Atomique Materiau hybride organique-inorganique conducteur comprenant une phase mesoporeuse, membrane, electrode, et pile a combustible
FR2850301B1 (fr) * 2003-01-23 2007-10-19 Commissariat Energie Atomique Materiau hybride organique-inorganique comprenant une phase minerale mesoporeuse et une phase organique, membrane et pile a combustible
WO2006094404A1 (en) * 2005-03-11 2006-09-14 National Research Council Of Canada Novel highly microporous thermoplastic/bismaleimide semi-interpenetrating polymer network
US7846496B2 (en) * 2006-03-10 2010-12-07 Uop Llc Mixed matrix membranes incorporating surface-functionalized molecular sieve nanoparticles and methods for making the same
ATE510886T1 (de) * 2007-09-06 2011-06-15 Basf Se Blends aus verzweigten polyarylethern und hydrophilen polymeren
KR100934529B1 (ko) * 2007-10-11 2009-12-29 광주과학기술원 고분자 사슬 내부에 가교구조를 가지는 술폰화된폴리(아릴렌 에테르) 공중합체, 고분자 사슬 내부 및말단에 가교구조를 가지는 술폰화된 폴리(아릴렌 에테르)공중합체 및 이를 이용하는 고분자 전해질막
CN102483966A (zh) * 2009-06-24 2012-05-30 东洋纺织株式会社 固体高分子电解质组合物、以及离子交换膜、膜/电极接合体、燃料电池
CN102869448A (zh) * 2009-09-24 2013-01-09 乔治亚州技术研究公司 阴离子交换聚电解质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273203A (ja) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology 架橋型高分子電解質膜
CN101367903A (zh) * 2008-08-07 2009-02-18 同济大学 一种基于半互穿网络的增强型复合质子交换膜及其制备方法
CN101891899A (zh) * 2010-07-06 2010-11-24 大连理工大学 一种离子液体掺杂杂环聚芳醚或其磺化物用于高温低湿离子膜及其制备法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王文晓等: "《氟化聚芳醚/PVDF复合阴离子交换膜的制备》", 《化工进展》, 15 July 2012 (2012-07-15) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543425A (zh) * 2018-04-10 2018-09-18 常州大学 一种用于多酚类物质的分离膜制备方法
CN108543425B (zh) * 2018-04-10 2020-11-24 常州大学 一种用于多酚类物质的分离膜制备方法
CN108559115A (zh) * 2018-05-03 2018-09-21 佛山九陌科技信息咨询有限公司 一种高尺寸稳定型聚芳醚电解质膜材料的制备方法
CN110323079A (zh) * 2019-06-28 2019-10-11 中国科学院青岛生物能源与过程研究所 一种耐高压阴离子交换电解质膜及其固态电池电容器
CN110323079B (zh) * 2019-06-28 2021-08-27 中国科学院青岛生物能源与过程研究所 一种耐高压阴离子交换电解质膜及其固态电池电容器

Also Published As

Publication number Publication date
US9379406B2 (en) 2016-06-28
CN103566780B (zh) 2015-06-10
US20140030613A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
Park et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
Haque et al. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review
Li et al. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis
Siracusano et al. Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane
Lin et al. Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells
JP3915846B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
Yoonoo et al. Nafion®/mordenite composite membranes for improved direct methanol fuel cell performance
Douglin et al. A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode
CN100466348C (zh) 液状组合物、其制造方法及固体高分子型燃料电池用膜电极接合体的制造方法
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
CN113851683B (zh) 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法
CN109690854B (zh) 膜电极组合件及其制造方法
Su et al. Highly conductive and robustly stable anion exchange membranes with a star-branched crosslinking structure
KR20090090080A (ko) 고온용 고분자 블렌드 전해질 막과 이의 제조 방법
CN103566780B (zh) 一种氟取代聚芳醚复合阴离子电解质膜的制备方法
JP2020023748A (ja) 白金担持高分子電解質膜の製造方法および白金担持高分子電解質膜
JP5002911B2 (ja) ダイレクトメタノール型燃料電池(dmfc)での発電評価におけるプロトン1個あたりの電気浸透水量eowの測定方法
CN104124463A (zh) 氢氯燃料电池用离子液体-聚合物复合膜及其制备和应用
Li et al. Highly hydrophilic polybenzimidazole/Zirconia composite separator with reduced gas crossover for alkaline water electrolysis
CN103319741B (zh) 一种磺化聚酰亚胺/二氧化钛复合质子导电膜的制备方法
KR20130060159A (ko) 레독스 흐름전지용 이온교환막
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
CN102117928A (zh) 用于缓解燃料电池化学降解的方法
JP5233065B2 (ja) イオン性基を有するポリマー、高分子電解質材料、高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
Su et al. Diphenylanthracene-based ion exchange membranes with high conductivity and robust chemical stability for acid-alkaline amphoteric water electrolysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant