CN103531660A - 一种In掺杂硫化锌薄膜及其制备方法和应用 - Google Patents

一种In掺杂硫化锌薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN103531660A
CN103531660A CN201310486713.9A CN201310486713A CN103531660A CN 103531660 A CN103531660 A CN 103531660A CN 201310486713 A CN201310486713 A CN 201310486713A CN 103531660 A CN103531660 A CN 103531660A
Authority
CN
China
Prior art keywords
film
zns
thin film
doped
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310486713.9A
Other languages
English (en)
Other versions
CN103531660B (zh
Inventor
程树英
廖洁
周海芳
赖云锋
俞金玲
龙博
贾宏杰
张红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201310486713.9A priority Critical patent/CN103531660B/zh
Publication of CN103531660A publication Critical patent/CN103531660A/zh
Application granted granted Critical
Publication of CN103531660B publication Critical patent/CN103531660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种In掺杂硫化锌薄膜及其制备方法和应用,采用化学浴沉积法制备薄膜,属于非真空化学气相沉积,该方法薄膜成份容易控制、制备成本低、适合进行大规模生产。本发明利用掺入杂质的办法来降低硫化锌薄膜的电阻率,测试表明:当在ZnS中掺杂2at.%的In时,薄膜的杂质相少、光学透过率高(可见光区的光学透过率约为85%)、电阻率低(2.6×105Ωcm)。所制得的ZnS薄膜适用于作为太阳电池的缓冲层材料。

Description

一种In掺杂硫化锌薄膜及其制备方法和应用
技术领域
本发明属于材料制备领域,具体涉及一种适用于作为太阳电池的缓冲层材料掺杂硫化锌薄膜及其制备方法。
背景技术
在薄膜太阳电池的典型结构中常会引入一个缓冲层以提高太阳电池的器件转换效率。CdS与CdSe是薄膜太阳电池中应用最为广泛的缓冲层材料。但由于Cd具有毒性,对环境的危害较大,回收电池后处理比较困难。同时还存在着能带间隙偏窄、不允许516 nm以下的太阳光透过它并进入吸收层等问题,使含Cd的光伏组件产品出现了较大的市场问题。近年来,对缓冲层材料的研究主要集中在制备无镉缓冲层材料方向。其中尤以ZnS的性能表现最为优异。
ZnS是一种典型的Ⅱ-Ⅵ族宽带隙半导体材料。室温条件下,ZnS的带宽约为3.75 eV,比CdS在室温条件下的禁带宽度(2.4 eV)更宽,这一特性有助于提高电池的转换效率。另外,ZnS薄膜材料附着力好、薄膜表面连续致密,具有良好的光学透过率,并具有较高的熔点。
但由于本征ZnS薄膜电阻率较高(约为107-108Ωcm),不利于提高薄膜太阳电池的转换效率。所以针对这个问题,我们的研究采用了In掺杂的方法来降低其电阻率,这是我们的发明构思和理念,也是本发明的关键所在。
发明内容
本发明的目的在于提供一种In掺杂硫化锌薄膜及其制备方法和应用,采用化学浴沉积法制备薄膜,薄膜成份容易控制、制备成本低、适合进行大规模生产。本发明利用掺入杂质的办法来降低硫化锌薄膜的电阻率,所制得的ZnS薄膜适用于作为太阳电池的缓冲层材料。
为实现上述目的,本发明采用如下技术方案:
一种In掺杂ZnS薄膜的制备方法包括以下步骤:
(1)利用化学浴沉积法来制备薄膜,以醋酸锌为锌源、硫代乙酰胺为硫源、柠檬酸钠为络合剂,利用醋酸与醋酸锌配合作为缓冲液控制溶液的pH值;
(2)以硫酸铟作为掺杂源对薄膜进行掺杂处理,In元素的掺杂量为ZnS的0 at.% -4 at.%;
(3)将沉积制得的In掺杂ZnS薄膜在N2气氛中进行退火处理,退火处理的温度为350℃,退火处理的时间为1.5 h,冷却至室温,制得的薄膜应用于薄膜太阳电池的缓冲层材料。
本发明的显著优点在于:采用化学浴沉积法制备薄膜,薄膜成份容易控制、制备成本低、适合进行大规模生产。本发明利用掺入杂质的办法来降低硫化锌薄膜的电阻率,所制得的ZnS薄膜适用于作为太阳电池的缓冲层材料。
附图说明
图1是不同In掺杂浓度下制备的In掺杂ZnS薄膜的XRD谱。
图2是不同In掺杂浓度下制备的In掺杂ZnS薄膜的扫描电镜图。
图3是不同In掺杂浓度下制备的In掺杂ZnS薄膜的透射光谱。
图4是不同In掺杂浓度下制备的In掺杂ZnS薄膜的电阻率变化图。
具体实施方式
实施例1
取15ml浓度为0.4mol/L的醋酸锌,15ml浓度为0.1mol/L的柠檬酸钠,按掺杂量为0 at.%、0.5 at.%、1 at.%、2 at.%、3 at.%、4 at.%的硫酸铟作为掺杂源。加入87.5ml的去离子水,混合均匀。向溶液中滴加醋酸调节溶液pH值为4.0。
将溶液放置于水浴锅内进行水浴加热。待溶液温度达到85℃后,向溶液内添加15ml浓度为0.4mol/L的硫代乙酰胺。以添加硫代乙酰胺的时间为起点,以85℃的水浴温度反应1.5h。
将沉积制得的In掺杂ZnS薄膜在N2气氛中进行退火处理,退火处理的温度为350℃,退火处理的时间为1.5 h,冷却至室温。
In掺杂ZnS薄膜的物相分析。
图1是不同In掺杂浓度条件下所制备的ZnS:In薄膜的XRD谱,其中In的掺杂量从0 at.%变化至4 at.%。由图1可见,非掺杂样品表现出位于29.1°、48.9°、58.0°的(111)、(220)、(311)面的衍射峰,且以(111)面为其择优生长取向面,属于立方晶相的ZnS,对应于XRD标准卡号01-080-0020。另外,ZnS:In样品的XRD谱与非掺杂样品相似,也是属于立方晶相ZnS。且并没有表现出与掺杂元素In相关的化合物或单质相的衍射峰。这是由于掺杂量较小,因此掺杂元素并不会显著影响ZnS的基本结构。
In掺杂ZnS薄膜的表面形貌分析。
图2是不同In掺杂浓度条件下制备的ZnS:In薄膜的扫描电镜图。由图可见,非掺杂ZnS薄膜表面颗粒形状与大小均匀,但是却有明显的裂纹与孔隙。少量In掺杂的ZnS薄膜表面的团聚物尺寸减小,但其表面却表现出了更多的裂纹且孔隙面积及数量也有所增多。然而,若对样品进行适量的掺杂处理(掺杂量为2 at.%),可使薄膜表面连续致密,基本无法观察到孔隙与裂纹。而连续致密的表面形貌对降低薄膜电阻率很有帮助。
In掺杂ZnS薄膜的光学性能。
作为薄膜太阳电池的缓冲层材料,薄膜的光学性能是非常重要的。缓冲层材料需要有较大的禁带宽度和较高的光学透过率,使更多的光可以进行吸收层中并被吸收,才能有助于提高太阳电池的转换效率。图3是不同In掺杂浓度下制备的ZnS:In薄膜的透射光谱。由图可见,ZnS:In薄膜在可见光区和近红外光区的光学透过率高,且各个样品的吸收边明显且锐利。其中,尤以In掺杂量为2 at.%的样品光学性能最优(可见光区和近红外光学的光学透过率约为85%),适宜应用在薄膜太阳电池中作为缓冲层材料。这是由于In原子的原子半径与Zn原子半径比较接近,因此由In掺杂所导致的晶格畸变较小,晶格缺陷较小,散射中心较少。另外,表1所列是不同掺杂浓度的ZnS:In薄膜的禁带宽度值。由表可见,各个ZnS:In薄膜的禁带宽度均小于非掺杂的ZnS薄膜。然而随着In掺杂量的增加,样品的禁带宽度又有所增加。引起禁带宽度变化的主要原因包括两个方面:分别是由布尔斯坦-莫斯效应引起的禁带展宽和由多体效应引起的带隙变窄。
In掺杂ZnS薄膜的电学性能。
图4是不同In掺杂浓度下制备的ZnS薄膜的电阻率变化图,具体电阻率值列于表1。由图可见,掺杂样品的薄膜电阻率均明显低于非掺杂ZnS薄膜。试验说明,In掺杂能有效降低薄膜电阻率。这主要是由于掺杂元素In是3价金属元素,掺入In后能为样品提供额外的载流子。其中,以In掺杂量为0.5 at.%的样品薄膜电阻率值最低,达到1.5 E4Ωcm。然而,继续升高掺杂浓度,薄膜电阻率又有所上升,且稳定在约2.2 E5Ωcm处,适宜应用在薄膜太阳电池中作为缓冲层材料。这可能是由于较高的掺杂浓度容易在晶界上形成杂质相而造成晶界势垒的提高,最终表现为薄膜电阻率的提高。
表1不同掺杂浓度的ZnS:In薄膜的禁带宽度值与电阻率值
Figure 2013104867139100002DEST_PATH_IMAGE002
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种In掺杂ZnS薄膜的制备方法,其特征在于:包括以下步骤:
(1)利用化学浴沉积法来制备薄膜,以醋酸锌为锌源、硫代乙酰胺为硫源、柠檬酸钠为络合剂,利用醋酸与醋酸锌配合作为缓冲液控制溶液的pH值;
(2)以硫酸铟作为掺杂源对薄膜进行掺杂处理,In元素的掺杂量为ZnS的0 at.% -4 at.%;
(3)将沉积制得的In掺杂ZnS薄膜在N2气氛中进行退火处理,退火处理的温度为350℃,退火处理的时间为1.5 h,冷却至室温。
2.根据权利要求1所述的In掺杂ZnS薄膜的制备方法,其特征在于:所述In元素的掺杂量为ZnS的2 at.%。
3.一种如权利要求1所述的方法制得的In掺杂ZnS薄膜。
4.一种如权利要求1所述的方法制得的In掺杂ZnS薄膜应用于薄膜太阳电池的缓冲层材料。
CN201310486713.9A 2013-10-17 2013-10-17 一种In掺杂硫化锌薄膜及其制备方法和应用 Active CN103531660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310486713.9A CN103531660B (zh) 2013-10-17 2013-10-17 一种In掺杂硫化锌薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310486713.9A CN103531660B (zh) 2013-10-17 2013-10-17 一种In掺杂硫化锌薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103531660A true CN103531660A (zh) 2014-01-22
CN103531660B CN103531660B (zh) 2015-12-02

Family

ID=49933513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310486713.9A Active CN103531660B (zh) 2013-10-17 2013-10-17 一种In掺杂硫化锌薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103531660B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428217A (zh) * 2015-11-23 2016-03-23 福州大学 一种制备Cu掺杂硫化铟薄膜的方法
CN106684176A (zh) * 2016-12-14 2017-05-17 上海电力学院 一种薄膜太阳能电池缓冲层材料的制备方法
CN107069001A (zh) * 2017-04-01 2017-08-18 中南大学 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN107119323A (zh) * 2017-04-27 2017-09-01 云南北方驰宏光电有限公司 一种CVDZnS晶体材料的掺杂改性方法
CN109721036A (zh) * 2019-01-02 2019-05-07 北京科技大学 一种化学液相法制备硒化铅薄膜的方法
CN109920881A (zh) * 2019-03-19 2019-06-21 湘潭大学 一种铟铝镓中的至少一种掺杂硫化锌太阳能电池缓冲层薄膜的制备方法
CN110747436A (zh) * 2019-12-02 2020-02-04 福建省电子信息应用技术研究院有限公司 一种铟铝共掺硫化锌薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996623A (zh) * 2005-12-28 2007-07-11 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜
US20110081744A1 (en) * 2009-10-06 2011-04-07 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
CN102544237A (zh) * 2012-02-29 2012-07-04 广东工业大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996623A (zh) * 2005-12-28 2007-07-11 中国科学院大连化学物理研究所 一种用于光伏电池的ⅱ-ⅵ族半导体薄膜
US20110081744A1 (en) * 2009-10-06 2011-04-07 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell
CN102544237A (zh) * 2012-02-29 2012-07-04 广东工业大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO-MING HUANG ET AL: "Preparation of visible-light-active Ag and In-doped ZnS thin film photoelectrodes by reactive magnerton co-sputtering", 《THIN SOLID FILMS》 *
KONG-WEI CHENG ET AL: "Preparation of Zn-In-S film electrodes using chemical bath deposition for photoelectrochemical applications", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428217A (zh) * 2015-11-23 2016-03-23 福州大学 一种制备Cu掺杂硫化铟薄膜的方法
CN105428217B (zh) * 2015-11-23 2017-11-17 福州大学 一种制备Cu掺杂硫化铟薄膜的方法
CN106684176A (zh) * 2016-12-14 2017-05-17 上海电力学院 一种薄膜太阳能电池缓冲层材料的制备方法
CN106684176B (zh) * 2016-12-14 2018-04-06 上海电力学院 一种薄膜太阳能电池缓冲层材料的制备方法
CN107069001A (zh) * 2017-04-01 2017-08-18 中南大学 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN107119323A (zh) * 2017-04-27 2017-09-01 云南北方驰宏光电有限公司 一种CVDZnS晶体材料的掺杂改性方法
CN107119323B (zh) * 2017-04-27 2019-08-06 云南北方驰宏光电有限公司 一种CVDZnS晶体材料的掺杂改性方法
CN109721036A (zh) * 2019-01-02 2019-05-07 北京科技大学 一种化学液相法制备硒化铅薄膜的方法
CN109920881A (zh) * 2019-03-19 2019-06-21 湘潭大学 一种铟铝镓中的至少一种掺杂硫化锌太阳能电池缓冲层薄膜的制备方法
CN110747436A (zh) * 2019-12-02 2020-02-04 福建省电子信息应用技术研究院有限公司 一种铟铝共掺硫化锌薄膜及其制备方法

Also Published As

Publication number Publication date
CN103531660B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN103531660B (zh) 一种In掺杂硫化锌薄膜及其制备方法和应用
Klein Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy
US10109755B2 (en) Capping layers for improved crystallization
Shin et al. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents
Gour et al. Cd-free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: a review
Kahraman et al. Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films
Hong et al. Chemical bath deposited ZnS buffer layer for Cu (In, Ga) Se2 thin film solar cell
Mkawi et al. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition
Yang et al. Emerging binary chalcogenide light absorbers: material specific promises and challenges
JP2011146595A (ja) Czts系半導体用cbd溶液、czts系半導体用バッファ層の製造方法及び光電素子
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
Chung et al. Hydrazine solution-processed CuIn (Se, S) 2 thin film solar cells: Secondary phases and grain structure
Kim et al. Role of hydrazine in the enhanced growth of zinc sulfide thin films using chemical bath deposition for Cu (In, Ga) Se2 solar cell application
Lv et al. Improving the performance of low-cost water-based solution-synthesised Cu2ZnSn1-xGex (S, Se) 4 absorber thin films by germanium doping
Mahajan et al. Enhancement in the efficiency of crystalline Cu2ZnSnS4 thin film solar cell by using various buffer layers
Zhang et al. Doping Behavior of Zn in CdS and Its Effect on the Power Conversion Efficiency of the Cu2ZnSn (S, Se) 4 Solar Cell
Shan et al. Effect of sulphur pressure on properties of ZnS thin film prepared by chemical bath deposition technique
US20160181452A1 (en) Compound solar cell and method for forming thin film having sulfide single-crystal nanoparticles
Seo et al. Improvement of Cu2ZnSnS4 thin film properties by a modified sulfurization process
Vallejo et al. Synthesis and characterization of Zn (O, OH) S and AgInS2 layers to be used in thin film solar cells
Joshi et al. Annealing induced modifications in physicochemical and optoelectronic properties of CdS/CuInGaSe2 thin film
JP2014130858A (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
RU2695208C1 (ru) Способ получения монозеренных кестеритных порошков
KR101835580B1 (ko) 동시증발법을 이용한 CZTS 또는 CZTSe계 박막 제조방법 및 이로부터 제조된 태양전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant