CN103514143A - 一种粗网格快速时域有限差分方法 - Google Patents

一种粗网格快速时域有限差分方法 Download PDF

Info

Publication number
CN103514143A
CN103514143A CN201310433245.9A CN201310433245A CN103514143A CN 103514143 A CN103514143 A CN 103514143A CN 201310433245 A CN201310433245 A CN 201310433245A CN 103514143 A CN103514143 A CN 103514143A
Authority
CN
China
Prior art keywords
time
time domain
finite difference
electric field
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310433245.9A
Other languages
English (en)
Other versions
CN103514143B (zh
Inventor
陈娟
王建国
张安学
田春明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201310433245.9A priority Critical patent/CN103514143B/zh
Publication of CN103514143A publication Critical patent/CN103514143A/zh
Application granted granted Critical
Publication of CN103514143B publication Critical patent/CN103514143B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种粗网格快速时域有限差分方法,属于电磁场数值计算领域,本发明方法的时间步长Δt与空间网格长度Δz无关,空间网格长度Δx只需小于等于模拟频段最小波长的1/2。本发明能够同时解决传统时域有限差分方法的两大限制条件,即Courant-Friedrich-Levy时间稳定性条件和空间离散间隔限制条件,能够在降低时间稳定性条件的同时,改善波长对空间网格长度的限制,本发明方法适用于模拟同时具有精细结构和电大尺寸结构的复杂目标,相比于传统时域有限差分方法,该方法具有计算效率高、计算所需内存少两大优点。

Description

一种粗网格快速时域有限差分方法
技术领域
本发明属于电磁场数值计算领域,具体涉及一种粗网格快速时域有限差分方法。
背景技术
目前,随着科学技术的发展,电磁波频谱的应用范围已从微波波段扩展至光波波段,器件尺寸也缩小至纳米级范围。越来越多的电磁目标呈现出同时具有精细结构和电大尺寸结构的复杂特征,如太赫兹波段下的大规模集成电路器件、大型复杂载体上的发射天线、核电磁脉冲作用下的电子信息系统以及薄层涂覆电大目标等等。这些同时具有精细结构和电大尺寸结构的复杂目标,对电磁场数值计算方法的计算速度以及计算机的内存提出了新的挑战。
众所周知,时域有限差分方法是当今计算电磁学中应用最为广泛的数值模拟方法之一。然而,采用该方法来模拟同时具有精细结构和电大尺寸结构的复杂目标,却面临着很大的困难。首先,该方法需满足Courant-Friedrich-Levy时间稳定性条件:即时间步长Δt受空间最小网格尺寸的限制。该限制条件使得时域有限差分方法对具有精细结构的时域电磁问题的模拟存在计算效率较低的问题;其次,为了减小差分近似所带来的数值色散误差,该方法还需满足空间离散间隔限制条件,即空间网格长度不得大于模拟频段最小波长的1/10,该限制条件使得时域有限差分方法对电大尺寸结构的模拟存在内存需求过大的问题。针对精细结构问题,可采用弱条件稳定时域有限差分方法和交变方向隐式时域有限差分方法进行解决。而对于电大尺寸目标的电磁模拟,目前,也有一些方法可以解决。如M.Krumpholz结合小波技术提出的时域多分辨小波方法和柳清伙教授提出的伪谱时域差分方法。虽然经过研究者们的不断努力与完善,具有精细结构的时域电磁模拟和电大尺寸目标的模拟问题都分别得到了解决,但是,如果模拟目标同时具有精细结构和电大尺寸,则无论是传统时域有限差分方法,还是弱条件稳定时域有限差分方法,以及时域多分辨小波方法或伪谱时域差分方法均没有足够的分析能力。
发明内容
为了解决上述现有技术存在的缺陷,本发明的目的在于提供了一种粗网格快速时域有限差分方法,该方法能够在降低时间稳定性条件的同时,改善波长对空间网格长度的限制,计算效率高、内存需求低。
本发明的目的是通过以下技术方案来实现的:
一种粗网格快速时域有限差分方法,包括以下步骤:
1)对待求电磁目标模型进行空间离散:磁场节点和电场节点的空间排布采用Yee元胞,电场节点Ex、Ey和Ez位于元胞的各个棱上,磁场节点Hx垂直于元胞的yz平面,磁场节点Hy与电场节点Ez的空间位置重合,磁场节点Hz与电场节点Ey的空间位置重合;
2)对待求电磁目标模型进行时间取样:电场分量的时间步取值为n和n+1时刻,磁场分量的时间步取值也为n和n+1时刻;
3)对Maxwell方程中的空间求导项采用混合时间步法进行时间离散;
4)对得到的
Figure BDA0000385091700000031
求导项采用傅立叶变换求解,其余空间求导项采用二阶中心差分近似;
5)利用公式(1)和(2)求解n+1时刻的电场分量
Figure BDA0000385091700000032
和磁场分量
Figure BDA0000385091700000033
Figure BDA0000385091700000034
Figure BDA0000385091700000035
6)利用公式(3)求解n+1时刻的电场分量
Figure BDA0000385091700000036
Figure BDA0000385091700000037
7)利用公式(4)求解n+1时刻的电场分量
Figure BDA0000385091700000041
Figure BDA0000385091700000042
8)利用公式(5)和(6)求解n+1时刻的磁场分量
Figure BDA0000385091700000043
Figure BDA0000385091700000044
H x n + 1 ( i , j + 1 2 , k + 1 2 ) = H x n ( i , j + 1 2 , k + 1 2 ) + Δt 2 Δμz [ E y n + 1 ( i , j + 1 2 , k + 1 ) - E y n + 1 ( i , j + 1 2 , k ) + E y n ( i , j + 1 2 , k + 1 ) - E y n ( i , j + 1 2 , k ) ] - Δt μΔy [ E z n + 1 ( i , j + 1 , k + 1 2 ) - E z n + 1 ( i , j , k + 1 2 ) ] - - - ( 5 ) ;
以上各式中,表示傅立叶变换,
Figure BDA0000385091700000048
表示逆傅立叶变换;
9)令n=n+1,重复执行步骤5)~8)直至迭代完成。
步骤3)所述的对Maxwell方程中的空间求导项
Figure BDA0000385091700000051
Figure BDA0000385091700000052
采用混合时间步法进行时间离散;所述的混合时间步法是指在对场量Ex、Ey、Hx和Hy,在时刻的选取上,包含了未知的n+1时刻。
时间步长Δt与空间网格长度Δz无关,时间稳定性条件满足:
Figure BDA0000385091700000053
空间离散间隔条件满足:沿x方向的空间网格长度Δx只需小于等于模拟频段最小波长的1/2,Δx≤λ/2。
与现有技术相比,本发明具有以下有益效果:
本发明在对同时具备精细结构和电大尺寸的复杂模型进行模拟分析时,能够同时解决传统时域有限差分方法的两大限制条件,即Courant-Friedrich-Levy时间稳定性条件和空间离散间隔限制条件,能够在降低时间稳定性条件的同时,改善波长对空间网格长度的限制;本发明方法的时间步长Δt与空间网格长度Δz无关,时间稳定性条件为:
Figure BDA0000385091700000054
同时,本发明方法沿x方向的空间网格长度只需小于等于模拟频段最小波长的1/2:Δx≤λ/2。本发明具有以下优点:
1、本发明提供的粗网格快速时域有限差分方法,其时间步长Δt不受空间网格长度Δz的限制,因此,在模拟沿z方向具有精细结构的时域电磁问题时,相比于传统时域有限差分方法,计算效率大大提高。
2、本发明提供的粗网格快速时域有限差分方法,空间网格长度Δx只需小于等于模拟频段最小波长的1/2。因此,在模拟沿x方向具有电大尺寸结构的时域电磁问题时,相比于传统时域有限差分方法,计算所需内存大大减少。
3、本发明提供的粗网格快速时域有限差分方法,在模拟同时具有精细结构(沿z方向)和电大尺寸结构(沿x方向)的复杂目标时,相比于传统时域有限差分方法,具有计算效率高、计算所需内存少两大优势。
附图说明
图1为本发明所述的电场节点和磁场节点的空间排布示意图;
图2为本发明的流程图;
图3为本发明具体实施例提供的开缝金属板结构图;
图4为本发明具体实施例提供的开缝金属板的透射场。
具体实施方式
下面结合具体的附图及实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明提供的粗网格快速时域有限差分方法,对待求电磁目标模型进行空间离散时,磁场节点和电场节点的空间排布采用Yee元胞,各节点的空间排布示意图如图1所示,电场节点Ex、Ey和Ez的位于元胞的各个棱上,磁场节点Hx垂直于元胞的yz平面,磁场节点Hy与电场节点Ez的空间位置重合,磁场节点Hz与电场节点Ey的空间位置重合。
本发明提供的粗网格快速时域有限差分方法,对待求电磁目标模型进行时间取样时,电场分量的时间步取值为n和n+1时刻,磁场分量的时间步取值也为n和n+1时刻。
本发明提供的粗网格快速时域有限差分方法对Maxwell方程中的空间求导项
Figure BDA0000385091700000061
采用混合时间步法进行时间离散;对得到的
Figure BDA0000385091700000071
求导项采用傅立叶变换求解,其余空间求导项采用二阶中心差分近似;
本发明提供的粗网格快速时域有限差分方法采用以下步骤进行求解:
1)利用公式(1)和(2)直接求解电场分量
Figure BDA0000385091700000072
和磁场分量
Figure BDA0000385091700000074
Figure BDA0000385091700000075
2)利用公式(3)和(4)求解电场分量
Figure BDA0000385091700000076
Figure BDA0000385091700000077
Figure BDA0000385091700000078
Figure BDA0000385091700000081
3)利用公式(5)和(6)求解磁场分量
Figure BDA0000385091700000082
Figure BDA0000385091700000083
H x n + 1 ( i , j + 1 2 , k + 1 2 ) = H x n ( i , j + 1 2 , k + 1 2 ) + Δt 2 Δμz [ E y n + 1 ( i , j + 1 2 , k + 1 ) - E y n + 1 ( i , j + 1 2 , k ) + E y n ( i , j + 1 2 , k + 1 ) - E y n ( i , j + 1 2 , k ) ] - Δt μΔy [ E z n + 1 ( i , j + 1 , k + 1 2 ) - E z n + 1 ( i , j , k + 1 2 ) ] - - - ( 5 ) ;
Figure BDA0000385091700000085
以上各式中,
Figure BDA0000385091700000086
表示傅立叶变换,
Figure BDA0000385091700000087
表示逆傅立叶变换;
4)最后,令n=n+1,重复执行步骤1)~3)直至迭代完成。
以上,可以得出:时间步长Δt与空间网格长度Δz无关,时间稳定性条件满足:
Figure BDA0000385091700000091
空间离散间隔条件满足:沿x方向的空间网格长度Δx只需小于等于模拟频段最小波长的1/2,Δx≤λ/2。
上述实施步骤的流程图如图2所示。
下面以图3所示的开缝金属板为例,说明粗网格快速时域有限差分方法在计算效率和计算所需内存方面的优势。
图3所示的金属板尺寸为60mm×1mm,板上开有三条细长缝隙,尺寸均为30mm×0.2mm,各个缝之间的距离为0.1mm,一沿x方向的电流源位于金属板正前方1.5mm处,频率为100GHz,波长为3mm。该模型沿z方向具有精细结构,沿x方向具有电大尺寸结构。
采用本发明的粗网格快速时域有限差分方法计算金属板后的透射场,所得结果如图4所示。为了便于比较,图中同时给出了传统时域有限差分方法的计算结果,其中,实线表示传统时域有限差分方法的计算结果,虚线表示粗网格快速时域有限差分方法的计算结果。从该图可以看出,两种方法的计算结果符合较好。
完成上述模拟,两种方法所用的空间网格尺寸Δx,时间步长Δt,计算时间和计算所需内存如下表所示:
以上分析结果表明,粗网格快速时域有限差分方法具有与传统时域有限差分方法相似的计算精度,但由于采用了较大的空间网格Δx和较大的时间步长Δt,其计算所需时间、所需内存均远小于传统时域有限差分方法。
对Maxwell方程中的
Figure BDA0000385091700000101
求导项在时刻的选取上采用混合时间步技术,以此消除z方向空间网格长度Δz对时间步长Δt的限制,使时间稳定性条件变为:
Δt ≤ 1 c ( 1 / Δy ) 2 + ( π / 2 Δx ) 2 ;
对Maxwell方程中的
Figure BDA0000385091700000103
求导项采用傅立叶变换求解,而不是传统时域有限差分方法的中心差分近似,该方法在理论上可保证沿x方向一个波长仅用2个网格来离散。
综上所述,本发明提供的粗网格快速时域有限差分方法,通过对Maxwell方程中的
Figure BDA0000385091700000104
求导项在时刻的选取上采用混合时间步技术,对
Figure BDA0000385091700000105
求导项采用傅立叶变换求解,设计出了一种时间步长Δt与空间网格长度Δz无关,空间网格长度Δx只需小于等于模拟频段最小波长1/2的新型时域有限差分方法。该方法在模拟同时具有精细结构和电大尺寸结构的复杂目标时,相比于传统时域有限差分方法,具有更高的计算效率和更低的内存需求。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于由本发明所提交的权利要求书确定专利保护范围。

Claims (3)

1.一种粗网格快速时域有限差分方法,其特征在于,包括以下步骤:
1)对待求电磁目标模型进行空间离散:磁场节点和电场节点的空间排布采用Yee元胞,电场节点Ex、Ey和Ez位于元胞的各个棱上,磁场节点Hx垂直于元胞的yz平面,磁场节点Hy与电场节点Ez的空间位置重合,磁场节点Hz与电场节点Ey的空间位置重合;
2)对待求电磁目标模型进行时间取样:电场分量的时间步取值为n和n+1时刻,磁场分量的时间步取值也为n和n+1时刻;
3)对Maxwell方程中的空间求导项
Figure FDA0000385091690000011
采用混合时间步法进行时间离散;
4)对得到的
Figure FDA0000385091690000012
求导项采用傅立叶变换求解,其余空间求导项采用二阶中心差分近似;
5)利用公式(1)和(2)求解n+1时刻的电场分量
Figure FDA0000385091690000013
和磁场分量
Figure FDA0000385091690000015
Figure FDA0000385091690000016
6)利用公式(3)求解n+1时刻的电场分量
Figure FDA0000385091690000017
Figure FDA0000385091690000021
7)利用公式(4)求解n+1时刻的电场分量
Figure FDA0000385091690000022
8)利用公式(5)和(6)求解n+1时刻的磁场分量
Figure FDA0000385091690000024
Figure FDA0000385091690000025
H x n + 1 ( i , j + 1 2 , k + 1 2 ) = H x n ( i , j + 1 2 , k + 1 2 ) + Δt 2 Δμz [ E y n + 1 ( i , j + 1 2 , k + 1 ) - E y n + 1 ( i , j + 1 2 , k ) + E y n ( i , j + 1 2 , k + 1 ) - E y n ( i , j + 1 2 , k ) ] - Δt μΔy [ E z n + 1 ( i , j + 1 , k + 1 2 ) - E z n + 1 ( i , j , k + 1 2 ) ] - - - ( 5 ) ;
Figure FDA0000385091690000031
以上各式中,
Figure FDA0000385091690000032
表示傅立叶变换,
Figure FDA0000385091690000033
表示逆傅立叶变换;
9)令n=n+1,重复执行步骤5)~8)直至迭代完成。
2.根据权利要求1所述的一种粗网格快速时域有限差分方法,其特征在于,步骤3)所述的对Maxwell方程中的空间求导项
Figure FDA0000385091690000034
Figure FDA0000385091690000035
采用混合时间步法进行时间离散;所述的混合时间步法是指在对场量Ex、Ey、Hx和Hy,在时刻的选取上,包含了未知的n+1时刻。
3.根据权利要求1所述的一种粗网格快速时域有限差分方法,其特征在于,时间步长Δt与空间网格长度Δz无关,时间稳定性条件满足:空间离散间隔条件满足:沿x方向的空间网格长度Δx只需小于等于模拟频段最小波长的1/2,Δx≤λ/2。
CN201310433245.9A 2013-09-22 2013-09-22 一种粗网格快速时域有限差分方法 Expired - Fee Related CN103514143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310433245.9A CN103514143B (zh) 2013-09-22 2013-09-22 一种粗网格快速时域有限差分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310433245.9A CN103514143B (zh) 2013-09-22 2013-09-22 一种粗网格快速时域有限差分方法

Publications (2)

Publication Number Publication Date
CN103514143A true CN103514143A (zh) 2014-01-15
CN103514143B CN103514143B (zh) 2016-06-08

Family

ID=49896890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310433245.9A Expired - Fee Related CN103514143B (zh) 2013-09-22 2013-09-22 一种粗网格快速时域有限差分方法

Country Status (1)

Country Link
CN (1) CN103514143B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893678A (zh) * 2016-04-01 2016-08-24 吉林大学 一种时域有限差分的三维感应-极化双场数值模拟方法
CN107845141A (zh) * 2017-11-27 2018-03-27 山东大学 一种瞬变电磁三维fdtd正演多分辨网格剖分方法
CN108345704A (zh) * 2017-01-22 2018-07-31 欢鼎科技成都有限公司 一种显式时间迭代时域电磁场计算方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774693A (en) * 1996-02-28 1998-06-30 Kaimei Electronic Corp. Multiprocessor parallel computing device for application to the execution of a numerical simulation software program
CN101957875A (zh) * 2009-07-17 2011-01-26 住友化学株式会社 电磁波传播模拟方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774693A (en) * 1996-02-28 1998-06-30 Kaimei Electronic Corp. Multiprocessor parallel computing device for application to the execution of a numerical simulation software program
CN101957875A (zh) * 2009-07-17 2011-01-26 住友化学株式会社 电磁波传播模拟方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
方运 等: "基于混合PSTD-FDTD方法的液晶光学特性模拟", 《红外与激光工程》 *
曹阳: "用时域有限差分法和傅里叶变换分析金属光栅衍射的偏振特性", 《中国优秀硕士论文信息科技辑》 *
李清亮 等: "计算电大尺寸建筑物内电波场强的PSTD方法", 《通信学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893678A (zh) * 2016-04-01 2016-08-24 吉林大学 一种时域有限差分的三维感应-极化双场数值模拟方法
CN105893678B (zh) * 2016-04-01 2021-07-13 吉林大学 一种时域有限差分的三维感应-极化双场数值模拟方法
CN108345704A (zh) * 2017-01-22 2018-07-31 欢鼎科技成都有限公司 一种显式时间迭代时域电磁场计算方法与装置
CN107845141A (zh) * 2017-11-27 2018-03-27 山东大学 一种瞬变电磁三维fdtd正演多分辨网格剖分方法

Also Published As

Publication number Publication date
CN103514143B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN103605633A (zh) 一种粗网格大时间步时域有限差分方法
CN102508220A (zh) 均匀双各向同性媒质物体的雷达散射截面获取方法
CN103514143A (zh) 一种粗网格快速时域有限差分方法
CN102592057A (zh) 周期结构指定频率的本征分析方法
Lucido et al. Analysis of the electromagnetic scattering by perfectly conducting convex polygonal cylinders
CN107515955A (zh) 基于eb连续‑不连续伽辽金混合的时域有限元方法
Bhat et al. Kirchhoff's laws as a finite volume method for the planar Maxwell equations
Tsang et al. Evaluation of the Green's function for the mixed potential integral equation (MPIE) method in the time domain for layered media
Zhao et al. Hybrid FDTD algorithm for electromagnetic analysis of fine structures
CN107229762B (zh) 一种含半导体物理模型的微波电路特性分析方法
de Hoop et al. Pulsed line source response of a thin sheet with high-contrast dielectric and conductive properties—A time-domain analysis
CN106202594B (zh) 分析混合目标瞬态电磁散射特性的时域不连续伽辽金方法
CN104778293A (zh) 非均匀介质目标电磁散射的体积分Nystrom分析方法
CN104699875A (zh) 快速获取天线参数的时域混合方法
Hou et al. Comparative study on recovery algorithms for solving electromagnetic scattering problems by compressive sensing
Ahmed et al. Modal analysis of microstrip lines using singular value decomposition analysis of FDTD simulations
CN104849551A (zh) 一种谐相角分析方法
Guo et al. Stable TDIE-MOT solver for transient scattering by two-dimensional conducting structures
Zhang et al. Electromagnetic Interference Diagnosis of RF Circuits Based on Near Field Scanning
Chen et al. A Computational Model for Electromagnetic Characteristics of Anisotropic Composites Based on Machine Learning
CN105631182A (zh) 分析导体瞬态电磁散射特性的阶数步进时域Nystrom方法
Khalatpour et al. Analysis of vertical wire antennas above lossy half-space using matrix pencil method
Gui-zhen et al. The Study of Spectral Element method in Electromagnetic Fields
Chen et al. Accurate solution and characteristics for electromagnetic wave propagation in time-varying media
Ding et al. A fast finite difference delay modeling solution of transient scattering from lossy inhomogeneous dielectric objects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20190922