CN103503211B - 由芯增强的具有水通路的蒸发冷却式燃料电池 - Google Patents

由芯增强的具有水通路的蒸发冷却式燃料电池 Download PDF

Info

Publication number
CN103503211B
CN103503211B CN201080070524.8A CN201080070524A CN103503211B CN 103503211 B CN103503211 B CN 103503211B CN 201080070524 A CN201080070524 A CN 201080070524A CN 103503211 B CN103503211 B CN 103503211B
Authority
CN
China
Prior art keywords
water
fuel cell
flow field
water passage
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080070524.8A
Other languages
English (en)
Other versions
CN103503211A (zh
Inventor
R.M.达林
T.斯基巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of CN103503211A publication Critical patent/CN103503211A/zh
Application granted granted Critical
Publication of CN103503211B publication Critical patent/CN103503211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • H01M8/1006Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

燃料电池(38)具有通路(83,84),所述通路使得水通过每个燃料电池的一个或两个反应气体流场板(75,81),由此燃料电池被蒸发冷却。水通路可由多孔塞(未示出)或由微真空泵(89)来通风。冷凝器(59)可具有贮存器(64);冷凝器(59)可以是车辆散热器。可高度渗水的芯层(90)邻近于存在于个体燃料电池(38)之间的一个或两个水通路(83,84)设置。该通路可以是流-通过通路(83)(图5)或者它们可以是交指型通路(83a,?83b)(图6),以便增加通过芯层(90)的水吹扫空气的流量,所述水吹扫空气用于在冷环境中停机期间清除堆中的水。入口交指型通道(83a,83b)可在其出口端处例如由凸起部(104)或孔(106)仅被部分地阻塞,以便确保进入入口冷却剂通路(83c,83d)的任何气体将不会累积在入口冷却剂通路的出口端(101)处。

Description

由芯增强的具有水通路的蒸发冷却式燃料电池
技术领域
具有水通路的燃料电池将水提供至反应气体流通路,其中在所述水通路之间设置有可渗水芯层,其中水与在电池中产生的废热成比例地蒸发;从排出的反应气体被冷凝的水返回到水通路。可选地,该通路可以呈交指型流场的形式,以在停机时在水吹扫期间增加水从芯的移除。
背景技术
在质子交换膜燃料电池领域中已知的是蒸发冷却式燃料电池,与将可感测的热量传送到流过电池的循环水或传送到流过冷却剂板的冷却剂相比,由此获得了蒸发热量的益处。在US7,504,170中示出了一个示例,该文献以引用的方式并入本文。
在一些应用中(例如,车辆中),优选的是极高的电流密度,以便支持高车辆性能。高电流密度增加了水生成,这需要有保证的流通过多孔、亲水反应气体流场板,其在下文中也被称为“水输送板”。此外,增加的功率密度需要膜的有保证的冷却和加湿。
为了高性能,在水通路和水输送板之间的水的最佳连通是有利的。
发明内容
根据本发明的主题,燃料电池功率设备中的燃料电池借助存在于通路中的水被蒸发冷却,所述通路邻近于亲水的多孔反应气体流场板的至少一个的第一表面或位于所述第一表面内,这些流场板在其的与所述第一表面相对的第二表面处具有反应气体流通道。每个通路与水贮存器流体连通。此外,流场板的水吸收通过在这些流场板之间并且与全部水通路密切接触的可渗水芯层来增加。通路中的水供应借助与在一个或多个通路中的水相邻的可渗水芯层来提高。
已经发现,在可能下降低于水的冰点的气候中的燃料电池功率设备在停机期间需要从燃料电池堆移除水的至少大部分。这降低了在燃料电池的非使用时段期间具有潜在灾难性机械应力并且在启动时(由冰)阻塞反应气体的倾向。已经发现,通过将空气吹动通过水通路来减少采用可渗水芯的燃料电池堆中的水产生水从可渗水芯的不适当移除。
本文的主题还包括采用交指型冷却剂水流场,这确保吹扫空气将传送到并且流过所述可渗水芯,由此迫使更多的水从所述可渗水芯被带走。在一个实施方式中,使用正常的常规交指型流场。在另一实施方式中,在入口流场的出口端处具有不完全阻塞的交指型流场确保气体能够逸出(典型地,从反应物流场泄漏到水通路中)所述流场,由此避免阻塞水流以及干燥所述膜。
鉴于示例性实施方式的下述详细说明,其他变形将变得更明显,如附图中所示的。
附图说明
图1是可结合本发明的主题的蒸发冷却式的燃料电池功率设备的被通风实施方式的简化框图。
图2是采用本发明主题的燃料电池的局部截面的侧视图,为了清楚起见省除了截面线。
图3是图2的变形的局部截面的侧视图,其中分离板(反应物流场)仅一个具有水通路。
图4是图2的主题的局部截面的俯视图。
图5是沿图4的线5-5截取的具有流通过通路的局部截面图。
图6是沿图4的线5-5截取的具有替代交指型流通路的局部截面图。
图7是沿图4的线5-5截取的片断截面图,示出了入口通路的出口端的局部堵塞。
图8和图9是沿图7的线8-8截取的片断截面图。
具体实施方式
现参考图1,燃料电池功率设备36(其可体现本文的主题)包括燃料电池38堆37(图2),所述燃料电池示出为被竖直地设置,但是它们可被水平地设置。
在该实施方式中,燃料被提供给燃料入口42并且在第一燃料流程(pass)中流动到右边,然后向下流动并且流动至左边通过燃料出口47。燃料可流动通过再循环泵(未示出)而回到燃料入口,并且可通过阀(未示出)被定期地吹扫至大气。可使用单个流程、三个流程或其他的燃料流构造。
在图1的实施方式中,空气由泵52提供至空气入口53,并且空气向上流动通过燃料电池38的氧化剂反应气体流通道。空气从该空气出口57在管58上流过而至冷凝器59,所述冷凝器在车辆中可以是常规散热器。流出的空气流经排出口62。来自冷凝器59的冷凝物可累积在贮存器64中,所述贮存器由水返回管65连接到水入口66。于是,水流动通过通路83、84(图2)而进入到每个燃料电池38中;所述通路83、84可终止于歧管68,在该歧管处,从通路移除气体通过排风口提供,该排风口例如是微真空泵89,该微真空泵的类型是用于可用数美元买到的37升(10加仑)水箱,仅用于供应足够压头(水压)的目的,以确保水位达到堆37中的通路的最上部。泵89并不使任何水流动通过排风歧管68。替代地,排风歧管68可通过多孔塞或其他排风口(未示出)来通风。
虽然存在水入口66并且不存在水出口,但是水简单地存在于每个燃料电池中。在图2中,一个实施方式包括燃料电池38,燃料电池的每一个包括常规膜电极组件72,所述膜电极组件包括电解质,在电解质的相对侧上具有阳极催化剂和阴极催化剂以及气体扩散层。应当理解的是,本文的附图根本未按比例绘制;不应当关注本文的水通路83、84以及前述专利中那些水通路的明显不同尺寸。
在图2的实施方式中,燃料反应气体流动通过亲水的多孔基板75中的水平通道74,该基板在该实施方式中包括形成水通路83的沟槽。在阴极侧上,亲水的多孔氧化剂反应气体流场板81包括竖直空气流通道82以及形成水通路84的沟槽。亲水多孔燃料反应气体流场板75和亲水多孔氧化剂反应气体流场板81以其他方式还被称为“水输送板”。
根据本文的主题的第一方面,图2的燃料电池38包括位于水通路83、84之间的可渗水芯90。芯90可以比水输送板75、81更厚或更薄。
可渗水芯90可包括合适的容易得到的碳纸,例如已经被合适处理(例如,具有锡或含有锡的复合物或混合物)的TorayH-060,以使其足够地亲水以便确保对水的预期渗透性。
在可渗水芯90邻近于水输送板75、81的凸台或肋92的情况下,这些凸台92提供水输送板的有助于输送水的附加表面面积。比较而言,在前述专利中,水在水通路和水输送板之间仅传送通过水通路的表面。
在图2的实施方式中,与前述专利的无芯系统相比,包括在芯90中的可用水之间的表面面积的增加可以是至少四倍,并且可能高达十倍。
图3示出了对象芯90可用于燃料电池中,所述燃料电池在阴极侧上仅在空气流场板81中具有水通路84。芯90相反还可用于仅在燃料流场板中具有水通路83的燃料电池中。在如图3和图4的实施方式中芯90就位的情况下,与仅具有水通路83、84而不具有任何芯90的现有系统相比,该表面至少被加倍,并且可能增加至高达五倍。
图4示出了向下看图2的截面的视图。该视图是两个水通路83和84的视图,其中燃料通道74看起来是竖直的并且空气通道82看起来是水平的。
参考图5,本发明的第一实施方式利用流通过水通路83。由于水在停机期间在燃料电池功率设备的周围可能下降至水的冰点以下的环境区域中被移除,因此期望从燃料电池堆尽可能多地移除水。在图2和图3的实施方式中已发现,利用如图5所示的流通过水通路83,借助空气流来吹扫水通路83、84并不移除足够的水。在水通路已经借助空气吹扫而被大部分清除之后,过量的水仍存在,尤其在可渗水芯90中。
为了提高水从燃料电池堆以及尤其从可渗水芯90的清除,该通路可形成为交指型样式,如图6所示。在该图中,交指型水通路包括入口水通路83a和出口通路83b,入口水通路83a在其出口端101被阻塞,出口通路83b在其入口端102被阻塞,如对于交指型流场常见的那样。这增加了足以将供应到通路83a的空气驱动通过可渗水芯90以及通过多孔亲水水输送板75a的压力,以由此根据本文的主题的第二方面提高了水移除。
与图6类似的本发明的另一实施方式在图7和图8中被示出。入口通路83c的出口端101并未被完全封闭,但是设置有未按照任何比例绘制的局部封闭件104。其目的在于确保可进入到入口水通路83c中的任何气泡将不会被截留在其中并且由此阻碍水流入到水输送板75b的相邻肋以及相邻的可渗水芯90中(如图2和图3所示)。
取代堵塞104,入口水通路83d的出口端101可在其中简单地具有小孔106,如图9所示。该孔106大于水输送板75c的孔尺寸,以有利于移除气体,而不将入口水通路83d中的水压降低至任何有意义的程度。
由于可对所公开实施方式作出改变和变形而不偏离构思目的,因此本发明并不旨在受到除由所附权利要求书所要求之外的公开内容的限制。

Claims (4)

1.一种燃料电池(38),所述燃料电池包括:
膜电极组件(72),所述膜电极组件具有电解质和气体扩散层,在所述电解质的相对侧上设置有阴极催化剂和阳极催化剂,所述气体扩散层面对所述催化剂层的每一个;
燃料反应气体流场板(75),所述燃料反应气体流场板沿其第一表面具有燃料反应气体流通道(74);
氧化剂反应气体流场板(81),所述氧化剂反应气体流场板在其第一表面上具有氧化剂反应气体流通道(82);
所述流场板中的一者或两者是多孔且亲水的;
水通路(83,84),所述水通路设置在所述流场板中的所述一者或两者的与其所述第一表面相对的第二表面上;
其特征在于如下的结合:
可高度渗水的芯层(90)邻近于所述流场板中的所述一者或两者的所述水通路设置;以及
所述水通路(83,84)包括交指型流场(83a,83b)。
2.根据权利要求1所述的燃料电池(38),进一步其特征在于:
所述交指型流场(83a,83b)具有入口流场(83c),所述入口流场的出口端(101)仅被部分阻塞并且构造成允许气体逸出。
3.根据权利要求2所述的燃料电池(38),进一步其特征在于:
所述入口流场(83c)的所述出口端(101)具有局部壁(104)。
4.根据权利要求2所述的燃料电池(38),进一步其特征在于:
所述入口流场(83d)的所述出口端(101)具有构造成允许气体逸出的孔(106)。
CN201080070524.8A 2010-10-06 2010-10-06 由芯增强的具有水通路的蒸发冷却式燃料电池 Active CN103503211B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/002691 WO2012047184A1 (en) 2010-10-06 2010-10-06 Evaporatively cooled fuel cells with water passageways enhanced by wicks

Publications (2)

Publication Number Publication Date
CN103503211A CN103503211A (zh) 2014-01-08
CN103503211B true CN103503211B (zh) 2016-03-23

Family

ID=45927980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080070524.8A Active CN103503211B (zh) 2010-10-06 2010-10-06 由芯增强的具有水通路的蒸发冷却式燃料电池

Country Status (6)

Country Link
US (1) US9455455B2 (zh)
EP (1) EP2625738B1 (zh)
JP (1) JP5680760B2 (zh)
KR (1) KR101800056B1 (zh)
CN (1) CN103503211B (zh)
WO (1) WO2012047184A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218958A1 (de) * 2013-09-20 2015-03-26 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage und Kraftfahrzeug mit Abgasanlage
CN112968191B (zh) * 2021-02-22 2022-06-21 西安交通大学 风冷燃料电池的阴极流场板结构和风冷燃料电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107743A (zh) * 2004-12-29 2008-01-16 Utc燃料电池有限责任公司 燃料电池的反应物气体的蒸发式冷却和防止运转冻结

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231793A (ja) * 1993-02-04 1994-08-19 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池
JPH07320753A (ja) * 1994-05-27 1995-12-08 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池
US6780533B2 (en) * 1999-12-17 2004-08-24 Utc Fuel Cells, Llc Fuel cell having interdigitated flow channels and water transport plates
US6586128B1 (en) 2000-05-09 2003-07-01 Ballard Power Systems, Inc. Differential pressure fluid flow fields for fuel cells
US6416892B1 (en) * 2000-07-28 2002-07-09 Utc Fuel Cells, Llc Interdigitated enthally exchange device for a fuel cell power plant
US6472095B2 (en) 2000-12-29 2002-10-29 Utc Fuel Cells, Llc Hybrid fuel cell reactant flow fields
US6485857B2 (en) 2000-12-29 2002-11-26 Utc Fuel Cells, Llc Fuel cell hybrid flow field humidification zone
GB2372143B (en) 2001-02-12 2003-04-09 Morgan Crucible Co Flow field plate geometries for a fuel cell, including for a polymer electrolyte fuel cell
US6617068B2 (en) * 2001-08-27 2003-09-09 Utc Fuel Cells, Llc Bi-zone water transport plate for a fuel cell
US6686084B2 (en) 2002-01-04 2004-02-03 Hybrid Power Generation Systems, Llc Gas block mechanism for water removal in fuel cells
US6869709B2 (en) * 2002-12-04 2005-03-22 Utc Fuel Cells, Llc Fuel cell system with improved humidification system
US6960404B2 (en) 2003-02-27 2005-11-01 General Motors Corporation Evaporative cooled fuel cell
GB2409763B (en) * 2003-12-31 2007-01-17 Intelligent Energy Ltd Water management in fuel cells
US7087330B2 (en) * 2004-01-22 2006-08-08 Utc Fuel Cells, Llc Storing water in substrates for frozen, boot-strap start of fuel cells
US20100015483A1 (en) * 2004-09-03 2010-01-21 Yang Jefferson Ys Reaction gas temperature and humidity regulating module for fuel cell stack
DE112005003309B4 (de) 2004-12-29 2020-11-12 Audi Ag Verdampfungskühlung von Reaktantengas und betriebsmäßiger Gefrierschutz für Brennstoffzellenstromerzeuger
EP1875544A4 (en) * 2005-04-15 2010-05-05 Utc Power Corp RESERVING WATER IN A FUEL CELL STACK FOR COOLING AND PREVENTION DURING A FROZEN RUNNING
KR101022111B1 (ko) 2005-12-28 2011-03-17 유티씨 파워 코포레이션 부분적으로 폐쇄된 단부를 갖는 연료전지 유동장 채널
WO2008105751A2 (en) 2005-12-29 2008-09-04 Utc Power Corporation Stabilized fuel cell flow field
US20070154744A1 (en) * 2005-12-30 2007-07-05 Darling Robert M Fuel cell coolant bubble control
KR20090091770A (ko) * 2006-12-22 2009-08-28 유티씨 파워 코포레이션 응축된 전해질을 복귀시키기 위한 고 투과성 위킹을 갖는 액체 전해질 연료 전지
WO2009128832A1 (en) * 2008-04-18 2009-10-22 Utc Power Corporation Fuel cell component with interdigitated flow fields
US20110003217A1 (en) 2008-04-24 2011-01-06 Robert Mason Darling Wicking layer for managing moisture distribution in a fuel cell
JP2010015868A (ja) * 2008-07-04 2010-01-21 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及び燃料電池発電方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101107743A (zh) * 2004-12-29 2008-01-16 Utc燃料电池有限责任公司 燃料电池的反应物气体的蒸发式冷却和防止运转冻结

Also Published As

Publication number Publication date
US20130224622A1 (en) 2013-08-29
CN103503211A (zh) 2014-01-08
EP2625738A4 (en) 2016-12-14
WO2012047184A1 (en) 2012-04-12
KR101800056B1 (ko) 2017-11-21
EP2625738A1 (en) 2013-08-14
EP2625738B1 (en) 2018-01-17
JP2013543224A (ja) 2013-11-28
US9455455B2 (en) 2016-09-27
KR20140009151A (ko) 2014-01-22
JP5680760B2 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
US20210151780A1 (en) Membrane humidifier for fuel cell
CN107658480B (zh) 一种温湿度均匀性增强的燃料电池单电池及电堆
JP2011517838A (ja) マニホルド・サンプを備えたバイポーラプレートおよび燃料電池
JP5027695B2 (ja) 双極板の流れ場における流路の二叉分岐
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
US7504170B2 (en) Fuel cells evaporatively cooled with water carried in passageways
EP2461403B1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JP5220495B2 (ja) 燃料電池スタック
JP2000090954A (ja) 燃料電池スタック
CN106960969A (zh) 燃料电池系统
CN106935883A (zh) 燃料电池系统
CN103503211B (zh) 由芯增强的具有水通路的蒸发冷却式燃料电池
JP5642172B2 (ja) 燃料電池の運転方法
US20040076869A1 (en) Fuel cell
EP3903913B1 (en) Membrane humidifier for fuel cell, comprising multi-channel hollow fiber membranes
KR100921568B1 (ko) 냉각 유로의 채널 길이가 서로 상이한 연료전지 분리판 및이를 구비한 연료전지 스택
JP2008243540A (ja) 固体高分子電解質形燃料電池発電装置
JP2008016269A (ja) 燃料電池システム
WO2018214098A1 (zh) 燃料电池的阴极结构
JP2008098019A (ja) 燃料電池用加湿器
JP2008305627A (ja) 燃料電池スタックシステム
CN116387562B (zh) 增湿器、燃料电池系统和湿度调节方法
TWI304748B (en) Gas humidifing apparatus
EP4358201A1 (en) Fuel cell membrane humidifier
JP5653873B2 (ja) 燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BALLARD POWER SYSTEMS

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (US) 1, FINANCIAL PLAZA HARTFORD, CONNECTICUT 06101 U.

Effective date: 20150520

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150520

Address after: Canadian British Columbia

Applicant after: Ballard Power Systems

Address before: American Connecticut

Applicant before: United Technologies Corporation

C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20160301

Address after: Germany Ingolstadt

Applicant after: Audi AG

Address before: Canadian British Columbia

Applicant before: Ballard Power Systems