CN103493273A - 制备电化学半电池的方法 - Google Patents

制备电化学半电池的方法 Download PDF

Info

Publication number
CN103493273A
CN103493273A CN201280019771.4A CN201280019771A CN103493273A CN 103493273 A CN103493273 A CN 103493273A CN 201280019771 A CN201280019771 A CN 201280019771A CN 103493273 A CN103493273 A CN 103493273A
Authority
CN
China
Prior art keywords
precursor
gel
electrode layer
temperature
electrolytical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280019771.4A
Other languages
English (en)
Inventor
蒂博·德拉艾
M·里厄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of CN103493273A publication Critical patent/CN103493273A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种用于制备电极支撑的电化学半电池的方法,所述方法包括将上面沉积有电解质的前体凝胶或其前体的生电极层在低于或等于1350℃的温度下进行烧结的步骤。

Description

制备电化学半电池的方法
技术领域
本发明属于提供用于增加可再生能源且限制温室气体排放的装置和方法的新能源技术领域。
更具体地,本发明属于高温电化学电池,尤其是电极支撑电池的领域,特别是涉及固体氧化物燃料电池(SOFC)和固体氧化物电解电池(SOEC)的领域。
本发明实际上提供了一种制备结合多孔电极和薄的致密电解质的电化学半电池的方法,且该方法包含在低于或等于1350℃的温度下进行烧结的单次步骤。
背景技术
有很多工作涉及在块状电极上生产电解质膜,以制备第二代电化学电极支撑电池。
文献中报道的沉积方法可分成两个主类:称为“物理方式”的途径,如热喷涂或通过脉冲激光沉积进行的沉积;以及,称为“湿法方式”的途径,如流延成型(tape casting)、丝网印刷或通过电泳再次进行的沉积。但是,只有后一类方法使用了简单、低成本的工业应用。在本申请后面所示出的文献目录集中在第二类方法上。
不同的作者报道了通过丝网印刷在支撑阳极上产生电解质涂层。制备由粉末和载液组成的墨汁,随后通过丝网印刷使该墨汁沉积在电极上,其中该载液可包含溶剂、分散剂、粘合剂和/或增塑剂。
在某些情况中,在中间温度(1000℃~1200℃)处预烧结通过压制或流延成型而成形的电极,然后在较高温度(>1350℃)下烧结该“电极-电解质”组合物以获得7μm至20μm的致密电解质[1~5]。
Hansch等通过向其中添加溶胶(溶胶-凝胶前体)改变了墨水的成分[6]。在这篇文章中,墨水由载液、粉末颗粒和溶胶-凝胶前体组成,这样能够制备致密的钇稳定氧化锆(YSZ)电解质,且该钇稳定氧化锆电解质在高温烧结(1400℃)后的厚度为20μm。
在通过流延成型而成形的电极,和通过丝网印刷(其中悬浮物包括粉末和载液)产生半电池的情况中,可在某些情况中使用单次的热处理。因此,Zhang等描述了在通过流延成型制得的生阳极上制备在1400℃处烧结后大约15μm厚的致密的Sm0.2Ce0.8O1.9(SDC)涂层[7]。应注意,在这篇文章中,所使用的温度是高温,且沉积的墨水不是凝胶而是悬浮物。
在制备电化学半电池中可使用其它沉积技术。
在共流延成型(tape co-casting)的情况中,通过流延成型制备阳极且电解质是“共浇铸(co-cast)”的。浇铸的浆料由粉末、溶剂、分散剂、粘合剂和增塑剂组成。然后在高温(高于1350℃)下共烧结组合物。实际上,较低的温度不能获得致密电解质。不同作者描述了在经过高于1350℃的温度下的热处理之后产生10μm至30μm厚的致密电解质[8~10]。
层压方法与共浇铸相同,但引入了额外步骤:生料带(green tape)的层压。因此,Song等在1350℃下的共烧结之后获得10μm的电解质[11]。
通过电泳的沉积在于通过应用电场在预烧结的阳极上沉积在悬浮物中的粉末。Hosomi等在1350℃下的热处理之后产生取决于时间和施加的电压的3μm至15μm厚的YSZ的致密涂层[12]。
对于喷涂,悬浮物中的粉末通过喷射沉积在预烧结的阳极上。很多作者已经在高温烧结(1400℃)之后制备了15μm至45μm厚的YSZ的致密电解质[13,14]。
De Souza等使用了胶状悬浮物的沉积[15]。超细粉末分散在溶剂中,然后沉积在预烧结的阳极上。在高温烧结(1400℃)之后获得9μm厚的YSZ的致密电解质。
其他作者使用溶胶(溶胶-凝胶)。而浆料由液体、粉末颗粒及溶胶凝胶前体组成。通过浸涂,Lenormand等报道了在高温烧结(1400℃)之后制备20μm厚的YSZ的致密电解质[16]。
先前已经制备了小于1μm或2μm厚的电解质膜。实际上,如旋涂[17]、浸涂或ALD(原子层沉积)[18]等方法能够在较低温度(800℃~1250℃)下产生几个纳米(<2μm)厚的致密YSZ涂层。溶液中的前体在最终的热处理之前沉积在预烧结的电极上。因此,这些技术需要两次热处理。
在支撑电极设计(第二代)中,高温电化学电池开发(尤其是从稳定氧化锆制得的那些高温电化学电池)的主要障碍在于与热烧结处理相关的制造成本。实际上,如之前描述地,阴极//电解质//阳极电池的生产通常需要三次热处理(每个元件一次),且尤其需要高温烧结处理(≥1400℃)以获得不透气的致密电解质。
在工业上,大规模生产电极//电解质半电池包含在高于1400℃运行的高温熔炉的使用。其次,所使用的消耗性的耐火材料是昂贵的碳化物,如碳化硅。通过降低烧结温度,例如降低至1200℃,则可以使用便宜得多的氧化铝耐火材料来代替这些耐火材料。此外,通过降低热处理的次数,在半电池的情况中通过从两次处理改变为单次处理,则大大降低生产成本和时间。
因此,本发明人为自己设置的目标是开发出一种用于制备需要较少烧结步骤和较低烧结温度的电极支撑的电化学半电池的方法。
发明内容
本发明能够解决之前限定的技术问题,且达到本发明人设置的目标。
实际上,本发明人的工作已经能够开发出一种用于制备电极支撑电化学半电池的方法,所述方法包括单次热处理的步骤,以在低于1350℃的温度下共烧结电极和电解质,而不需要预先烧结电极。因此,该方法可能表示为使电化学半电池成形的低温单次烧结方法。
本发明的方法将两个元件(即生支撑电极(如生支撑复合物)和为电解质前体的凝胶或溶胶)排齐。不用预烧结支撑物及使用活性非常高的凝胶或溶胶作为电解质的前体能够用于在较低温度下的一次热处理;而其它技术常常需要预烧结和/或高温处理,通常涉及使用悬浮物中的粉末以产生电解质。而为了工业化,由于该方法的实施可能降低制造时间和成本。此外,溶胶-凝胶途径可以获得高柔韧性及高纯度的相,且还可允许在低于传统合成/沉积途径的温度下获得具有复杂配方(多阳离子)的氧化物。
更具体地,本发明涉及用于制备电极支撑的电化学半电池的方法,该方法包括在于如下过程的步骤:将上面沉积有电解质的前体凝胶或其前体的生电极层在低于或等于1350℃的温度下进行烧结。
作为提示,电化学电池包含至少两种电极和至少一种电解质的组合应用,且尤其包括两种电极和一种电解质的组合应用。因此,电化学半电池包含至少一种电极和至少一种电解质的组合应用,且尤其包括一种电极和一种电解质的组合应用。构成电化学(半)电池的不同元件呈现为明显平行的层的形式,其中一层被放在另一层的上面。在本发明的上下文中,电化学半电池有利地由支撑电极类型的电极及电解质组成。
术语“生电极层”应理解为是指在电极层沉积之后且电极层的表面上沉积电解质的前体凝胶或其前体之前,未经烧结或热处理的任何步骤的电极层。如上所解释的,生电极层仅进行的烧结处理是电解质的前体凝胶或其前体同时经历的共烧结步骤。
由陶瓷墨水(也被称为术语“浆料”)获得在本发明上下文中使用的生电极层。这样的陶瓷墨水是电极材料的粉末在水性或有机流体中的分散体(或悬浮物)。
本领域技术人员已知任意电极材料的粉末均可用于制备本发明上下文中使用的陶瓷墨水中。因此,所述粉末可以是选自如下的材料的粉末:结构为ABO3的钙钛矿,其中A表示稀土(如镧),B表示过渡金属;通式为Ln2NiO4+y的化合物,其中Ln表示镧系元素,且尤其是La、Nd和Pr;通式为La10-xGe6O26+y的锗酸盐;通式为La10-xSi6O26+y的硅酸盐;稳定氧化锆,可能混合有NiO;取代的二氧化铈,可能混合有NiO;及它们的混合物。更具体地,所述粉末可以是从选自如下的材料的粉末:稳定氧化锆,可能混合有NiO;取代的二氧化铈,可能混合有NiO;及它们的混合物。
术语“稳定氧化锆”应理解为是指已经被金属氧化物稳定或取代的氧化锆,且特别是被从钇、铈、钪、镱、铝和钙中选择出的金属的氧化物稳定或取代的氧化锆。表述“稳定氧化锆”、“取代的氧化锆”和“掺杂氧化锆”是同等的,且可互换使用。稳定氧化锆可以与NiO混合使用。在这种情况下,陶瓷墨水中使用的粉末是粉末状NiO和粉末状稳定氧化锆(如粉末状YSZ)的混合物。使用术语“NiO/稳定氧化锆类型的电极”。在这样的混合物中,以稳定氧化锆的质量相对于混合物(NiO+稳定氧化锆)的总质量表示稳定氧化锆的量在20%和60%之间,特别是在30%和50%之间,且尤其是大约40%(即40%±5%)。
应理解术语“取代的二氧化铈”指取代或掺杂的二氧化铈,且特别是由被金属氧化物和特别是从钇、铈、钪、镱、铝和钙中选择出的金属的氧化物取代的二氧化铈制得的取代或掺杂的二氧化铈。表述“取代的二氧化铈”、“稳定二氧化铈”和“掺杂的二氧化铈”是同等的,且可以互换使用。取代的二氧化铈可以与NiO混合使用。在这种情况下,在陶瓷墨水中使用的粉末是粉末状NiO和粉末状取代的二氧化铈(如粉末状GDC)的混合物。使用术语“NiO/取代的二氧化铈类型的电极”。在这样的混合物中,以取代的二氧化铈的质量相对于混合物(NiO+取代的二氧化铈)的总质量表示取代的二氧化铈的量在20%和60%之间,特别是在30%和50%之间,且尤其是大约40%(即40%±5%)。
无论使用的电极材料如何,所述材料的粉末以相对于所使用的陶瓷墨水的总重量的10%(重量)和90%(重量)之间的量,且特别是在20%(重量)和80%(重量)之间的量存在。
本领域技术人员已知的任何墨水粉末复合物均可用于制备在本发明上下文中使用的陶瓷墨水中。因此,所述陶瓷墨水包括至少一种从溶剂、分散剂、粘合剂、增塑剂和成孔剂中选择出的元素。
在本发明的上下文中,载剂/载液是用于电极材料粉末的分散物的媒介物。该载剂/载液可以是有机溶剂、几种有机溶剂的混合物、水,或水与有机溶剂的混合物。应理解术语“有机溶剂”在本发明的上下文中指属于酮类、醚氧化物(oxide ether)类、醚类、醇类或烃类(特别是芳香烃类)或萜烯类的溶剂。涉及到可以在本发明上下文中使用的有机溶剂,可引用如下化合物:甲基乙基酮(MEK或丁酮)、丙酮、乙酸丁酯、乙二醇单乙醚、乙醇、甲苯、环己酮、二乙二醇丁醚乙酸酯、萜品醇,及它们的混合物,如MEK或乙醇的共沸混合物。尤其使用的,特别是在NiO/稳定氧化锆类型的电极材料的情况中使用的有机溶剂是MEK或乙醇的共沸混合物。溶剂在陶瓷墨水中的量相对于所述陶瓷墨水的总重量在10%(重量)和50%(重量)之间,且特别是在20%(重量)和40%(重量)之间。
可以在陶瓷墨水复合物中使用分散剂以改善悬浮物的稳定性,防止在该悬浮物中包含的粉末的结块,且由此获得均一的层。本领域技术人员已知的任何分散剂均可用在本发明中使用的陶瓷墨水复合物中。可有利地使用的分散剂选自油酸、磷酸酯、聚乙烯基丁醛、甘油三油酸酯,及它们的混合物。特别是在NiO/稳定氧化锆类型的电极材料的情况中,尤其使用的分散剂是由Cerampilot卖的磷酸酯CP213。分散剂在陶瓷墨水中的量相对于所述陶瓷墨水的总重量在0.1%(重量)和5%(重量)之间,且特别在0.5%(重量)和2%(重量)之间。
在陶瓷墨水复合物中,粘合剂在陶瓷墨水已经沉积时起到改善其粘合性的作用,且通过在构成陶瓷墨水的颗粒之间创建有机桥梁而起到增加其密度的作用。本领域技术人员已知的任何粘合剂均可用于在本发明中使用的陶瓷墨水复合物中。可以有利地使用的粘合剂选自聚碳酸亚丙酯、聚乙烯醇缩丁醛(PVB)、聚(甲基丙烯酸异丁酯)、聚(氯乙烯-共-乙酸乙烯酯)(PVCAc)、乙基纤维素,及它们的混合物。特别是在NiO/稳定氧化锆类型的电极材料的情况中,最常使用的粘合剂是聚乙烯醇缩丁醛(PVB)。陶瓷墨水中的粘合剂的量相对于所述陶瓷墨水的总重量在1%(重量)和20%(重量)之间,且特别是在2%(重量)和10%(重量)之间。
陶瓷墨水复合物还包含增塑剂,所述增塑剂的作用在于当陶瓷墨水已经沉积时改善该陶瓷墨水的柔韧性,因此使该陶瓷墨水在基板上展开。本领域技术人员已知的任何增塑剂均可用于本发明使用的陶瓷墨水复合物中。可有利地使用的增塑剂选自:二醇类,如聚乙二醇(PEG);酞酸盐类,如丁基苯酞酸盐(BBP)、酞酸二丁酯(DBP)和酞酸二辛脂(DOP);及它们的混合物。特别是在NiO/稳定氧化锆类型的电极材料的情况中,最常使用的增塑剂是酞酸二丁酯(DBP)和聚乙二醇(PEG)。陶瓷墨水中的增塑剂的量相对于所述陶瓷墨水的总重量在1%(重量)和20%(重量)之间,且特别是在2%(重量)和10%(重量)之间。
最后,陶瓷墨水组合物可包含成孔剂,其中成孔剂有利于根据本发明方法制备的电极的最终孔隙度。成孔剂尤其使得能够产生开孔孔隙度。术语“开孔孔隙度”应理解为是指在材料中产生的孔连接起来且出现在自由表面中。该成孔剂在根据本发明的方法的共烧结步骤中被消除。在本发明中使用的成孔剂有利地为粉末形式。该成孔剂可以是本领域技术人员已知的任何成孔剂。该成孔剂有利地是粉末状化合物(无论是否是天然的),且选自:乙炔黑、聚苯乙烯、聚甲基丙烯酸甲酯(PMMA)、淀粉、聚乙烯、环式糊精、蜡、单糖、寡糖(如蔗糖、多糖),或它们的混合物中的一种。陶瓷墨水中的成孔剂的量相对于所述陶瓷墨水的总重量在1%(重量)和10%(重量)之间,且特别是在2%(重量)和7%(重量)之间。
应注意到可以根据所使用陶瓷粉末的颗粒大小和表面比表面积调整构成陶瓷墨水的有机混合物。
在制备本发明上下文中实现的陶瓷墨水的过程中,当已经生成构成陶瓷墨水的不同元素的混合物且使其均匀时,可以对陶瓷墨水进行脱气处理。
在本发明上下文中使用的电解质的前体采取凝胶或其前体的形式。应理解术语“其前体”指凝胶的前体,即溶胶。溶胶被定义为溶剂中胶状或聚合物性质的悬浮物,然而凝胶被定义为封住溶剂的固体网状物。
制备电解质所需的金属元素用于在溶胶中构成胶状或聚合物的网状物。因此,在溶胶-凝胶转变过程中这些金属元素在介质中均匀分布。凝胶由溶剂溶胀的氧化物的网状物构成,具有对材料提供机械凝聚力的化学键,从而使凝胶具有刚性特性。在大部分情况中,共价化学键用于形成凝胶的网状物,但可能出现该网状物使用较弱的化学键,如配价键或氢键。
任何能够制备溶胶或凝胶的技术均可用于本发明的上下文中。使用溶胶-凝胶工序,使用从Péchini方法衍生出来的聚合物工序,或使用NPG(硝酸盐聚丙烯酰胺凝胶(nitrate polyacrylamide gel))工序,有利地制备凝胶或其前体。取决于所选择的工序,分子前体,且特别是包含的金属前体是不同的。但是,所有这些分子前体均具有在溶剂中进行聚合反应的特征。此外,无论使用的合成工序如何,金属阳离子均均匀地分散在有机基质中。
溶胶-凝胶工序使用至少一种有机金属前体,且特别地使用至少一种通式为M(OR)n的烃氧基金属(metallic alcoxide),其中M指金属且OR指烃氧基;其中,R是不管是直链或支链均具有1至15个碳原子,且特别是具有1至10个碳原子,且尤其具有1至5个碳原子的烷基链。溶胶-凝胶工序的目标是通过烃氧基前体的加氢缩合反应形成无机聚合物或可变大小的胶体。这些前体的加氢缩合反应工序导致凝胶的形成。该凝胶由封闭溶剂的M-O-M的网状物构成,具有对材料提供机械凝聚的化学键。
在本发明上下文中有利使用的烃氧基金属是之前定义的通式M(OR)n的烃氧物,其中M代表锆或铈。可引用下面的化合物作为更具体的实例:甲氧基锆、乙氧基锆、正丙氧基锆、丁氧基锆、戊氧基锆、甲氧基铈、乙氧基铈、正丙氧基铈、丁氧基铈和戊氧基铈。显然,从有机金属前体获得电解质是氧化锆或二氧化铈。
如果要制备的电解质是之前定义的取代的氧化锆或取代的二氧化铈,则包括如之前定义的至少一种烃氧基金属的溶剂还包括能够代替氧化锆或二氧化铈的金属盐。这样的盐特别选自硝酸盐、氢氧化物、草酸盐、乙酸盐、碳酸盐或乙酰丙酮化物。更具体地,如果使用取代的氧化锆,则使用的盐是硝酸盐,且特别是硝酸钇。
在溶胶-凝胶工序中有利使用的溶剂选自:醇类,如甲醇、乙醇或正丙醇;醚类,如二乙醚和四氢呋喃;含氯溶剂,如氯仿、CH2Cl2、C2H5Cl2;非质子溶剂,如丙酮、乙酰丙酮、CH3CN、甲基乙基酮或二氧六环;质子溶剂,如乙酸或甲酰胺;它们的混合物中的一种。可以使用的溶剂混合物是正丙醇和乙酰丙酮的混合物。
从Péchini方法衍生出来的聚合物工序基于在专利US3330697[19]中描述的方法。在该技术中所使用的前体是在能够提供有机基质的化合物的存在下金属盐类型的金属前体。
更具体地,在从Péchini方法衍生出来的聚合物工序中,金属盐溶解在有机溶液中,该有机溶液包含至少一种聚合剂、至少一种络合剂和一种溶剂(如水、去离子水或乙酸)。金属盐特别选自硝酸盐、氢氧化物、草酸盐、乙酸盐、碳酸盐或乙酰丙酮化物。作为通过从Péchini方法衍生出来的聚合物工序由YSZ制得的电解质的制备实例,所使用的两种盐是硝酸钇和硝酸锆。聚合剂特别选自六亚甲基四胺和乙二醇,且络合剂选自乙酰丙酮(特别当聚合剂是六亚甲基四胺时)和柠檬酸(特别当聚合剂是乙二醇时)。
NPG(硝酸盐聚丙烯酰胺凝胶)合成工序特别基于Magrez等在2002年的文章[20]中和Chesnaud等在2004年的文章[21]中所描述的工作。
在该技术中,表现为金属盐形式的金属前体溶解且以所需的比例混合在酸性介质(例如硝酸存在的酸性介质)中。所述前体可以是碳酸盐、硝酸盐、氧化物、乙酸盐、草酸盐、乙酰丙酮化物或此外的氢氧化物。为了防止任何沉淀,通过例如柠檬酸的方式使水性溶液中的前体形成络合物。还可能需要通过添加碱(如氢氧化铵)调节pH。所获得的包含前体的溶液保持在~200℃的温度下,同时搅拌以减小它的体积。单体(如丙烯酸)和交联剂(如N-N'亚甲基双丙烯酰胺)的添加使得能够形成凝胶。可以热引发胶凝作用,或通过添加H2O2或其它能够产生自由基的化合物产生胶凝作用。
在根据本发明的方法的上下文中,烧结或共烧结温度有利地在1000℃和1350℃之间,且特别是在1000℃和1300℃之间。
在烧结步骤之前,在上面沉积有电解质的前体凝胶或其前体的生电极层处于10℃和40℃之间,特别在18℃和30℃之间,且有利地处于室温。在本发明的上下文中,应理解术语“室温”指25℃±5℃。
在达到烧结温度之前,在上面沉积有电解质的前体凝胶或其前体的生电极层达到400℃和800℃之间,特别在500℃和700℃之间,且尤其是大约600℃(即600℃±50℃)的中间温度。在上面沉积有电解质的前体凝胶或其前体的生电极层在该中间温度下保持15分钟至120分钟,特别在30分钟至90分钟,且尤其是大约60分钟(即60分钟±15分钟)的时间。通过以10℃/h和50℃/h之间,特别以15℃/h和40℃/h之间,且以大约25℃/h(即25℃/h±5℃/h)的缓慢升高的温度梯度的方式使上面沉积有电极的前体凝胶或其前体的生电极层达到中间温度。该温度的缓慢升高使有机元素能够被缓慢排除,且还使电解质的前体元素能够结晶。
通过可以较快且有利地在25℃/h和100℃/h之间,特别在35℃/h和75℃/h之间,且尤其为大约50℃/h(即50℃/h±10℃/h)的升高的温度梯度的方式,使在上面沉积有电解质的前体凝胶或其前体的生电极层从中间温度达到烧结温度。然后,在上面沉积有电解质的前体凝胶或其前体的生电极层在烧结温度下保持1h至5h,特别在2h至4h,且尤其在大约3h(即3h±30分钟)的时间。
最后,在烧结步骤之后,将从在上面沉积有电解质的前体凝胶或其前体的生电极层获得的材料降回至10℃和40℃之间,特别在18℃和30℃之间,且尤其降回至室温。通过在40℃/h和300℃/h之间,特别在60℃/h和150℃/h之间,且尤其为大约100℃/h(即100℃/h±25℃/h)的温度梯度冷却的方式,将该生电极层从烧结温度降回至该温度。
可以以可设计的熔炉(如持续推板窑、辊道窑、具有浴盆(tub)的隧道窑、静态炉、腔室装置或可移动的盖炉)实现烧结步骤和温度升高和冷却的步骤。将选择熔炉的大小以便该熔炉适于要制备的电化学半电池的大小。
有利地在空气中实现烧结步骤及升温和冷却的步骤。
更具体地,根据本发明的方法由以下步骤组成:
a)制备特别是如上定义的生电极层;
b)在所述生电极层上沉积特别是如上定义的电解质的前体凝胶或其前体;以及
c)使上面沉积有所述电解质的前体凝胶或其前体的所述生电极层经历如上定义的烧结温度。
在根据本发明的方法的步骤a)的过程中,通过沉积如上定义的陶瓷墨水获得生电极层。如可用于沉积陶瓷墨水的沉积技术的特别实例,可引用如下内容:丝网印刷、流延成型、浸旋涂(dip-spinning)或浸涂。在步骤a)中,有利地通过流延成型完成沉积。
由根据本发明的下面的步骤(a)获得的生电极层有利地具有在50μm和2mm之间的厚度,且特别具有在100μm和1mm之间的厚度。
当生电极层已经沉积,可以对该生电极层进行干燥。任何本领域技术人员已知的干燥技术均可用于本发明的上下文中。该干燥可以是热干燥,典型地通过将生电极层经历30℃至180℃的温度,特别在70℃至160℃之间,且尤其在大约140℃(即140℃±10℃)的温度达3分钟至45分钟,特别在5分钟至30分钟之间,且尤其为15分钟的时间。作为变体,干燥可以由溶剂的简单蒸发组成。
此外,当生电极层已经沉积且可选地被干燥时,考虑到烧结过程中的收缩可将该生电极层切成期望的尺寸。
作为可用于在生电极层上沉积电解质的前体凝胶或其前体的沉积技术的特别实例,可引用下面的技术:丝网印刷、流延成型、浸旋或浸涂。在步骤b)中,有利地通过丝网印刷完成沉积。
对应于电解质的前体凝胶的层具有1μm和50μm之间的厚度,特别具有2μm和30μm之间的厚度,尤其具有3μm和20μm之间的厚度,且特别尤其具有4μm和10μm之间的厚度。
在根据本发明的方法的烧结步骤c)之后,由在上面沉积有电解质的所述前体凝胶或其前体的电极层获得的烧结材料可经历还原。当电极是由包含NiO的材料(如NiO/稳定氧化锆或NiO/取代的二氧化铈类型的材料)制成时,尤其需要这样的还原。还原使得能够从这样的材料分别获得Ni/稳定氧化锆或Ni/取代的二氧化铈类型的金属陶瓷。在还原气氛中,例如在AR/H2(4%)流中,在600℃和1000℃之间的温度下保持2小时至10小时,且更具体地在750℃保持3小时完成该还原。
当已经完成根据本发明的方法时,获得具有多孔支撑电极和薄的致密电解质的电化学半电池。因此,本发明涉及如上定义的方法,其中在烧结步骤之后和/或如上定义的还原步骤之后获得的电极支撑的电化学半电池具有多孔支撑电极和薄的致密电解质。换句话说,本发明涉及如上定义的方法的用途以制备具有多孔支撑电极和薄的致密电解质的电极支撑的电化学半电池。
术语“多孔电极”理解为是指具有开孔孔隙度的电极,即其中产生的孔连接起来的电极。相对于电极的总体积,获得的多孔电极按体积计有利地具有20%和70%之间,特别在30%和60%之间的开孔孔隙度。
术语“致密电解质”理解为是指如下的电解质:相对于该电解质的总体积,该电解质的孔隙度按体积计小于10%,特别小于7%,且尤其小于6%。
术语“薄电解质”理解为是指该电解质具有1μm和50μm之间的厚度,特别具有2μm和30μm之间的厚度,尤其具有3μm和20μm之间的厚度,且特别尤其具有4μm和10μm之间的厚度。
本发明还涉及通过使用如上定义的方法直接获得的电化学半电池。
当本领域技术人员阅读下面给出的仅作为例示且并不是限制性的实例,参考附图且与并入NiO/8YSZ复合物电极和8YSZ电解质的阳极支撑类型(或各自的阴极支撑类型)的SOFC(或SOEC)半电池联系起来时,还将想到本发明的其他特征和优点。
附图说明
图1是通过对本发明实现的生电极带进行光学显微检测获得的显微照片。
图2示出了根据本发明的方法在1200℃热处理3h后的电化学半电池(NiO/8YSZ//8YSZ)的破碎表面的二次电子模式中的两张显微照片。图2A和图2B是在两个不同放大倍数下获得的相同破碎表面的显微照片。
具体实施方式
I、复合物NiO/8YSZ的生料带的制备
根据本发明的电极支撑的电化学电池的生产首先包含复合物NiO/8YSZ的生料带的产生。通过浆料的流延成型产生复合物NiO/8YSZ的生料带。
该悬浮物由以下物质组成:含60%(质量)的NiO和40%的8YSZ的粉末状混合物,该粉末状混合物构成浆料最终质量的69%;CP213,构成浆料最终质量的0.6%(质量);MEK和乙醇的混合物,该混合物构成浆料最终质量的23%(质量);PVB,构成浆料最终质量的3.4%(质量),以及PEG,构成浆料最终质量的4%(质量)。
当该生料带已经产生出来且已经在20℃干燥达24h时,考虑到在烧结过程中收缩,将该生料带切成所需的电极形状和尺寸。
II、电解质8YSZ的制备
在电解质8YSZ的情况中,使用由包含正丙醇锆、硝酸钇、乙酰丙酮(acac.)、正丙醇和水的系统中获得的溶胶。对该溶胶所选择的合成参数是:
浓度:C=[Zr]=0.5mol.L-1
复合率(complexing rate)R'
其中R'=[acac.]/([Zr]+[Y])=0.7
水解率(hydrolysis rate)为W'
其中W'=[H2O]/([Zr]+[Y])=10
将钇的前体以1mol.L-1浓度溶解在1-丙醇中。在搅拌的同时将正丙醇锆加入1-丙醇/乙酰丙酮中。然后加入溶解在1-丙醇和水中的硝酸钇。
在这些合成条件下,溶胶由在水解和缩合反应启始时产生的胶状颗粒组成。当基本颗粒彼此接触时,这些不规则移动的基本颗粒聚集起来。这种机制继续,从而导致物体(聚集体)的形成,该物体自身扩散且聚集。这是胶凝作用或溶胶-凝胶转变的步骤。当这种聚集的过程结束时获得凝胶。凝胶通过丝网印刷机沉积在NiO/8YSZ生料带的表面(图1)上。
如图1中的生料带表面的照片所示,该生料带(聚合物+粉末)的不可渗透的微观结构使得能够防止溶胶或凝胶渗透入电极的最终微观结构中。
III、热处理
当凝胶已经沉积时,热处理[生料带+凝胶]系统以给予支撑电极足够的机械性能且使电解质致密化。在该实例中使用的热循环如下:
25℃→25℃/h→600℃/1h→50℃/h→1200℃/3h→100℃/h→25℃
通过扫描电镜完成对热处理表面的破碎表面的微观结构观测。这些观测结果示于图2中。
在这些显微照片中,可以看到在上部分中的约5μm厚的致密电解质和在下部分中的复合物NiO/8YSZ电极,该复合物NiO/8YSZ电极将通过原位还原(即当电池投入使用时)成为金属陶瓷NiO/8YSZ。
参考文献
[1]Ried等,“Processing of YSZ screen printing pastes and the characterizationof the electrolyte layers for anode supported SOFC”,Journal of the EuropeanCeramic Society28(2008)1801–1808.
[2]Sun等,“NiO+YSZ anode substrate for screen-printing fabrication of YSZelectrolyte film in solid oxide fuel cell”,Journal of Physics and Chemistry of Solids70(2009)164–168.
[3]Liang等,“Preparation of NiO–YSZ composite powder by a combustionmethod and its application for cathode of SOEC”,International Journal of HydrogenEnergy35(2010)2852–2857.
[4]Dollen等,“A Study of Screen Printed Yttria-Stabilized Zirconia Layers forSolid Oxide Fuel Cells”,Journal of the American Ceramic Society88(2005)3361–3368.
[5]Mücke等,“Cofiring of Thin Zirconia Films During SOFC Manufacturing”,Journal of the American Ceramic Society92(2009)S95–S102.
[6]Hansch等,“Screen printing of sol–gel-derived electrolytes for solid oxidefuel cell(SOFC)application”,Ceramics International35(2009)803–811.
[7]Zhang等,“NiO–YSZ cermets supported low temperature solid oxide fuelcells”,Journal of Power Sources161(2006)301–307.
[8]Wang等,“Improvement of anode-supported solid oxide fuel cells”,SolidState Ionics179(2008)1593–1596.
[9]Doshi等,“Development of Solid-Oxide Fuel Cells That Operate at500°C”,Journal of The Electrochemical Society146(1999)1273-1278.
[10]Ihringer等,Proc.5th Int.Conf.Solid Oxide Fuel Cells,ElectrochemicalSociety,Pennington,NJ,(1997)340.
[11]Song等,“Fabrication characteristics of an anode-supported thin-filmelectrolyte fabricated by the tape casting method for IT-SOFC”,Journal of MaterialsProcessing Technology198(2008)414–418.
[12]Hosomi等,“Electrophoretic deposition for fabrication of YSZ electrolytefilm on non-conducting porous NiO–YSZ composite substrate for intermediatetemperature SOFC”,Journal of the European Ceramic Society27(2007)173–178.
[13]Leng等,“Performance evaluation of anode-supported solid oxide fuelcells with thin film YSZ electrolyte”,International Journal of Hydrogen Energy29(2004)1025–1033.
[14]Ding等,“An anode-supported solid oxide fuel cell with spray-coatedyttria-stabilized zirconia(YSZ)electrolyte film”,Solid State Ionics179(2008)1246–1249.
[15]De Souza等,“Thin-film solid oxide fuel cell with high performance atlow temperature”,Solid State Ionics98(1997)57–61.
[16]Lenormand等,“Thick films of YSZ electrolytes by dip-coating process”,Journal of the European Ceramic Society25(2005)2643–2646.
[17]Mehta等,“Two-Layer Fuel Cell Electrolyte Structure by Sol-GelProcessing”,Journal of Sol-Gel Science and Technology11(1998)203–207.
[18]Bernay等,“Yttria-doped zirconia thin films deposited by atomic layerdeposition ALD:a structural,morphological and electrical characterisation”,Journalof Physics and Chemistry of Solids64(2003)1761-1770.
[19]Brevet US3330697“Method of preparing lead and alkaline earth titanatesand niobates and coating method using the same”in Péchini's name,published onJuly11,1967.
[20]Magrez等,“A new‘Chimie Douce’approach to the synthesis ofSr1-xLa1+xAl1-xMgxO4with K2NiF4structure type”,International Symposium on Softprocessing N°2(2002).
[21]Chesnaud等,“Cuspidine-like compounds Ln4[Ga2(1-x)Ge2xO7+x1-x]O2(Ln=La,Nd,Gd;x≤0.4)”,Chemistry of Materials16(2004)5372–5379.

Claims (15)

1.一种用于制备电极支撑的电化学半电池的方法,所述方法包括将上面沉积有电解质的前体凝胶或其前体的生电极层在低于或等于1350℃的温度下进行烧结的步骤。
2.根据权利要求1所述的方法,其特征在于,所述生电极层由陶瓷墨水获得,所述陶瓷墨水对应于电极材料的粉末在水性溶剂或有机溶剂中的分散物(或悬浮物)。
3.根据权利要求2所述的方法,其特征在于,所述粉末是选自如下材料的粉末:结构为ABO3的钙钛矿,其中A表示稀土,例如镧,且B表示过渡金属;通式为Ln2NiO4+y的化合物,其中Ln表示镧系元素;通式为La10-xGe6O26+y的锗酸盐;通式为La10-xSi6O26+y的硅酸盐;稳定氧化锆,可混合有NiO;取代的二氧化铈,可混合有NiO;及它们的混合物。
4.根据权利要求2或3所述的方法,其特征在于,所述陶瓷墨水包含选自溶剂、分散剂、粘合剂、增塑剂和成孔剂中的至少一种成分。
5.根据前述权利要求中任一项所述的方法,其特征在于,所述凝胶或其前体通过溶胶-凝胶工序、由Péchini方法衍生的聚合物工序或NPG(硝酸盐聚丙烯酰胺凝胶)合成工序来制备。
6.根据权利要求5所述的方法,其特征在于,所述溶胶-凝胶工序使用至少一种有机金属前体,且特别使用至少一种通式为M(OR)n的烃氧基金属,其中M表示金属,且OR表示烃氧基;其中,不管是直链或支链,R均是具有1至15个碳原子,且特别是具有1至10个碳原子,且尤其具有1至5个碳原子的烷基链。
7.根据前述权利要求中任一项所述的方法,其特征在于,所述烧结温度在1000℃和1350℃之间,且特别是在1000℃和1300℃之间;且,将上面沉积有所述电解质的前体凝胶或其前体的所述生电极层在所述烧结温度下保持1h至5h,特别是在2h至4h,且尤其为大约3h的时间。
8.根据前述权利要求中任一项所述的方法,其特征在于,在达到所述烧结温度之前,使上面沉积有所述电解质的前体凝胶或其前体的所述生电极层达到400℃和800℃之间,特别在500℃和700℃之间,且尤其为大约600℃的中间温度;且所述生电极层在所述中间温度下保持15分钟至120分钟,特别是30分钟至90分钟,且尤其为大约60分钟的时间。
9.根据权利要求8所述的方法,其特征在于,通过以10℃/h和50℃/h之间,特别以15℃/h和40℃/h之间,且尤其以大约25℃/h的缓慢升高的温度梯度的方式使上面沉积有所述电解质的前体凝胶或其前体的所述生电极层达到中间温度。
10.根据权利要求8或9所述的方法,其特征在于,通过以25℃/h和100℃/h之间,特别以35℃/h和75℃/h之间,且尤其以大约50℃/h的升高的温度梯度的方式,使上面沉积有所述电解质的前体凝胶或其前体的所述生电极层从所述中间温度达到所述烧结温度。
11.根据前述权利要求中任一项所述的方法,其特征在于,所述方法包括以下步骤:
a)制备生电极层;
b)在所述生电极层上沉积电解质的前体凝胶或其前体;以及
c)使上面沉积有所述电解质的前体凝胶或其前体的所述生电极层经历权利要求1或7所述的烧结温度。
12.根据权利要求11所述的方法,其特征在于,在步骤a)中,所述生电极层通过利用流延成型沉积权利要求2至5中任一项所述的陶瓷墨水来获得。
13.根据权利要求11或12所述的方法,其特征在于,在步骤b)中,所述沉积通过丝网印刷来完成。
14.根据权利要求11至13中任一项所述的方法,其特征在于,在步骤c)之后,将由上面沉积有所述电解质的前体凝胶或其前体的所述生电极层所获得的烧结材料进行还原。
15.根据前述权利要求中任一项所述的方法,其特征在于,在所述烧结步骤之后和/或在权利要求14中定义的所述还原步骤之后获得的所述电极支撑的电化学半电池具有多孔支撑电极和薄的致密电解质。
CN201280019771.4A 2011-04-22 2012-04-19 制备电化学半电池的方法 Pending CN103493273A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1153522A FR2974452B1 (fr) 2011-04-22 2011-04-22 Procede de preparation d'une demi-cellule electrochimique
FR1153522 2011-04-22
PCT/EP2012/057117 WO2012143417A1 (fr) 2011-04-22 2012-04-19 Procédé de préparation d'une demi-cellule électrochimique

Publications (1)

Publication Number Publication Date
CN103493273A true CN103493273A (zh) 2014-01-01

Family

ID=44544015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280019771.4A Pending CN103493273A (zh) 2011-04-22 2012-04-19 制备电化学半电池的方法

Country Status (8)

Country Link
US (1) US9799908B2 (zh)
EP (1) EP2700122B1 (zh)
JP (1) JP2014516461A (zh)
KR (1) KR20140037849A (zh)
CN (1) CN103493273A (zh)
CA (1) CA2833438A1 (zh)
FR (1) FR2974452B1 (zh)
WO (1) WO2012143417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953112A (zh) * 2017-05-09 2017-07-14 广东工业大学 一种三维电极材料制备方法及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5746309B2 (ja) * 2012-12-17 2015-07-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. 固体酸化物燃料電池の電極用ペースト、これを用いる固体酸化物燃料電池およびその製造方法
JP6483448B2 (ja) * 2014-07-18 2019-03-13 日産自動車株式会社 固体酸化物形燃料電池の空気極材料の製造方法、空気極材料、これを用いた空気極及び燃料電池。
US11367889B2 (en) * 2017-08-03 2022-06-21 Palo Alto Research Center Incorporated Electrochemical stack with solid electrolyte and method for making same
US20230048175A1 (en) * 2021-07-30 2023-02-16 Corning Incorporated Rapidly sintered cathodes with high electronic conductivity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003237A1 (en) * 2001-07-02 2003-01-02 Seabaugh Matthew M. Ceramic electrolyte coating methods
US20030021900A1 (en) * 1999-07-31 2003-01-30 Jacobson Craig P. Method for making dense crack free thin films
WO2003036739A2 (en) * 2001-10-19 2003-05-01 Sarnoff Corporation Improved solid oxide fuel cells and interconnectors
CN1747211A (zh) * 2005-09-14 2006-03-15 哈尔滨工业大学 氧化钇稳定氧化锆电解质薄膜的丝网印刷制备方法
CN1933229A (zh) * 2006-09-19 2007-03-21 山东大学 阳极支撑的固体氧化物燃料电池的制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330697A (en) 1963-08-26 1967-07-11 Sprague Electric Co Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor
US5037525A (en) 1985-10-29 1991-08-06 Commonwealth Scientific And Industrial Research Organisation Composite electrodes for use in solid electrolyte devices
US5403461A (en) * 1993-03-10 1995-04-04 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
JP3072009B2 (ja) * 1993-12-27 2000-07-31 リンナイ株式会社 コーティング溶液組成物
JPH11214018A (ja) * 1998-01-21 1999-08-06 Nippon Telegr & Teleph Corp <Ntt> ゾルゲル法によるZrO2系固体電解質膜の低温作製法
WO2005112154A1 (ja) * 2004-05-17 2005-11-24 Nippon Shokubai Co., Ltd. 固体酸化物形燃料電池用アノード支持基板およびその製法
US7794557B2 (en) * 2004-06-15 2010-09-14 Inframat Corporation Tape casting method and tape cast materials
US8021795B2 (en) * 2005-04-07 2011-09-20 General Electric Company Method for manufacturing solid oxide electrochemical devices
WO2006125177A2 (en) 2005-05-19 2006-11-23 Massachusetts Institute Of Technology Electrode and catalytic materials
JP5127126B2 (ja) * 2005-09-01 2013-01-23 国立大学法人東京工業大学 燃料電池用の電極およびこれを用いた固体電解質型燃料電池
US7736787B2 (en) * 2005-09-06 2010-06-15 Nextech Materials, Ltd. Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
NO329786B1 (no) * 2005-12-02 2010-12-20 Prototech As Fremgangsmate for sol-gel prosessering og geler og nanopartikler produsert med nevnte fremgangsmate
JP2007282449A (ja) 2006-04-11 2007-10-25 Honda Motor Co Ltd 熱電変換装置
FR2916653B1 (fr) 2007-06-01 2011-05-06 Areva Np Procede d'optimisation de la conductivite ionique d'une membrane conductrice ionique.
AU2008279577B2 (en) * 2007-07-25 2013-01-31 The Regents Of The University Of California High temperature electrochemical device with interlocking structure
FR2921390B1 (fr) 2007-09-25 2010-12-03 Commissariat Energie Atomique Electrolyseur haute temperature a dispositif d'homogeneisation de la temperature.
KR101002044B1 (ko) * 2008-01-15 2010-12-17 한국과학기술연구원 초소형 연료전지 및 그 제조 방법과 이를 이용한 초소형연료전지 스택
EP2083465B1 (en) * 2008-01-23 2012-08-01 Institute of Nuclear Energy Research A Process for Fabrication of a Fully Dense Electrolyte layer embedded in membrane electrolyte assembly of solid oxide fuel cell
FR2938121B1 (fr) 2008-10-30 2011-04-01 Commissariat Energie Atomique Plaque d'electrolyte a rigidite augmentee, et systeme electrochimique comportant une telle plaque d'electrolyte
FR2938122B1 (fr) 2008-10-30 2010-12-24 Commissariat Energie Atomique Electrolyte a rigidite abaissee, et systeme electrochimique comportant un tel electrolyte
FR2948821B1 (fr) 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication
FR2957363B1 (fr) 2010-03-12 2012-04-20 Commissariat Energie Atomique Architecture d'electrolyseur a haute temperature, a production cible elevee par cellule d'electrolyse et taux de degradation des cellules limite
FR2969179B1 (fr) 2010-12-20 2013-02-08 Commissariat Energie Atomique Cellule de production d'hydrogene comprenant une cellule d'electrolyseur de la vapeur d'eau a haute temperature.
FR2972572B1 (fr) 2011-03-09 2013-04-12 Commissariat Energie Atomique Procede de preparation d'une electrode a air, ladite electrode ainsi obtenue et ses utilisations
FR2979469A1 (fr) 2011-08-22 2013-03-01 Commissariat Energie Atomique Procede de preparation d'un combustible nucleaire poreux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021900A1 (en) * 1999-07-31 2003-01-30 Jacobson Craig P. Method for making dense crack free thin films
US20030003237A1 (en) * 2001-07-02 2003-01-02 Seabaugh Matthew M. Ceramic electrolyte coating methods
WO2003036739A2 (en) * 2001-10-19 2003-05-01 Sarnoff Corporation Improved solid oxide fuel cells and interconnectors
CN1747211A (zh) * 2005-09-14 2006-03-15 哈尔滨工业大学 氧化钇稳定氧化锆电解质薄膜的丝网印刷制备方法
CN1933229A (zh) * 2006-09-19 2007-03-21 山东大学 阳极支撑的固体氧化物燃料电池的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953112A (zh) * 2017-05-09 2017-07-14 广东工业大学 一种三维电极材料制备方法及应用
CN106953112B (zh) * 2017-05-09 2019-10-29 广东工业大学 一种三维电极材料制备方法及应用

Also Published As

Publication number Publication date
FR2974452A1 (fr) 2012-10-26
US9799908B2 (en) 2017-10-24
WO2012143417A1 (fr) 2012-10-26
EP2700122A1 (fr) 2014-02-26
FR2974452B1 (fr) 2014-04-04
CA2833438A1 (fr) 2012-10-26
JP2014516461A (ja) 2014-07-10
KR20140037849A (ko) 2014-03-27
EP2700122B1 (fr) 2018-04-04
US20140255599A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
Bi et al. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications
CN102082284B (zh) 阳极支撑型中温固体氧化物燃料电池的制备方法
Lee et al. Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid
Wang et al. Liquid-phase synthesis of SrCo0. 9Nb0. 1O3-δ cathode material for proton-conducting solid oxide fuel cells
JP5591526B2 (ja) 固体酸化物セル及び固体酸化物セルスタック
KR20110086016A (ko) 저온 고체 산화물형 연료전지(sofc)에 사용되는 개선된 물질 및 설계
CN102593480B (zh) 固体氧化物燃料电池掺杂钛酸盐支撑固体电解质多层膜及其制备方法
CN103219525B (zh) 低温固体氧化物燃料电池及其制备方法
CN104060293B (zh) 电解质支撑的固体氧化物电解池及其制备方法
Fan et al. Spray coating of dense proton-conducting BaCe0. 7Zr0. 1Y0. 2O3 electrolyte for low temperature solid oxide fuel cells
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
CN103493273A (zh) 制备电化学半电池的方法
CN107195938A (zh) 一种简单的固体氧化物燃料电池制备方法
Liu et al. Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs
Lai et al. Production of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells
Cao et al. Novel reduction-resistant Ba (Ce, Zr) 1− xGdxO3− δ electron-blocking layer for Gd0. 1Ce0. 9O2− δ electrolyte in IT-SOFCs
CN102738492A (zh) 固体氧化物燃料电池用材料、含该材料的阴极及燃料电池
KR20110004274A (ko) 고체산화물 연료전지의 제조방법
CN101222050A (zh) 抗碳沉积阳极膜材及其制备方法
KR20120140476A (ko) 고체산화물 연료전지용 소재, 상기 소재를 포함하는 캐소드 및 상기 소재를 포함하는 고체산화물 연료전지
JP2020135987A (ja) 電気化学セル
JP6805054B2 (ja) 水蒸気電解セル
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
CN111416138A (zh) 一种质子陶瓷膜燃料电池及其制备方法
KR102261142B1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140101