CN103471622A - 热机械分析仪拉伸夹具的温度校正方法及装置 - Google Patents

热机械分析仪拉伸夹具的温度校正方法及装置 Download PDF

Info

Publication number
CN103471622A
CN103471622A CN2013104328928A CN201310432892A CN103471622A CN 103471622 A CN103471622 A CN 103471622A CN 2013104328928 A CN2013104328928 A CN 2013104328928A CN 201310432892 A CN201310432892 A CN 201310432892A CN 103471622 A CN103471622 A CN 103471622A
Authority
CN
China
Prior art keywords
sample
temperature
probe
section
temperature correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013104328928A
Other languages
English (en)
Other versions
CN103471622B (zh
Inventor
李�远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengyi Technology Co Ltd
Original Assignee
Shengyi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengyi Technology Co Ltd filed Critical Shengyi Technology Co Ltd
Priority to CN201310432892.8A priority Critical patent/CN103471622B/zh
Publication of CN103471622A publication Critical patent/CN103471622A/zh
Application granted granted Critical
Publication of CN103471622B publication Critical patent/CN103471622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开一种热机械分析仪拉伸夹具的温度校正方法,该方法采用在拉伸夹具的样品支架内固定具有已知熔点的金属样品,使探针直接或者间接接触该样品,当该样品被加热至熔融状态时探针可感知位移突变,通过热电偶测得此时的样品温度,将该温度值与该样品实际熔点比较分析以进行温度校正。在热机械分析仪进行拉伸模式前利用已知熔点的金属样品对其进行温度校正,能够使进行拉伸模式时温度参数更准确,保证拉伸模式的测试结果更加准确。

Description

热机械分析仪拉伸夹具的温度校正方法及装置
技术领域
本发明涉及热机械分析仪技术领域,尤其涉及一种热机械分析仪拉伸夹具的温度校正方法及装置。
背景技术
热机械分析TMA(Thermo mechanical analysis)是在设定的气氛、负载及温度程序下测量试样的尺寸变化与温度(或时间)关系的技术。用于这种测量的仪器称为热机械分析仪。
热机械分析的各种模式中常用的是膨胀模式和拉伸模式,对应不同模式采用不同的夹具来处理样品。
当采用膨胀模式时,热机械分析仪的加热炉内安装膨胀夹具100,膨胀夹具100的结构如图1所示,其包括样品支架110、探针120以及热电偶130,样品支架110安装在热机械分析仪的平台上,将样品140置于样品支架110上,探针120的一端压于样品140上,探针120的另一端延伸至加热炉外与热机械分析仪的位移传感器连接,热电偶130安装在样品支架110外并靠近样品140设置。
当采用拉伸模式时,热机械分析仪的加热炉内安装拉伸夹具,拉伸夹具200的结构如图2所示,其包括样品支架210、探针220、热电偶230,样品支架210安装在热机械分析仪的平台上,样品支架210的上端安装有上夹具250,在上夹具250的下方并位于样品支架210内设置下夹具260,样品240被夹持于上夹具250与下夹具260之间,下夹具260固定连接探针220,探针220一端与下夹具260相连接,探针220另一端延伸至加热炉外并与位移传感器连接,探针220及下夹具260对样品240施加一定的负载,使样品240在检测过程中为拉直状态,热电偶230靠近样品设置于样品支架210内部,用于检测样品240的温度。
上述两种模式的工作原理如下:在测试时,样品置于样品支架、探针组成的测试夹具中,加热炉提供程序设定的温度条件,测试过程中样品所处的环境温度通过热电偶测量。测试程序所要求的负载由仪器的施力马达提供,由探针传输到样品上。当样品在程序温度下发生形变时,探针随着样品形变向上或向下移动,通过设备的位移传感器可测量到探针的位移量,即样品的膨胀或收缩量。只要保障温度过程、施加力、位移测量等因素准确即可获得样品形变过程的准确信息。
为了要获得精确的实验结果,在第一次安装TMA以及TMA工作一定时间后,需要对TMA进行校准,主要有力校准、探针校准以及温度校准。
温度校准是为了避免温度误差对最终检测结果产生影响。温度误差来源:TMA是由炉壁缠绕的电热丝提供热量,通过辐射及炉内气氛热传导的方式对样品进行加热,其炉内各位置的温度并不是均匀一致的。实验中,被测样品与热电偶并非一体,因此测试过程中两者所处环境温度是有差异的,比如Z-CTE测试过程中,因为热电偶位置更靠近炉壁,而样品基本在炉子中轴线位置,距离炉壁较远,因此热电偶位置的温度往往高于样品位置的温度。而实际测试中需要用热电偶表达样品温度,因此需要对由加热炉、样品、热电偶的三者组成的系统进行温度校正,当系统发生改变时(加热炉、样品、热电偶的三者相对位置发生变化或热传导特性发生变化时)则需要重新校正。
现有技术中只有TMA膨胀夹具的温度校正方法,在进行拉伸模式的测量时,则引用膨胀模式下的校正温度参数,没有专门针对拉伸模式的校正方法,这样会使热机械分析仪在采用拉伸模式检测样品时出现以下缺陷:
(1)、由于TMA加热炉内各处温度不均匀(温度梯度),膨胀夹具更换为拉伸夹具后,样品-热电偶-炉子相对位置发生变化以及炉子不同位置热传导的差异,均会导致原膨胀夹具下校正获取的温度校正参数不适用,样品测试温度偏离实际值,测试结果不正确;
(2)、在更改为拉伸模式后,为了尽量减小温度测试误差,热电偶位置一般放在拉伸模式样品支架内靠近样品的位置,但在一些型号的TMA设计中,热电偶会阻挡测试前探针位移清零时探针的动作。需要在清零前挪开热电偶,清零完毕后再放回来。这样会带来一个问题:即每次测试热电偶与样品的相对位置可能是不固定的,温度测试结果的稳定性较差。另还有一种情况:热电偶放置在样品附近可能阻碍测试中样品膨胀或收缩过程,导致测试结果不准确。
因此,急需要针对拉伸模式进行温度校正,以保证样品在拉伸模式下样品温度的测试精度。
发明内容
本发明的目的在于提供一种热机械分析仪拉伸夹具的温度校正方法,其能对热机械分析仪的拉伸模式进行温度标定,减小温度误差。
本发明的另一个目的在于提供一种热机械分析仪拉伸夹具的温度校正方法,其有效利用分析仪的现有设备进行温度校正,方案易于实现。
为达到此目的,本发明采用以下技术方案:
一种热机械分析仪拉伸夹具的温度校正方法,该方法采用在拉伸夹具的样品支架内固定具有已知熔点的金属样品,使探针直接或者间接接触该样品,当该样品被加热至熔融状态时探针可感知位移突变,通过热电偶测得此时的样品温度,将该温度值与该样品实际熔点比较分析以进行温度校正。
通过已知熔点的金属样品对设备进行温度校正,能保证校正后的温度参数更为准确,进一步使得拉伸模式的测试结果更准确。优选的,采用两种或者两种以上已知熔点的标准金属对仪器进行温度点的校正。
作为所述温度校正方法的一种优选方案,使用已知熔点的标准样品对仪器校正后的测温准确性进行评价。
如果标准样品熔融时的测量温度与其实际熔点差异在预定范围内,则表明校正后温度参数符合要求;如果差异超出预定范围,则需要重新进行校正过程直至温度差异满足要求。
通过使热电偶测得的温度值与样品实际熔点绝对差值控制在一定范围内,使得经校正后的热电偶测试温度表征样品位置的温度更为准确。
作为所述温度校正方法的一种优选方案,所述样品支架内设置一样品托放部,该样品托放部位于拉伸夹具的上夹具的下方,并通过第一连接组件与所述上夹具连接,所述样品放置于所述样品托放部内,所述样品上方设置样品抵压部,所述样品抵压部通过第二连接组件与拉伸夹具的下夹具连接,所述样品抵压部由上至下的压于所述样品的表面,所述下夹具与所述探针相连,以使探针间接接触样品,当所述样品被加热至熔融状态时探针可间接感知位移突变。
作为所述温度校正方法的一种优选方案,所述样品支架内设置一样品托放部,所述样品托放部通过一连接体与所述样品支架的顶部相连,所述样品放置于所述样品托放部内,所述探针具有位于所述样品正上方的探针端部,所述探针端部由上至下的压于所述样品的表面,以使探针直接接触样品,当该样品被加热至熔融状态时探针可直接感知位移突变。
作为所述温度校正方法的一种优选方案,所述热电偶紧贴于所述样品支架的外壁或内壁设置。
热电偶可远离样品,不会妨碍操作及测试过程探针的运动。优选的,热电偶可紧贴样品支架壁,便于标记,固定其停放位置,避免移动。将热电偶的位置与样品支架的位置相对固定,使得测试中无需经常调整热电偶的位置,为试验提供了便利,解决了因为经常调整热电偶位置而导致温度测试结果的稳定性较差的问题。
作为所述温度校正方法的一种优选方案,所述第一连接组件包括第一本体,所述第一本体与所述上夹具可拆卸式连接,所述样品托放部位于所述第一本体的下方,与所述第一本体呈间隔设置,两者通过第一连接装置相连;和/或,
所述第二连接组件包括第二本体,所述第二本体与所述下夹具可拆卸式连接,所述样品抵接部位于所述第二本体的上方,与所述第二本体呈间隔设置,两者通过第二连接装置相连。
作为所述温度校正方法的一种优选方案,所述第一连接装置至少包括相互垂直连接的第一杆体部和第二杆体部,所述第一杆体部垂直连接所述第一本体,所述样品托放部凹设于所述第二杆体部上,所述样品托放部平行于所述第一本体。
作为所述温度校正方法的一种优选方案,所述第二连接装置至少包括相互垂直连接的第一侧边和第二侧边,所述第一侧边垂直连接所述第二本体,所述样品抵接部凸设于所述第二侧边上,所述样品抵接部平行于所述第二本体。
作为所述温度校正方法的一种优选方案,所述样品为In、Sn、Pb或Zn。
一种热机械分析仪拉伸夹具的温度校正装置,用于实施上述的温度校正方法,包括:
样品托放部,用于放置具有已知熔点的金属样品;
样品抵接部,与拉伸夹具的下夹具和/或探针连接,用于由上至下抵压样品的表面。
与现有技术相比,本发明的有益效果:在热机械分析仪进行拉伸模式前利用已知熔点的金属样品对其进行温度校正,能够使进行拉伸模式时温度参数更准确,保证拉伸模式的测试结果更加准确。
附图说明
下面根据附图和实施例对本发明作进一步详细说明。
图1为现有的热机械分析仪的膨胀夹具的结构示意图;
图2为现有的热机械分析仪的拉伸夹具的结构示意图;
图3为比较例一采用金属标准样品对仪器温度测试准确性评价的曲线图;
图4为本发明实施例一所述的热机械分析仪拉伸夹具的温度校正装置的结构示意图;
图5为图4中所示的第一校正组件的结构示意图;
图6为实施例一所述的第一校正组件的另一结构示意图;
图7为实施例一的第二校正组件的结构示意图;
图8为实施例一采用金属标准样品对仪器温度校正效果进行评价的曲线图;
图9为实施例二所述的拉伸夹具的结构示意图;
图10为实施例二所述的温度校正装置的结构示意图;
图11为图10中所示的第一校正组件的结构示意图;
图12为图11的侧视示意图;
图13为图10中所示的第二校正组件的结构示意图;
图14为图13的侧视示意图;
图15为实施例二采用金属标准样品对仪器温度校正效果进行评价的曲线图;
图16为比较例二采用金属标准样品对仪器温度测试准确性评价的曲线图。
图1中:
100、膨胀夹具;110、样品支架;120、探针;130、热电偶;140、样品。
图2中:
200、拉伸夹具;210、样品支架;220、探针;230、热电偶;240、样品;250、上夹具;260、下夹具。
图4-7中:
10、第一校正组件;11、样品托放部;12、第一本体;13、第一连接装置;131、第一杆体部;132、第二杆体部;133、第三杆体部;
20、第二校正组件;21、样品抵压部;22、第二本体;23、第二连接装置;231、第一侧边;232、第二侧边;233、第三侧边;
30、样品。
图9-14中:
300、拉伸夹具;310、样品支架;320、探针;330、热电偶;340、上夹具;350、下夹具;
40、第一校正组件;41、样品托放部;42、第一本体;421、第一通孔;43、第一连接装置;431、第一杆体部;432、第二杆体部;433、第三杆体部;
50、第二校正组件;51、样品抵压部;52、第二本体;521、第二通孔;53、第二连接装置;
60、样品。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
对比例一:
以标准金属In、Sn、Pb为例,在TA Q400型TMA的膨胀夹具温度校正准确的情况下,更换为拉伸模式测量其熔点,测试结果如表一和图3所示:
表一
Figure BDA0000385136920000081
由上表及图3可以获知,在膨胀夹具温度校正准确的情况下,更换为拉伸模式,金属熔点测量值均远远偏离真实值。即在拉伸模式下直接使用膨胀模式下的温度校正参数表导致测试结果远远偏离实际值。
实施例一:
本实施例是针对TA Q400型TMA的拉伸夹具而设计的温度校正装置,TA Q400型TMA的拉伸夹具的结构参照图2,此处不再赘述。
如图4所示,本实施例介绍的热机械分析仪拉伸夹具的温度校正装置,包括第一校正组件10和第二校正组件20,第一校正组件10包括一用于放置具有已知熔点金属样品30的样品托放部11,第二校正组件20包括一用于由上至下抵压样品30的表面的样品抵压部21,该样品抵压部21可与拉伸夹具的下夹具连接或者与探针直接连接,其目的在于当样品在被加热至熔融状态时,探针可以感知位移突变。
由于拉伸夹具的下夹具与探针相互连接,所以样品抵压部21与下夹具连接,可实现样品抵压部21与探针间接连接,当样品在被加热至熔融状态时,探针可以间接感知位移突变;如果样品抵接部21直接与探针连接,则当样品在被加热至熔融状态时,探针可以直接感知位移突变,本实施例采用样品抵压部21与下夹具连接,再与探针连接的方式。
样品托放部11可与拉伸夹具的上夹具或者样品支架连接,其目的在于将样品30固定于样品支架内,本实施例采用样品托放部11与上夹具连接。
具体地,第一校正组件10的结构具体参见图5所示。第一校正组件10包括样品托放部11和用于将样品托放部11连接到上夹具的第一连接组件,该第一连接组件包括第一本体12和第一连接装置13。本实施例的第一本体12呈平板状,在上夹具上设置相匹配的滑槽,则可实现第一本体12与上夹具的滑动连接,进而实现第一校正组件10与上夹具之间可拆卸式滑动连接。可以预见的是,第一校正组件10与上夹具的连接方式是可变的,例如可以采用粘结等连接方式。
本实施例的第一连接装置13包括由第一杆体部131、第二杆体部132和第三杆体部133组成的半封闭结构(参见图5),且第一杆体部131设置于垂直第一本体12的方向,第二杆体部132和第三杆体部133均设置于平行于第一本体12的方向,且第三杆体部133由第一本体12的底部向外延伸,样品托放部11平行于第一本体12设置于第二杆体部132上。
本实施例的样品托放部11采用方形槽结构,样品可放置于其内部。当然本领域技术人员可知的是样品托放部的结构形式是可变的,只要其结构形式满足能够放置样品即可,例如,如图6所示,样品托放部11采用在第二杆体部132上直接开设凹槽。
具体地,第二校正组件20的结构具体参见图7所示。第二校正组件20包括样品抵压部21和用于将样品抵压部21连接到下夹具的第二连接组件。第二连接组件包括第二本体22和第二连接装置23。本实施例的第二本体22呈平板状,在下夹具上设置相匹配的滑槽,则可实现第二本体22与下夹具的滑动连接,进而实现第二校正组件20与下夹具之间可拆卸式滑动连接。可以预见的是,第二校正组件20与下夹具的连接方式是可变的,例如可以采用粘结等连接方式。
本实施例的第二连接装置23设于第二本体22的一侧,包括由第一侧边231、第二侧边232和第三侧边233(参见图7),样品抵压部21设置于第二侧边232靠近第二本体的一侧中部,第一侧边231和第三侧边233对称设置于第二侧边232的两端,该结构布置形式能当样品抵压部21抵压在样品上时保持平衡。作为一种优选的实例,第二侧边232平行于第二本体22,第一侧边231和第三侧边233垂直于第二本体22。本实施例中,样品抵压部21为设于第二侧边232靠近第二本体的一侧面的凸起。
利用上述校正装置进行温度校正过程如下:
步骤S100:调整热电偶位置至支架外部并紧贴样品支架外壁使之不会妨碍到实验操作及实验过程中探针运动;一般情况下,热电偶高度约等同于样品托放部底部的高度;
步骤S200:将样品30放置于样品托放部11内,使第一本体12与上夹具连接;将第二本体22与下夹具连接,将样品托放部11伸入第二连接装置23内,使样品抵压部21由上至下的压于样品30的表面;
步骤S300:校正模式下启动热机械分析仪,使加热炉对样品加热,当该样品被加热至熔融状态时探针感知位移突变,分析曲线获取标准样品熔融时热电偶测试的温度,将该温度值与该样品实际熔点填入仪器温度校正表中,通过仪器内置程序即可获取温度补偿参数,在以后的测试中仪器将自行完成温度补偿,以获取准确的测量结果;
优选的,采用多种已知熔点的标准物质对仪器进行多个温度点的校正,并将各标样熔融时热电偶测试温度及标样实际熔点温度填入温度校正表中,内置软件将通过数学方式对各温度点的观测温度和标样实际熔点温度进行拟合即可保证在校正范围内实验测量温度准确。
步骤S400:使用已知熔点的标准物质对仪器校正后的测温准确性进行评价。
在实施步骤S300对仪器进行温度校正后,再采用已知熔点的标准金属对仪器校正后的测温准确性进行评价,即实施步骤S100方法加装样品,在正常测试模式下启动程序测量该标样熔点,通过标样熔融时探针位移突变获知该标准物质熔融时的温度。
一般情况下,标样熔融时的测量温度与其实际熔点差异小于1℃。如果差异较大时需要检查标样、实验过程是否正确并重新进行S200、S300校正过程直至温度差异满足实验要求。
采用该装置对拉伸夹具温度校正,再以In、Sn、Pb三种标准金属对校正效果进行评价,评价结果如表二所示:
表二
Figure BDA0000385136920000121
图8示出采用金属标准样品对校正效果评价的曲线图。由上表二及图8可以得知通过温度校正后样品熔点的仪器测量值与样品的实际熔点差值绝对值都小于1℃,经此校正后仪器在拉伸模式下的测试结果的温度准确性显著提高,且以后测试中无需经常调整热电偶的位置,为试验提供了便利。
对比例二:
以标准金属In、Sn、Pb为例,在SDTA840型TMA的膨胀夹具温度校正准确的情况下,更换为拉伸模式测量其熔点,测试结果如表三和图16所示:
表三
Figure BDA0000385136920000122
由上表及图16可以获知,在膨胀夹具温度校正准确的情况下,更换为拉伸模式,金属熔点测量值均远远偏离真实值。即在拉伸模式下直接使用膨胀模式下的温度校正参数表导致测试结果远远偏离实际值。
实施例二:
本实施例是针对SDTA840型TMA的拉伸夹具而设计的温度校正装置,SDTA840型TMA的拉伸夹具的结构参照图9,此拉伸夹具300包括样品支架310、探针320、热电偶330,该样品支架310与热电偶330为一体式结构,样品支架310内部设置上夹具340和下夹具350,上、下夹具均呈钩体形状,样品被夹持于上、下夹具之间。
图10示出适用于上述的拉伸夹具的温度校正装置,其包括第一校正组件40和第二校正组件50,第一校正组件40包括一用于放置具有已知熔点金属样品60的样品托放部41,第二校正组件50包括一用于由上至下抵压样品60的表面的样品抵压部51,该样品抵压部51与拉伸夹具的下夹具连接,下夹具与探针连接,当样品在被加热至熔融状态时,探针可以感知位移突变。
具体地,第一校正组件40的结构具体参见图11、12所示。第一校正组件40包括样品托放部41和用于将样品托放部41连接到上夹具的第一连接组件,该第一连接组件包括第一本体42和第一连接装置43。本实施例的第一本体42呈长方形片状体,其上开设第一通孔421,与上夹具上的钩体结构相匹配,则可实现第一本体42与上夹具的挂接,进而实现第一校正组件40与上夹具之间可拆卸式连接。
本实施例的第一连接装置43包括由第一杆体部431、第二杆体部432和第三杆体部433,第一杆体部431由第一本体42的短侧边沿着其长度方向延伸设置,第一杆体部431的端部垂直连接有第二杆体部432,第二杆体部432的端部与第一杆体部431位于同侧且平行的连接有第三杆体部433,样品托放部41平行于第一本体42设置于第二杆体部432上。
本实施例的样品托放部41采用弧形槽结构,样品可放置于其内部。当然本领域技术人员可知的是样品托放部的结构形式是可变的,只要其结构形式满足能够放置样品即可。
本实施例优选的采用第一杆体部431、第二杆体部432、第三杆体部433与第一本体42宽度相同,样品托放部41宽度大于第二杆体部432的宽度。
具体地,第二校正组件50的结构具体参见图13、14所示。第二校正组件50包括样品抵压部51和用于将样品抵压部51连接到下夹具的第二连接组件。第二连接组件包括第二本体52和第二连接装置53。本实施例的第二本体52呈长方形片状体,其上开设第二通孔521,与下夹具的钩体结构相匹配,则可实现第二本体52与下夹具的挂接,进而实现第二校正组件50与下夹具之间可拆卸式连接。
本实施例的第二连接装置53呈长方框形,其厚度、宽度和长度分别与第二本体52的厚度、宽度和长度相当,第二连接装置53与第二本体52相互垂直连接,使两者在宽度方向上呈垂直设置,在长度方向上呈平行设置。样品抵压部51设于第二连接装置53与第二本体52连接端相对的另一端内侧,并由其中部朝向第二本体52延伸设置。
利用上述校正装置进行温度校正过程如下:
步骤S100:调整热电偶的位置,使其贴近样品支架内壁,不妨碍实验操作;
步骤S200:将样品60放置于样品托放部41内,使第一本体42与上夹具挂接;将第二本体52与下夹具挂接,将样品托放部41伸入第二连接装置53内,使样品抵压部51由上至下的压于样品60的表面;
步骤S300:校正模式下启动热机械分析仪,使加热炉对样品加热,当该样品被加热至熔融状态时探针感知位移突变,分析曲线获取标准样品熔融时热电偶测试的温度,将该温度值与该样品实际熔点填入仪器温度校正表中,通过仪器内置程序即可获取温度补偿参数,在以后的测试中仪器将自行完成温度补偿,以获取准确的测量结果;
优选的,采用多种已知熔点的标准物质对仪器进行多个温度点的校正,并将各标样熔融时热电偶测试温度及标样实际熔点温度填入温度校正表中,通过数学方式对各温度点的测试温度和标样实际熔点温度进行拟合即可保证在校正范围内实验测量温度准确。
步骤S400:使用已知熔点的标准物质对仪器校正后的测温准确性进行评价。
在实施步骤S300对仪器进行温度校正后,再采用已知熔点的标准金属对仪器校正后的测温准确性进行评价,即实施步骤S100方法加装样品,在正常测试模式下启动程序测量该标样熔点,通过标样熔融时探针位移突变获知该标准物质熔融时的温度。
一般情况下,标样熔融时的测量温度与其实际熔点差异小于1℃。如果差异较大时需要检查标样、实验过程是否正确并重新进行S100、S200、S300校正过程直至温度差异满足实验要求。
采用该装置对拉伸夹具温度校正,再以In、Sn、Pb三种标准金属对校正效果进行评价,评价结果如表四所示:
表四
Figure BDA0000385136920000151
图15为采用金属标准物质对校正效果评价的曲线图。由上表及图15可以得知通过温度校正后样品熔点的仪器测量值与样品的实际熔点差值绝对值都小于1℃,仪器在拉伸模式下测试结果的温度准确性显著提高。
温度校正装置的结构不限于上述实施例一和实施例二的结构,也不限于配合上述TA Q400型或SDTA840型TMA的拉伸夹具,还可以根据其他类型的热机械分析仪的拉伸夹具的结构适当调整校正装置的结构。
本发明的“第一”、“第二”等等,仅仅用于在描述上加以区分,并没有特殊的含义。
需要声明的是,上述具体实施方式仅仅为本发明的较佳实施例及所运用技术原理,在本发明所公开的技术范围内,任何熟悉本技术领域的技术人员所容易想到的变化或替换,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种热机械分析仪拉伸夹具的温度校正方法,其特征在于,该方法采用在拉伸夹具的样品支架内固定具有已知熔点的金属样品,使探针直接或者间接接触该样品,当该样品被加热至熔融状态时探针可感知位移突变,通过热电偶测得此时的样品温度,将该温度值与该样品实际熔点比较分析以进行温度校正。
2.根据权利要求1所述的温度校正方法,其特征在于,使用已知熔点的标准样品对仪器校正后的测温准确性进行评价,如果标准样品熔融时的测量温度与其实际熔点差异在预定范围内,则表明校正后温度参数符合要求;如果差异超出预定范围,则需要重新进行校正过程直至温度差异满足要求。
3.根据权利要求1或2所述的温度校正方法,其特征在于,所述样品支架内设置一样品托放部,该样品托放部位于拉伸夹具的上夹具的下方,并通过第一连接组件与所述上夹具连接,所述样品放置于所述样品托放部内,所述样品上方设置样品抵压部,所述样品抵压部通过第二连接组件与拉伸夹具的下夹具连接,所述样品抵压部由上至下的压于所述样品的表面,所述下夹具与所述探针相连,以使探针间接接触样品,当所述样品被加热至熔融状态时探针可间接感知位移突变。
4.根据权利要求1或2所述的温度校正方法,其特征在于,所述样品支架内设置一样品托放部,所述样品托放部通过一连接体与所述样品支架的顶部相连,所述样品放置于所述样品托放部内,所述探针具有位于所述样品正上方的探针端部,所述探针端部由上至下的压于所述样品的表面,以使探针直接接触样品,当该样品被加热至熔融状态时探针可直接感知位移突变。
5.根据权利要求1或2所述的温度校正方法,其特征在于,所述热电偶紧贴于所述样品支架的外壁或内壁设置。
6.根据权利要求3所述的温度校正方法,其特征在于,
所述第一连接组件包括第一本体,所述第一本体与所述上夹具可拆卸式连接,所述样品托放部位于所述第一本体的下方,与所述第一本体呈间隔设置,两者通过第一连接装置相连;和/或,
所述第二连接组件包括第二本体,所述第二本体与所述下夹具可拆卸式连接,所述样品抵接部位于所述第二本体的上方,与所述第二本体呈间隔设置,两者通过第二连接装置相连。
7.根据权利要求6所述的热机械分析仪拉伸夹具的温度校正装置,其特征在于,所述第一连接装置至少包括相互垂直连接的第一杆体部和第二杆体部,所述第一杆体部垂直连接所述第一本体,所述样品托放部凹设于所述第二杆体部上,所述样品托放部平行于所述第一本体。
8.根据权利要求6所述的热机械分析仪拉伸夹具的温度校正装置,其特征在于,所述第二连接装置至少包括相互垂直连接的第一侧边和第二侧边,所述第一侧边垂直连接所述第二本体,所述样品抵接部凸设于所述第二侧边上,所述样品抵接部平行于所述第二本体。
9.根据权利要求1至8任一项所述的温度校正方法,其特征在于,所述样品为In、Sn、Pb或Zn。
10.一种热机械分析仪拉伸夹具的温度校正装置,其特征在于,用于实施如权利要求1至9任一项所述的温度校正方法,包括:
样品托放部,用于放置具有已知熔点的金属样品;
样品抵接部,与拉伸夹具的下夹具和/或探针连接,用于由上至下抵压样品的表面。
CN201310432892.8A 2013-09-22 2013-09-22 热机械分析仪拉伸夹具的温度校正方法及装置 Active CN103471622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310432892.8A CN103471622B (zh) 2013-09-22 2013-09-22 热机械分析仪拉伸夹具的温度校正方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310432892.8A CN103471622B (zh) 2013-09-22 2013-09-22 热机械分析仪拉伸夹具的温度校正方法及装置

Publications (2)

Publication Number Publication Date
CN103471622A true CN103471622A (zh) 2013-12-25
CN103471622B CN103471622B (zh) 2016-04-06

Family

ID=49796570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310432892.8A Active CN103471622B (zh) 2013-09-22 2013-09-22 热机械分析仪拉伸夹具的温度校正方法及装置

Country Status (1)

Country Link
CN (1) CN103471622B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324020A (zh) * 2015-07-03 2017-01-11 耐驰-仪器制造有限公司 用于对试样进行热机械分析的方法和设备
CN106706699A (zh) * 2017-03-01 2017-05-24 中华人民共和国日照出入境检验检疫局 一种新型熔点测定装置
CN110501373A (zh) * 2019-07-25 2019-11-26 中国计量科学研究院 准确测量聚合物玻璃化转变温度的方法
CN111650238A (zh) * 2020-07-14 2020-09-11 湖北戈碧迦光电科技股份有限公司 一种标定卧式膨胀系数测定仪温场的方法
CN114325349A (zh) * 2022-03-14 2022-04-12 武汉普赛斯电子技术有限公司 基于激光器测试的温度校准方法、仪器及系统
CN114527068A (zh) * 2022-03-17 2022-05-24 扬州大学 有机玻璃浇铸成型粘结强度测试装置及使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535636A (en) * 1984-03-19 1985-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tensile testing apparatus
CN2669172Y (zh) * 2003-11-18 2005-01-05 中国科学院理化技术研究所 一种拉伸试验夹具
CN202421095U (zh) * 2011-11-05 2012-09-05 上海大学 热变形测试装置
CN102890097A (zh) * 2012-10-31 2013-01-23 上海交通大学 精锻模具热变形检测系统及其检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535636A (en) * 1984-03-19 1985-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Tensile testing apparatus
CN2669172Y (zh) * 2003-11-18 2005-01-05 中国科学院理化技术研究所 一种拉伸试验夹具
CN202421095U (zh) * 2011-11-05 2012-09-05 上海大学 热变形测试装置
CN102890097A (zh) * 2012-10-31 2013-01-23 上海交通大学 精锻模具热变形检测系统及其检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
清水涟漪: "《百度文库-热电阻热电偶温度传感器校准实验》", 9 June 2011, article "热电阻热电偶温度传感器校准实验", pages: 64-65 *
王为群等: "高温热电偶检定装置", 《国外计量》, no. 2, 15 March 1974 (1974-03-15), pages 27 - 29 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324020A (zh) * 2015-07-03 2017-01-11 耐驰-仪器制造有限公司 用于对试样进行热机械分析的方法和设备
CN106706699A (zh) * 2017-03-01 2017-05-24 中华人民共和国日照出入境检验检疫局 一种新型熔点测定装置
CN106706699B (zh) * 2017-03-01 2023-07-14 中华人民共和国日照出入境检验检疫局 一种新型熔点测定装置
CN110501373A (zh) * 2019-07-25 2019-11-26 中国计量科学研究院 准确测量聚合物玻璃化转变温度的方法
CN111650238A (zh) * 2020-07-14 2020-09-11 湖北戈碧迦光电科技股份有限公司 一种标定卧式膨胀系数测定仪温场的方法
CN114325349A (zh) * 2022-03-14 2022-04-12 武汉普赛斯电子技术有限公司 基于激光器测试的温度校准方法、仪器及系统
CN114527068A (zh) * 2022-03-17 2022-05-24 扬州大学 有机玻璃浇铸成型粘结强度测试装置及使用方法
CN114527068B (zh) * 2022-03-17 2024-03-01 扬州大学 有机玻璃浇铸成型粘结强度测试装置及使用方法

Also Published As

Publication number Publication date
CN103471622B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103471622A (zh) 热机械分析仪拉伸夹具的温度校正方法及装置
US8087282B2 (en) Test management method for indentation tester and indentation tester
KR100785376B1 (ko) 하중전달 경로와 방향전환을 이용한 복합재 구조물고온굽힘시험 장치
TW200720681A (en) Electronic component test apparatus and temperature control method in electronic component test apparatus
CN108226216B (zh) 线膨胀系数测定方法和测定装置
CN104155333A (zh) 一种电线电缆线膨胀系数测量装置及测量方法
CN209567982U (zh) 热对接定位装置
JP5978992B2 (ja) 電子デバイス用試験装置及び試験方法
CN203534603U (zh) 热机械分析仪拉伸夹具的温度校正装置
LU102140A1 (en) System and method for testing uniaxial tensile high-temperature mechanical properties of plate
JP4061341B2 (ja) ひずみ制御型超高サイクル疲労試験方法および疲労試験装置
LU102139A1 (en) Cruciform tensile characterization heating test platform and method
KR102164075B1 (ko) 온간 시험장치
JP6717090B2 (ja) 試験装置及び試験方法
CN109115114B (zh) 激光引伸计及其测量方法
KR20090067865A (ko) 가열기능을 갖는 마찰력 측정장치 및 그 측정방법
JP2017187472A (ja) 疲労評価方法及び試験装置、試験方法
KR20110077789A (ko) 온도 조절 기능이 구비된 굽힘 특성 시험장치
KR101682692B1 (ko) 균열측정장치 및 균열측정방법
CN210953115U (zh) 辐射温度计检定校准装置
JP5975488B2 (ja) 熱機械分析装置
KR102103429B1 (ko) 고온 압입 피로 시험 장치
KR200429864Y1 (ko) 반도체소자의 온도 측정장치
CN105352793A (zh) 一种用于航空金属材料剪切试验的夹具及其应用
JP6299876B2 (ja) 表面温度センサ校正装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant