CN103426932A - 双resurf ldmos器件 - Google Patents

双resurf ldmos器件 Download PDF

Info

Publication number
CN103426932A
CN103426932A CN2013103859239A CN201310385923A CN103426932A CN 103426932 A CN103426932 A CN 103426932A CN 2013103859239 A CN2013103859239 A CN 2013103859239A CN 201310385923 A CN201310385923 A CN 201310385923A CN 103426932 A CN103426932 A CN 103426932A
Authority
CN
China
Prior art keywords
region
well region
drain electrode
electrode well
doping type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103859239A
Other languages
English (en)
Inventor
刘正超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN2013103859239A priority Critical patent/CN103426932A/zh
Publication of CN103426932A publication Critical patent/CN103426932A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Abstract

一种双RESURF LDMOS器件,包括:布置在衬底表面的漏极阱区;布置在衬底表面的与漏极阱区邻接并且相对于漏极阱区对称布置的第一源极阱区和第二源极阱区;布置在漏极阱区表面中央位置的漏极接触区;布置在漏极阱区表面与漏极接触区邻接并且相对于漏极接触区对称布置的第一浅沟槽区域和第二浅沟槽区域;布置在漏极阱区中并且分别布置在第一浅沟槽区域和第二浅沟槽区域下方的第一掩埋区域和第二掩埋区域;布置在第一源极阱区表面的具有第二掺杂类型的第一源极接触区;布置在第二源极阱区表面的第二源极接触区;布置在衬底表面上的位于漏极阱区和第一源极阱区上方的第一栅极;以及布置在衬底表面上的位于漏极阱区和第二源极阱区上方的第二栅极。

Description

双RESURF LDMOS器件
技术领域
本发明涉及半导体设计及制造领域,更具体地说,本发明涉及一种双RESURFLDMOS器件。
背景技术
横向双扩散金属氧化物半导体(LDMOS,Lateral double-diffused MOS transistors)器件是本领域公知的一种半导体器件。LDMOS器件为相当近似于传统场效应晶体管(FET)器件的一种场效应晶体管器件。与传统场效应晶体管器件一样,LDMOS器件包括在半导体衬底中形成一对被沟道区域所分隔开来的源/漏极区域,并且依次于沟道区域上方形成栅电极。
双RESURF LDMOS器件(Double Reduced SURface Field LDMOS)的特点是在高压阱NW-Well中的漏区和沟道之间的表面注入一个P层,称为p-top,如图1所示。p-top使漂移区更容易耗尽,在获得高的击穿电压的同时,提高了漂移区浓度以降低导通电阻。在加入p-top以后,p-top的左右两端和N漂移区各形成一个PN结,PN结的耗尽区改变了横向电势分布。当器件工作在正常电压条件下,p-top右端形成一个反偏PN结,增加的耗尽区使得表面电压在此处迅速下降。双RESURF LDMOS器件减小了N漂移区和P衬底之间的横向压降,减小了交界处的电场。
双RESURF LDMOS器件可以比经典LDMOS管具有更小的导通电阻和更大的导通电流,或者说,在同样的耐压标准下,双RESURF LDMOS器件可以减小器件的使用面积,从而节约芯片的面积,提高芯片的整体利用率。双RESURF LDMOS器件的成功研制,使得在同样耐压情况下的LDMOS器件来说,双RESURF LDMOS器件具有更好的导通能力。换句话说,在一定的输出电阻条件下,双RESURF LDMOS器件将占用更小的芯片面积。
但是,图1所示的根据现有技术的双RESURF LDMOS器件没有场板(Fieldplate),而且导通电阻Rdson很高,一般为ohm.mm2(750V下)。
发明内容
本发明所要解决的技术问题是针对现有技术中存在上述缺陷,提供一种能够为双RESURF LDMOS器件提供场板并降低导通电阻Rdson的双RESURFLDMOS器件结构。
为了实现上述技术目的,根据本发明,提供了一种双RESURF LDMOS器件,其包括:
布置在第一掺杂类型的衬底表面的具有第二掺杂类型的漏极阱区;
布置在第一掺杂类型的衬底表面的与漏极阱区邻接并且相对于漏极阱区对称布置的具有第一掺杂类型的第一源极阱区和第二源极阱区;
布置在漏极阱区表面中央位置的具有第二掺杂类型并且掺杂浓度大于漏极阱区的漏极接触区;
布置在漏极阱区表面与漏极接触区邻接并且相对于漏极接触区对称布置的第一浅沟槽区域和第二浅沟槽区域;
布置在漏极阱区中并且分别布置在第一浅沟槽区域和第二浅沟槽区域下方的第一掩埋区域和第二掩埋区域,第一掩埋区域和第二掩埋区域具有第一掺杂类型;
布置在第一源极阱区表面的具有第二掺杂类型的第一源极接触区;
布置在第二源极阱区表面的具有第二掺杂类型的第二源极接触区;
布置在衬底表面上的位于漏极阱区和第一源极阱区上方的第一栅极;以及
布置在衬底表面上的位于漏极阱区和第二源极阱区上方的第二栅极。
优选地,第一掺杂类型为P型,第二掺杂类型为N型。
优选地,第一掺杂类型为N型,第二掺杂类型为P型。
优选地,第一源极接触区和第二源极接触区的掺杂浓度相同。
优选地,第一源极接触区S1和第二源极接触区S2的掺杂浓度大于漏极阱区Ndrift0的掺杂浓度。
优选地,所述的双RESURF LDMOS器件还包括:布置在第一源极阱区表面的具有第一掺杂类型的第一基极接触区以及布置在第二源极阱区表面的具有第一掺杂类型的第二基极接触区。
优选地,第一基极接触区与第一源极接触区之间布置有第三浅沟槽区域;第二基极接触区与第二源极接触区之间布置有第四浅沟槽区域。
优选地,第一浅沟槽区域和第一掩埋区域不接触,第二浅沟槽区域和第二掩埋区域不接触。
附图说明
结合附图,并通过参考下面的详细描述,将会更容易地对本发明有更完整的理解并且更容易地理解其伴随的优点和特征,其中:
图1示意性地示出了根据现有技术的双RESURF LDMOS器件。
图2示意性地示出了根据本发明实施例的双RESURF LDMOS器件。
需要说明的是,附图用于说明本发明,而非限制本发明。注意,表示结构的附图可能并非按比例绘制。并且,附图中,相同或者类似的元件标有相同或者类似的标号。
具体实施方式
为了使本发明的内容更加清楚和易懂,下面结合具体实施例和附图对本发明的内容进行详细描述。
图2示意性地示出了根据本发明实施例的双RESURF LDMOS器件。
具体地说,如图2所示,根据本发明实施例的双RESURF LDMOS器件包括:布置在第一掺杂类型的衬底P-sub0表面的具有第二掺杂类型的漏极阱区Ndrift0;及布置在第一掺杂类型的衬底P-sub0表面的与漏极阱区Ndrift0邻接并且相对于漏极阱区Ndrift0对称布置的具有第一掺杂类型的第一源极阱区P-tub1和第二源极阱区P-tub2。
根据本发明实施例的双RESURF LDMOS器件还包括:布置在漏极阱区Ndrift0表面中央位置的具有第二掺杂类型并且掺杂浓度大于漏极阱区Ndrift0的漏极接触区D0;以及布置在漏极阱区Ndrift0表面与漏极接触区D0邻接并且相对于漏极接触区D0对称布置的第一浅沟槽区域STI1和第二浅沟槽区域STI2。
根据本发明实施例的双RESURF LDMOS器件还包括:布置在漏极阱区Ndrift0中并且分别布置在第一浅沟槽区域STI1和第二浅沟槽区域STI2下方的第一掩埋区域P-buried1和第二掩埋区域P-buried2,第一掩埋区域P-buried1和第二掩埋区域P-buried2具有第一掺杂类型;由此,使得整个器件结构可以形成为双RESURF LDMOS器件。
优选的,第一浅沟槽区域STI1和第一掩埋区域P-buried1不接触,第二浅沟槽区域STI2和第二掩埋区域P-buried2不接触。
根据本发明实施例的双RESURF LDMOS器件还包括:布置在第一源极阱区P-tub1表面的具有第二掺杂类型的第一源极接触区S1以及布置在第二源极阱区P-tub2表面的具有第二掺杂类型的第二源极接触区S2。
而且,根据本发明实施例的双RESURF LDMOS器件还包括:布置在衬底表面上的位于漏极阱区Ndrift0和第一源极阱区P-tub1上方的第一栅极G1以及布置在衬底表面上的位于漏极阱区Ndrift0和第二源极阱区P-tub2上方的第二栅极G2。
优选的,第一源极接触区S1和第二源极接触区S2的掺杂浓度相同。并且,优选的,第一源极接触区S1和第二源极接触区S2的掺杂浓度大于漏极阱区Ndrift0的掺杂浓度。
优选的,如图2所示,根据本发明实施例的双RESURF LDMOS器件还包括:布置在第一源极阱区P-tub1表面的具有第一掺杂类型的第一基极接触区B1以及布置在第二源极阱区P-tub2表面的具有第一掺杂类型的第二基极接触区B2。
而且,优选的,第一基极接触区B1与第一源极接触区S1之间布置有第三浅沟槽区域STI3;第二基极接触区B2与第二源极接触区S2之间布置有第四浅沟槽区域STI4。
例如,如图2所示,第一掺杂类型为P型,第二掺杂类型为N型。或者反过来,第一掺杂类型为N型,第二掺杂类型为P型。
在根据本发明实施例的双RESURF LDMOS器件的结构中,采用浅沟槽区域作为场板,从而改进了双RESURF LDMOS器件的漏源击穿电压BVDS;并且,采用掩埋区域来形成双RESURF LDMOS结构,从而降低了双RESURF LDMOS器件的导通电阻Rdson。
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

1.一种双RESURF LDMOS器件,其特征在于包括:
布置在第一掺杂类型的衬底表面的具有第二掺杂类型的漏极阱区;
布置在第一掺杂类型的衬底表面的与漏极阱区邻接并且相对于漏极阱区对称布置的具有第一掺杂类型的第一源极阱区和第二源极阱区;
布置在漏极阱区表面中央位置的具有第二掺杂类型并且掺杂浓度大于漏极阱区的漏极接触区;
布置在漏极阱区表面与漏极接触区邻接并且相对于漏极接触区对称布置的第一浅沟槽区域和第二浅沟槽区域;
布置在漏极阱区中并且分别布置在第一浅沟槽区域和第二浅沟槽区域下方的第一掩埋区域和第二掩埋区域,第一掩埋区域和第二掩埋区域具有第一掺杂类型;
布置在第一源极阱区表面的具有第二掺杂类型的第一源极接触区;
布置在第二源极阱区表面的具有第二掺杂类型的第二源极接触区;
布置在衬底表面上的位于漏极阱区和第一源极阱区上方的第一栅极;以及
布置在衬底表面上的位于漏极阱区和第二源极阱区上方的第二栅极。
2.根据权利要求1所述的双RESURF LDMOS器件,其特征在于,第一掺杂类型为P型,第二掺杂类型为N型。
3.根据权利要求1所述的双RESURF LDMOS器件,其特征在于,第一掺杂类型为N型,第二掺杂类型为P型。
4.根据权利要求1或2所述的双RESURF LDMOS器件,其特征在于,第一源极接触区和第二源极接触区的掺杂浓度相同。
5.根据权利要求1或2所述的双RESURF LDMOS器件,其特征在于,第一源极接触区S1和第二源极接触区S2的掺杂浓度大于漏极阱区Ndrift0的掺杂浓度。
6.根据权利要求1或2所述的双RESURF LDMOS器件,其特征在于还包括:布置在第一源极阱区表面的具有第一掺杂类型的第一基极接触区以及布置在第二源极阱区表面的具有第一掺杂类型的第二基极接触区。
7.根据权利要求6所述的双RESURF LDMOS器件,其特征在于,第一基极接触区与第一源极接触区之间布置有第三浅沟槽区域;第二基极接触区与第二源极接触区之间布置有第四浅沟槽区域。
8.根据权利要求1或2所述的双RESURF LDMOS器件,其特征在于,第一浅沟槽区域和第一掩埋区域不接触,第二浅沟槽区域和第二掩埋区域不接触。
CN2013103859239A 2013-08-29 2013-08-29 双resurf ldmos器件 Pending CN103426932A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013103859239A CN103426932A (zh) 2013-08-29 2013-08-29 双resurf ldmos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103859239A CN103426932A (zh) 2013-08-29 2013-08-29 双resurf ldmos器件

Publications (1)

Publication Number Publication Date
CN103426932A true CN103426932A (zh) 2013-12-04

Family

ID=49651421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013103859239A Pending CN103426932A (zh) 2013-08-29 2013-08-29 双resurf ldmos器件

Country Status (1)

Country Link
CN (1) CN103426932A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810365A (zh) * 2014-01-27 2015-07-29 瑞萨电子株式会社 半导体装置及其制造方法
CN109192778A (zh) * 2018-08-01 2019-01-11 长沙理工大学 一种具有双纵向场板的分离栅槽型功率器件
CN112531026A (zh) * 2019-09-17 2021-03-19 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053685A1 (en) * 1999-05-06 2002-05-09 Sameer Pendharkar High side and low side guard rings for lowest parasitic performance in an H-bridge configuration
US7176091B2 (en) * 2004-06-30 2007-02-13 Texas Instruments Incorporated Drain-extended MOS transistors and methods for making the same
US7696564B1 (en) * 2009-05-06 2010-04-13 Agamem Microelectronics Inc. Lateral diffused metal-oxide-semiconductor field-effect transistor
CN101789444A (zh) * 2010-01-28 2010-07-28 上海宏力半导体制造有限公司 一种可提高mos管击穿电压的第一层金属
CN101969074A (zh) * 2010-10-28 2011-02-09 电子科技大学 一种高压ldmos器件
US8354716B2 (en) * 2010-07-02 2013-01-15 Macronix International Co., Ltd. Semiconductor devices and methods of manufacturing the same
US20130137224A1 (en) * 2010-09-15 2013-05-30 Freescale Semiconductor, Inc. Manufacturing methods for laterally diffused metal oxide semiconductor devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020053685A1 (en) * 1999-05-06 2002-05-09 Sameer Pendharkar High side and low side guard rings for lowest parasitic performance in an H-bridge configuration
US7176091B2 (en) * 2004-06-30 2007-02-13 Texas Instruments Incorporated Drain-extended MOS transistors and methods for making the same
US7696564B1 (en) * 2009-05-06 2010-04-13 Agamem Microelectronics Inc. Lateral diffused metal-oxide-semiconductor field-effect transistor
CN101789444A (zh) * 2010-01-28 2010-07-28 上海宏力半导体制造有限公司 一种可提高mos管击穿电压的第一层金属
US8354716B2 (en) * 2010-07-02 2013-01-15 Macronix International Co., Ltd. Semiconductor devices and methods of manufacturing the same
US20130137224A1 (en) * 2010-09-15 2013-05-30 Freescale Semiconductor, Inc. Manufacturing methods for laterally diffused metal oxide semiconductor devices
CN101969074A (zh) * 2010-10-28 2011-02-09 电子科技大学 一种高压ldmos器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104810365A (zh) * 2014-01-27 2015-07-29 瑞萨电子株式会社 半导体装置及其制造方法
CN104810365B (zh) * 2014-01-27 2019-07-19 瑞萨电子株式会社 半导体装置及其制造方法
CN109192778A (zh) * 2018-08-01 2019-01-11 长沙理工大学 一种具有双纵向场板的分离栅槽型功率器件
CN112531026A (zh) * 2019-09-17 2021-03-19 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法

Similar Documents

Publication Publication Date Title
EP2860762B1 (en) High voltage junction field effect transistor
CN102148251B (zh) Soi横向mosfet器件和集成电路
US9496382B2 (en) Field effect transistor, termination structure and associated method for manufacturing
US9985028B2 (en) Diluted drift layer with variable stripe widths for power transistors
CN103915506B (zh) 一种具有纵向npn结构的双栅ldmos器件
CN101969074A (zh) 一种高压ldmos器件
JP5833277B1 (ja) 半導体装置
JP2015523723A5 (zh)
US8698237B2 (en) Superjunction LDMOS and manufacturing method of the same
US8482066B2 (en) Semiconductor device
JP6618615B2 (ja) 横方向拡散金属酸化物半導体電界効果トランジスタ
TWI606590B (zh) 橫向雙擴散金氧半導體電晶體元件及其佈局圖案
CN102709325A (zh) 一种高压ldmos器件
CN103426932A (zh) 双resurf ldmos器件
CN102263125A (zh) 一种横向扩散金属氧化物功率mos器件
CN104037231B (zh) 一种高边横向双扩散场效应晶体管
US20150115362A1 (en) Lateral Diffused Metal Oxide Semiconductor
CN107978632B (zh) 多沟道的横向高压器件
CN102280481B (zh) 横向双扩散金属氧化物半导体器件及其制造方法
CN104201203B (zh) 高耐压ldmos器件及其制造方法
US20150115361A1 (en) Lateral Diffused Metal Oxide Semiconductor
CN107527906B (zh) 半导体器件
CN102569404B (zh) 低导通电阻的横向扩散mos半导体器件
CN102683187B (zh) 横向双扩散金属氧化物半导体器件及其制造方法
KR20110078885A (ko) 수평형 디모스 트랜지스터

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HONGLI SEMICONDUCTOR MANUFACTURE CO LTD, SHANGHAI

Effective date: 20140509

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140509

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201203 Shanghai Guo Shou Jing Road, Pudong New Area Zhangjiang hi tech Park No. 818

Applicant before: Hongli Semiconductor Manufacture Co., Ltd., Shanghai

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20131204

RJ01 Rejection of invention patent application after publication