CN103426906B - 沟槽式功率金氧半场效晶体管与其制造方法 - Google Patents

沟槽式功率金氧半场效晶体管与其制造方法 Download PDF

Info

Publication number
CN103426906B
CN103426906B CN201210157733.7A CN201210157733A CN103426906B CN 103426906 B CN103426906 B CN 103426906B CN 201210157733 A CN201210157733 A CN 201210157733A CN 103426906 B CN103426906 B CN 103426906B
Authority
CN
China
Prior art keywords
groove
field effect
active region
half field
type power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210157733.7A
Other languages
English (en)
Other versions
CN103426906A (zh
Inventor
叶俊莹
李元铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shuaiqun Microelectronic Co., Ltd.
Original Assignee
KEXUAN MICROELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEXUAN MICROELECTRONIC CO Ltd filed Critical KEXUAN MICROELECTRONIC CO Ltd
Priority to CN201210157733.7A priority Critical patent/CN103426906B/zh
Publication of CN103426906A publication Critical patent/CN103426906A/zh
Application granted granted Critical
Publication of CN103426906B publication Critical patent/CN103426906B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

本发明提供一种沟槽式功率金氧半场效晶体管,包括基材、多个第一沟槽以及多个第二沟槽;基材具有主动区与耐压区,且所述耐压区环绕主动区;多个第一沟槽位于主动区内;多个第二沟槽位于耐压区内,其中所述第二沟槽分别由主动区侧向外延伸;此外,所述第二沟槽内具有绝缘层与导电材料,且绝缘层位于第二沟槽的内侧表面。据此,本发明沟槽式功率金氧半场效晶体管可通过在耐压区设置第二沟槽,提升崩溃电压,并同时减少耐压设计所需的空间,降低制造成本。

Description

沟槽式功率金氧半场效晶体管与其制造方法
技术领域
本发明涉及一种半导体元件结构及其制造方法,且特别涉及一种沟槽式功率金氧半场效晶体管及其制造方法。
背景技术
为了满足节能和降低系统功率损耗的需求,功率半导体,例如,功率金氧半场效晶体管(PowerMOSFET)已被广泛地运用于高电压电器设备。在功率半导体的应用领域中,其中耐电压能力(如崩溃电压BVdss)与导通特性(如导通电阻Ron)为功率半导体非常重要的能力指标。
一般为了使功率半导体具有高崩溃电压的特性,会在晶圆上的功率半导体的周围,设置至少一组由P型半导体与N型半导体形成的PN接面(p-njunction)以及由金属形成的电场板(fieldplate)所构成的耐压环结构,来提高功率半导体的逆向偏电压。详细地说,以沟槽式功率金氧半场效晶体管为例,耐压环结构可为在具有N型掺杂物的磊晶层的上部分植入P型掺杂物形成P型掺杂区,并于P型掺杂区上方沉积金属层,借此,即能在沟槽式功率金氧半场效晶体管的底部(漏极端)电场,形成较和缓的电场分布,进而可提高功率半导体的逆向偏电压。然而,因每一组耐压环,仅能提升功率半导体的崩溃电压至一特定电压值(例如30伏特),因此,通常需设置多组上述的耐压环结构,来使功率半导体符合所需的耐压电位。如此,上述的耐压环结构既耗费大量晶圆面积,也同时增加制作的复杂度,进而功率半导体整体的制作成本也会大幅增加,导致经济效益地降低。
发明内容
本发明提供的一种沟槽式功率金氧半场效晶体管,可借助于在耐压区设置多个由主动区侧向外延伸的沟槽,并围绕主动区内的元件,可提升沟槽式功率金氧半场效晶体管的耐电压能力并降低导通电阻,同时减少耐压设计所需的空间,进而降低制作成本。
本发明提供一种沟槽式功率金氧半场效晶体管,此沟槽式功率金氧半场效晶体管包括基材、多个第一沟槽以及多个第二沟槽。所述基材具有一主动区与一耐压区且耐压区环绕主动区。多个第一沟槽位于主动区内。多个第二沟槽具有绝缘层与导电材料,且位于耐压区内,其中所述第二沟槽分别由主动区侧向外延伸。此外,所述绝缘层位于第二沟槽的内侧表面。
换句话说,本发明提供一种沟槽式功率金氧半场效晶体管,包括:一基材,具有一主动区与一耐压区,且该耐压区环绕该主动区;多个第一沟槽,位于该主动区内;以及多个具有一绝缘层与一导电材料的第二沟槽,位于该耐压区内,且该多个第二沟槽分别由该主动区侧向外延伸;其中,该绝缘层位于第二沟槽的内侧表面。
在本发明其中一个实施例中,上述沟槽式功率金氧半场效晶体管还包括至少一第一掺杂区。第一掺杂区形成在所述相邻的第二沟槽之间,且上述第一掺杂区的导电型是与所述基材的导电型相异。
在本发明其中一个实施例中,上述沟槽式功率金氧半场效晶体管还包括至少一第二掺杂区。第二掺杂区形成在所述第二沟槽之间,且位于所述第一掺杂区之上,其中所述第二掺杂区的导电型是与所述基材的导电型相同或相反。
在本发明其中一个实施例中,上述第二沟槽以放射状排列于主动区周围。
在本发明其中一个实施例中,上述耐压区至少具有一侧边区域与一转角区域,而位于转角区域中的所述第二沟槽以扇形方式排列。
在本发明其中一个实施例中,上述位于转角区域中的第二沟槽以等距方式排列。
在本发明其中一个实施例中,上述位于转角区域中的第二沟槽邻近该主动区的一端的沟槽宽度小于远离该主动区的一端的沟槽宽度。
本发明还提供一种沟槽式功率金氧半场效晶体管的制造方法,包括下列步骤:提供一基材,且所述基材具有一主动区与一耐压区,其中上述的耐压区环绕主动区;形成多个第一沟槽在主动区内;形成多个第二沟槽在耐压区内,其中该多个第二沟槽分别由主动区侧向外延伸;形成一绝缘层在该多个第二沟槽的内侧表面;填入导电材料在该多个第二沟槽中。
综上所述,本发明提供一种沟槽式功率金氧半场效晶体管,其中在耐压区内设置多个由主动区侧向外延伸且具有绝缘层与导电材料的沟槽,并该多个沟槽围绕于主动区内的元件。从而,可在逆偏压操作时,运用降低表面电场原理,利用电位夹挤效应产生电荷平衡与电场舒缓的效果。如此,可在沟槽与侧向或底部漏极端电场形成较和缓的电场分布,进而可使沟槽式功率金氧半场效晶体管具有耐高电压能力与低导通电阻的特性。同时,亦减少耐压设计所需的空间,进而降低制造成本,提高经济效益。
为了能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,但是此等说明与所附附图仅用来说明本发明,而非限制本发明。
附图说明
图1是本发明实施例一沟槽式功率金氧半场效晶体管的俯视示意图;
图2A~2G是本发明实施例一沟槽式功率金氧半场效晶体管的的A-A’剖面示意图;
图3A~3B是本发明实施例二沟槽式功率金氧半场效晶体管的第一掺杂区以及第二掺杂区分布示意图;
图4A~4B是本发明实施例三沟槽式功率金氧半场效晶体管的金属层布设方式示意图;
图5A~5C是本发明实施例四沟槽式功率金氧半场效晶体管的第二沟槽排列方式示意图;
图6A~6E是本发明实施例五沟槽式功率金氧半场效晶体管的第二沟槽结构示意图;
图7是本发明实施例六沟槽式功率金氧半场效晶体管的制作方法的流程图;
图8A~8K是根据本发明实施例六沟槽式功率金氧半场效晶体管制造过程示意图。
【主要元件附图标记说明】
1、2:磊晶层
11、21;主动区
111、211:第一沟槽
217:本体区
219:源极掺杂区
221:层间绝缘层
223:接触通孔
225:源极金属层
227:金属层
229:保护层
13、23:耐压区
131:侧边区域
133:转角区域
135、135a~135e、231:第二沟槽
137:接触通孔
139:金属层
141、213、233:绝缘层
143、143’、215、235:导电结构
145、145a、145b:第ㄧ掺杂区
147:第二掺杂区
25:氧化层
L、D1、D2:距离
S110~S190:步骤
具体实施方式
实施例一
请参照图1,图1为本发明实施例一沟槽式功率金氧半场效晶体管的俯视示意图。沟槽式功率金氧半场效晶体管包含基板(substrate)(图未示)与位于基板上的磊晶层1(epitaxiallayer)、多个第一沟槽111以及多个第二沟槽135,其中上述的基板与磊晶层1合称为基材(base)。
在此实施例中,磊晶层1可以是通过磊晶成长方式形成于基板的上方,但本发明并不以此为限,也就是可不需要成长此磊晶层1,直接将主动区与耐压区形成在基板上,即基材是为基板。值得一提的是,基板可为硅基板(siliconsubstrate),且具有第一导电型掺杂物。所述沟槽式功率金氧半场效晶体管的漏极区域设置于基板。在实际操作上,基板的种类与其掺杂物的导电型并无一定的限制,故不以此为限。磊晶层1具有第一导电型的掺杂物,其中,第一导电型的掺杂物可为N型掺杂物,但本实施例并不限制。
磊晶层1具有主动区11(activeregion)以及耐压区13(terminationregion),且耐压区13环绕于主动区11。也就是说,耐压区13围绕于主动区11的四周,并紧邻主动区11。耐压区13内的结构可用来提高沟槽式功率金氧半场效晶体管的耐电压能力,借以保护设置于主动区11内的元件,避免过高电压对主动区11内的元件造成损坏。
具体地说,多个第一沟槽111位于磊晶层1的主动区11内,而多个第二沟槽135位于磊晶层1的耐压区13内。多个第一沟槽111是分别自磊晶层1的上表面的主动区11向下延伸形成的。多个第二沟槽135是分别自磊晶层1的上表面的耐压区13由主动区11侧向外且向下延伸所形成的。换言之,第二沟槽135是由相邻于主动区11内第一沟槽111的一端向远离主动区11的一端(例如,邻近磊晶层1的边缘)方向延伸形成的。更具体来说,多个第二沟槽135邻近主动区11的一端相接或以一距离相邻于主动区11内靠近耐压区13的第一沟槽111的一端,且多个第二沟槽135之间的空隙开口是朝向远离主动区11的一端。第二沟槽135的沟槽长度则是由靠近主动区11的一端至远离主动区11的一端来定义的。第二沟槽135的沟槽宽度则是由第二沟槽135的一内侧至其相对的一侧来定义。
值得一提的是,第一沟槽111以及第二沟槽135可借助于布设具有对应第一沟槽111以及第二沟槽135位置与形状图案的光罩(mask)以及蚀刻(etching)等制造工艺同时形成于磊晶层1上,但本发明并不以此为限,是可通过不同制造工艺分别制作于磊晶层1上。详细地说,第二沟槽135可利用深沟绝缘槽(DeepTrench)或浅沟绝缘槽回填(ShallowTrenchIsolation,STI)等制造工艺来建置。多个第二沟槽135可以放射状排列于主动区11内多个第一沟槽111的周围。
进一步地说,耐压区13包含至少一个侧边区域131与一个转角区域133,其中转角区域133紧邻侧边区域131。如图1所示,位于侧边区域131内的多个第二沟槽135是以矩形排列方式,而位于转角区域133内的多个第二沟槽135是以扇形状方式排列,且也可以等距方式排列。换言之,位于侧边区域131内的多个第二沟槽135是以平行方式排列。而位于转角区域133内的多个第二沟槽135是以夹角的方式排列,且相邻的第二沟槽135之间的夹角大小,可为相同。
然实际上,多个第二沟槽135可以是以不同方式排列,例如辐射方式、环形方式或齿轮型方式等来排列,也可由不同的夹角角度或间距来排列,详细的排列方式会借助于后续实施例来加以描述。要说明的是,多个第二沟槽135的排列方式并无一定的限制,故本实施例并不以此为限。
在此实施例中,所述第一沟槽111的沟槽深度与所述第二沟槽135的沟槽深度相等。所述第一沟槽111的沟槽宽度与所述第二沟槽135的沟槽宽度亦相等。但在实际操作中,第一沟槽111与第二沟槽135的沟槽深度与沟槽宽度可分别依据实际制程需求而设置,故本实施例并不限制。
附带一提的是,第一沟槽111的实际结构并非为本发明所着重的部分,且第一沟槽111与第二沟槽135的实际制作方式会借助于后面的实施例来描述,故在此不再赘述。
接着,请参照图2A到图2G并同时参照图1,图2A到图2G分别为实施例一沟槽式功率金氧半场效晶体管的A-A’剖面示意图。
如图2A所示,在本实施例中,多个第二沟槽135内分别具有绝缘层141以及由导电材料所构成的导电结构143。绝缘层141用来包覆导电结构143,并可通过热氧化(thermaloxidation)方式或是化学气相沉积(chemicalvapordeposition,CVD)的方式形成于第二沟槽135内。在实际操作上,绝缘层141可由氧化物(oxide)或氮化硅(siliconnitride)等绝缘材质所构成。构成导电结构143的导电材料可以是多晶硅(polysilicon)、铝(aluminum)或铜(copper)等导电材质,但本实施例并不限制。
上述导电结构143与第二沟槽135上方开口之间的距离则可通过绝缘层141的厚度来设置。上述的导电结构143与第二沟槽135上方开口之间的距离亦可以为零。换言之,如图2B所示,绝缘层141仅位于第二沟槽135侧边与底边的内侧表面,并非覆盖在导电结构143的上方。导电结构143的大小还可借助于绝缘层141在第二沟槽135内配置的比例来定义,例如可由朝向远离主动区11(也就是磊晶层1外围边缘)方向配置的厚度来定义导电结构143在第二沟槽135内的宽度。在实际操作上,绝缘层141的厚度可依实际电位线分布缓和效益等需求来设置,本实施例并不限制。
值得一提的是,于此实施例中,所述第二沟槽135内具有一个导电结构143,但亦可依需求具有两个以上由导电材料所构成的导电结构143。举例来说,可如图2C所示,同时借助于布设绝缘层141来包覆多个导电结构143、143’,使多个导电结构143、143’之间相互绝缘,但本实施例并不限制,且导电结构143、143’的电位并不限定于同一电位。换言之,即导电结构143、143’是可各自为浮接、接地或连接主动区11内元件的栅极金属层的状态。
更进一步地说,所述第二沟槽135中的导电结构143实际上还可电性连接金属层(图未示)。所述金属层可为浮接、接地或与图1所示的主动区11内元件的栅极金属层相接。从而,可使功率金氧半场效晶体管在逆偏压操作时可利用耐压区13(如图1所示)内的第二沟槽135的导电结构143的电位夹挤效应,达到电荷平衡(chargebalance)并产生电场舒缓效果,借以提高功率金氧半场效晶体管的耐电压能力。
另外,如图2D所示,还可于相邻第二沟槽135之间植入至少一第一掺杂区145,其中第一掺杂区145是通过植入第二导电型掺杂物来形成的。在此实施例中,第二导电型的杂物可为P型掺杂物,且可利用离子植入方式布植于相邻第二沟槽135之间。具体来说,第一掺杂区145是自磊晶层1的表面植入第二导电型掺杂物并借助于热扩散向下延伸形成的。此外,每一个第一掺杂区145所具有第二导电型掺杂物的浓度可依据所需的电场舒缓效果以及耐压需求而设置,本实施例并不限制。值得注意的是,第一掺杂区145所具有的导电型掺杂物必须与基板以及磊晶层1所具有的导电型掺杂物相异,但不限定于P型掺杂物。
此外,第一掺杂区145并不一定要紧邻磊晶层1的表面,也可如图2E所示,第一掺杂区145可距磊晶层1的表面一段距离L。在实际操作上,所述距离L可依据所需的电场舒缓效果以及耐压需求来配置,故本实施例并不限制。如上述,实际上,可于相邻第二沟槽135之间可向下植入多个具第二导电型掺杂物的第一掺杂区145,且每一个第一掺杂区145之间的间距可依耐压设计需求来配置。
如图2F所示,还可于植入第一掺杂区145之后,接着于相邻第二沟槽135之间对应第一掺杂区145的位置向下植入与磊晶层1的导电型相同的掺杂物(如具第一导电型掺杂物,例如N型掺杂物)或是与磊晶层1导电型相异的掺杂物(如具第二导电型掺杂物,例如P型掺杂物)以形成至少一第二掺杂区147,并使第二掺杂区147位于第一掺杂区145之上。第二掺杂区147与第一掺杂区145可分别具有不同导电类型掺杂物,且相互分离。在此实施例中,每一个第二掺杂区147具有第一导电型掺杂物,但其所具有的第一导电型掺杂物的浓度可依据所需的电场舒缓效果或耐压需求来设置,故本实施例并不限制。第二掺杂区147与第一掺杂区145的相对位置,并不限定于垂直方向的排列,亦可以平行方式排列。第二掺杂区147与第一掺杂区145的位置亦不限定于相邻的第二沟槽135之间。此外,第二掺杂区147与第一掺杂区145的深度亦可大于第二沟槽135的深度,其位置可根据所需的电场舒缓效果或耐压需求来设置。
如同上述第二掺杂区147并不一定要紧邻磊晶层1的表面,也可如图2G所示,第二掺杂区147可距离磊晶层1的表面的一段距离L。所述距离L亦可依据所需的电场舒缓效果以及耐压需求来配置,但本实施例并不以此限制。要说明的是,图2A到图2G分别仅为沟槽式功率金氧半场效晶体管的A-A’剖面示意图,并非用来限定本发明。
据此,所述的沟槽式功率金氧半场效晶体管可借助于调整配置磊晶层1的第一导电型掺杂物的浓度、耐压区13中第二沟槽135的实际结构,例如第二沟槽135的沟槽宽度、相邻的第二沟槽135之间的距离、沟槽深度以及导电材料的配置方式等以及第一掺杂区145与第二掺杂区147的数量、位置与掺杂物的浓度,来达到沟槽式功率金氧半场效晶体管的所需的耐电压能力(即崩溃电压BVdss),同时亦有效地缩小耐压所需的设计空间。此外,还可对磊晶层1的电阻值与厚度做优化的调整,降低导通电阻的电阻值,进而降低沟槽式功率金氧半场效晶体管的导通损失。
实施例二
另外,所述第一掺杂区145的布设位置进一步还可有其他实施方式。请参照图3A与图3B,图3A与图3B分别为本发明实施例二沟槽式功率金氧半场效晶体管的第一掺杂区以及第二掺杂区分布的俯视图。
如图3A所示,所述具与磊晶层1导电型掺杂物相异的第一掺杂区145a可布植于相邻的第二沟槽135之间空隙的中心位置。第一掺杂区145a的长度是介于第二沟槽135的沟槽长度之间,但本发明并不以此为限,第一掺杂区145a的长度亦可大于或等于第二沟槽135的长度。第一掺杂区145a的最大沟槽宽度是由相邻第二沟槽135之间的空隙来定义。第一掺杂区145a亦可布设于靠近相邻第二沟槽135中的其中一个沟槽,或是靠近第二沟槽135的其中一端,例如,靠近主动区11的一端或是远离主动区11的一端。
所述第一掺杂区145a亦可如图3B所示,分为多个相同大小的第一掺杂区145b,分别自第二沟槽135靠近主动区11的一端,往远离主动区11的方向布设于相邻第二沟槽135之间。此外,相同大小的第一掺杂区145b之间的间隔可相互间隔一段距离。相同大小的第一掺杂区145b的第一导电型掺杂物的浓度可为相同或不同,并无一定限制,故本实施例并不限制。同样地,相同大小的第一掺杂区145b所向下布植的深度亦可为同一深度或者是不同的深度,且第一掺杂区145b所向下布植的深亦可低于第二沟槽135的沟槽深度(图未示),本实施例亦不限制。
同理,上述具与磊晶层1的导电型相同或相异掺杂物的第二掺杂区(图3A与图3B未示)亦可跟随着第一掺杂区145a、145b布设的位置以及大小改变,只要使第二掺杂区位于第一掺杂区145a或第一掺杂区145b上即可,本实施并不限制。
要说明的是,第一掺杂区145a、145b以及第二掺杂区的实际布植位置以及分布方式,是根据耐压区13所需承受的耐电压能力或所需的电场舒缓效果而配置,图3A以及图3B分别仅为其中一种分布示意图,并非用来限定本发明。
实施例三
接着,请参照图4A与图4B,图4A与图4B分别为本发明实施例三沟槽式功率金氧半场效晶体管的金属层布设方式示意图。
金属层139可通过多个接触通孔137电性连接多个第二沟槽135。具体地说,如图4A所示,多个接触通孔137可分别在磊晶层1的耐压区(图4A及图4B未示)对应所述第二沟槽135的位置向下蚀刻形成,以使所述接触通孔137电性连接由填入第二沟槽135内的导电材料所构成的导电结构(图4A及图4B未示)。每一个第二沟槽135可通过至少一个接触通孔137来与金属层139电性连接。所述金属层139借此可经由所述接触通孔137电性连接由填入第二沟槽135内的导电材料所构成的导电结构。
金属层139可如前述实施例所述为浮接、接地或与图1的主动区11内元件的栅极金属层(图4A及图4B未示)相接,进而可通过控制金属层139的电位使所述第二沟槽135中的导电结构形成侧边夹挤状态,从而使电场产生舒缓效果,据此可提高耐电压能力。
所述金属层139可同时覆盖所述第二沟槽135上的接触通孔137。所有所述金属层139的长度可如图4A所示小于或等于所述第二沟槽135的沟槽长度。所述金属层139的长度也可如图4B所示,大于所述第二沟槽135的沟槽长度。换言之,所述金属层139的实际制作尺寸可依据制造需要,通过金属沉积(metaldeposition)方式来设置,只要可与所述第二沟槽135中的导电结构电性连接即可,本实施例并不限制。
实施例四
如前述实施例中所述,沟槽式功率金氧半场效晶体管中转角区域内的第二沟槽可以使用不同的排列方式。请参考图5A到图5C并同时参考图1,图5A到图5C分别为本发明实施例四沟槽式功率金氧半场效晶体管的第二沟槽排列方式示意图。
如图5A所示,转角区域133内的第二沟槽135可以扇形方式排列,且相邻的第二沟槽135之间以等距方式,例如间隔一预设距离D1。然而转角区域133内的第二沟槽135,亦可如图5B所示,以扇形方式排列,但相邻第二沟槽135之间邻近主动区11一端的间距D2小于远离主动区11一端之间的间距D1。此外,转角区域133内的第二沟槽135亦可以扇形方式排列,而相邻的第二沟槽135之间可以是利用夹角角度设定(例如设定夹角角度为45度)的方式来排列。
转角区域内133的第二沟槽135还可如图5C所示以齿轮状排列,其中相邻的第二沟槽135之间的间距D1为相等。第二沟槽135的沟槽宽度也可因第二沟槽135的排列方式而有所不同,例如于图5C中,多个第二沟槽135邻近主动区11一端的沟槽宽度小于远离主动区11一端的沟槽宽度。
要说明的是,在实际操作上,第二沟槽135于转角区域133的排列方式以及第二沟槽135的结构(例如沟槽长度或沟槽宽度等)可因实际制造过程或耐压需求(例如耐压空间设计限制)而有所变化,故图5A到图5C分别仅为第二沟槽135于转角区域133排列的一种示意图,并非用来限定本发明。
实施例五
前述实施例中,沟槽式功率金氧半场效晶体管中第二沟槽135的沟槽两端的宽度以及形状也可依不同的设计需求来设置。请参考图6A到图6E并同时参考图1,图6A到图6E分别为本发明实施例五沟槽式功率金氧半场效晶体管的第二沟槽结构示意图。
所述第二沟槽135的其中一端的沟槽宽度可小于或大于另一端的沟槽宽度。换言之,可如图6A所示第二沟槽135a以梯型形状布设排列于耐压区13内。进一步地说,第二沟槽135a邻近主动区11的一端的沟槽宽度可小于远离主动区11的一端的沟槽宽度。所述第二沟槽135还可以如图6B第二沟槽135b,远离主动区11的一端的沟槽形状可为方型形状,且呈方型形状的一端的沟槽宽度大于邻近主动区11的一端的沟槽宽度。接着,远离该主动区11的一端的沟槽宽度亦可是小于邻近主动区11的一端的沟槽宽度。举例来说,如图6C第二沟槽135c,远离该主动区11的一端的沟槽形状也可以为弹头形状,且第二沟槽135c呈弹头形状的一端的沟槽宽度小于邻近主动区11的一端的沟槽宽度。又如图6D所示第二沟槽135d,远离主动区11的一端的沟槽形状可为环型形状,且呈环型形状的一端的沟槽宽度大于邻近主动11区的一端的沟槽宽度。另外,所述第二沟槽135还可以如图6E第二沟槽135e,远离主动区11的一端的沟槽形状可为椭圆形状,且呈椭圆形状的一端的沟槽宽度大于邻近主动区11的一端的沟槽宽度。
附带一提的是,由导电材料所形成的导电结构(图未示)的形状也可随着第二沟槽的实际结构进行变化。进一步地说,导电结构的大小可通过第二沟槽135内的所布设的绝缘层来定义。换言之,第二沟槽135a、135b、135c、135d以及135e中导电材料所形成的导电结构与绝缘层(图未示)的比例可依照耐压设计需求来设置,故本发明并不限制。
要说明的是,所述第二沟槽135的形状可依据不同耐压需求或是制造过程要求来对应设计,图6A到图6E分别仅为第二沟槽的其中一种结构变化示意图,并非用来限定本发明。
实施例六
接下来,请参照图7并同时参照图8A到图8K。图7为本发明实施例六所述的沟槽式功率金氧半场效晶体管的制作方法的流程图。图8A到图8K分别为对应本发明实施例六所述的沟槽式功率金氧半场效晶体管的结构制造过程示意图。
首先,如图8A所示,执行步骤S110,提供一基材(图未示),且所述基材可为由一基板(图未示)与磊晶层2所组成。具体地说,可于基板上成长磊晶层2,其中磊晶层2具有第一导电型掺杂物。但本发明并不以此为限,亦可不需要成长此磊晶层2,直接将主动区21与耐压区23形成于基板上,如此,基材即为基板。所述第一导电型掺杂物可为N型掺杂物,但本实施例并不限制。进一步地说,磊晶层2可通过磊晶成长方式形成基板上方。磊晶层2的表面具有主动区21与耐压区23,其中耐压区23环绕于主动区21的周围,且紧邻主动区21。
基板可例如为硅基板,且具有第一导电型掺杂物。所述沟槽式功率金氧半场效晶体管的漏极区域(图未示)设置位于基板下方。在实际操作上,基板的种类与其掺杂物的导电形式并无一定限制,故不以此为限。
随后,如图8B所示,于磊晶层2的表面形成一氧化层25,其中氧化层的材质可为二氧化硅,但本实施例并不限制。
其后,在步骤S120中,如图8C所示,于磊晶层2的主动区21内向下形成多个第一沟槽211,并于磊晶层2的耐压区23内向下形成多个第二沟槽231。详细地说,可通过布设具有所需第一沟槽211以及第二沟槽231图案的光罩(图未示)在磊晶层2的主动区21以及耐压区23的表面,并借助于微影以及蚀刻等制造工艺分别以同一个或不同光罩形成第一沟槽211以及第二沟槽231。第二沟槽231的光罩可依据实际耐压设计需求而设计,其中第二沟槽231的图案可例如为由图6A到图6E所示,但本实施例并不限制。在此实施例中,所述第二沟槽231是以放射状排列于主动区21内多个第一沟槽211的周围,且第二沟槽231分别是由主动区21侧向外延伸。更具体地说,与此实施例中,第二沟槽231是由相邻于主动区21内第一沟槽211的一端往远离主动区21的一端的方向延伸而形成。
耐压区23可如实施例一所述具有侧边区域(图8A到图8K未示)与转角区域(图8A到图8K未示)。在此实施中,位于转角区域中的第二沟槽231可以扇形方式排列,但相邻第二沟槽231之间的间距可为等距或是依需求而设置,本实施例并不限制。第二沟槽231于转角区域内的排列方式亦可参照图5A到图5C,但本实施例并不以此为限。而位于侧边区域中的第二沟槽231则可以矩形方式排列,但相邻第二沟槽231之间的间距可为等距或是依需求而设置,本实施例并不限制。
值得一提的是,所述第二沟槽231可利用深沟绝缘槽(DeepTrench)或浅沟绝缘槽回填(ShallowTrenchIsolation,STI)等制造方式来建置。
接着,在步骤S130中,如图8D所示,在多个第一沟槽211内形成绝缘层213(例如,栅极氧化层GateOxidelayer)以及在多个第二沟槽231内形成绝缘层233。绝缘层213、233可由热氧化的方式或是化学气相沉积方式形成于第一沟槽211以及第二沟槽135。在实际操作上,绝缘层213、233可由氧化物(oxide)或氮化硅(siliconnitride)等绝缘材质所构成,但本实施例并不以此为限。
而后,如图8E所示,分别在多个第一沟槽211以及多个第二沟槽231填入导电材料,以分别于所述第一沟槽211形成导电结构215以及在第二沟槽231形成导电结构235,如步骤S140。此外,视设计的需求而定,可再于第一沟槽211以及第二沟槽231内,再行沉积绝缘层213及233,以使绝缘层213及233分别覆盖于导电结构215以及235之上。导电结构215的结构以及与第一沟槽211上方开口的距离可通过绝缘层213来定义。同样地,导电结构235的结构以及与第二沟槽231上方开口的距离可通过绝缘层233来定义。第二沟槽231内亦可通过绝缘层213来形成两个以上的导电结构235,且多个导电结构的电位并不限定于同一电位。另外,构成导电结构215、235的导电材料可以是多晶硅(polysilicon)、铝(aluminum)或铜(copper)等导电材质,但本实施例并不以此为限。
接着,如图8F所示,在步骤S150中,在相邻的第一沟槽211之间通过离子布植方式植入具有第二导电型掺杂物,并通过热扩散(drive-in)方式,使具有第二导电型掺杂物向下扩散以形成本体区217。值得一提的是,在此步骤中,可同时依需求在相邻的第二沟槽231之间植入具有与磊晶层2导电型相异的掺杂物,例如为第二导电型掺杂物,以形成至少一个第一掺杂区(图未示)。第一掺杂区的掺杂物的浓度与第一掺杂区的植入位置、植入数量以及植入的深度可依耐压需求而设置,本实施例并不限制。所述第二导电型掺杂物可例如为P型掺杂物,但本实施例并不以此为限。
随后,在步骤S160中,如图8G所示,于磊晶层2主动区21内对应本体区217位置,植入具第一导电型掺杂物,以形成源极掺杂区219。同样地,在此步骤中,亦可同时依需求在相邻的第二沟槽231之间对应第一掺杂区的位置植入具有磊晶层2导电型相同的掺杂物,例如为第一导电型掺杂物,以形成至少一个第二掺杂区(图未示)。然而如前述,第二掺杂区也可以是由具有与磊晶层2导电型相异的掺杂物所形成的,本实施例并不限制。另外,所述第二掺杂区是位于第一掺杂区之上,并且第二掺杂区与第一掺杂区之间相互分离。第二掺杂区的掺杂物的浓度与第二掺杂区的植入位置、植入数量以及植入的深度可根据所需的电场舒缓效果或耐压需求而设置,但本实施例并不限制。附带一提的是,第一掺杂区与第二掺杂区的相对位置,并不限定于垂直方向的排列,亦可以平行方式排列。第一掺杂区与第二掺杂区的位置亦不限定于相邻第二沟槽231之间。
接着,在步骤S170,如图8H所示,于磊晶层2的上表面通过沉积一层非掺杂的硅玻璃(Undopedsilicateglass,USG)或硼磷硅玻璃(boro-phospho-silicate,BPSG)等材料形成的层间绝缘层221(Inter-LayerDielectric),以覆盖第一沟槽211以及第二沟槽231。随后,如图8I所示,于层间绝缘层221上通过微影及蚀刻等方式在对应源极掺杂区219以及第二沟槽231中导电结构235的位置形成多个接触通孔223(contactvia,CT)。多个接触通孔223分别电性连接源极掺杂区219以及第二沟槽231中的导电结构235。
而后,在步骤S180中,如图8J所示,于磊晶层2及层间绝缘层221上对应源极掺杂区219以及第二沟槽231中导电结构235的位置沉积金属层。从而,可在对应源极掺杂区219的磊晶层2及层间绝缘层221之上形成源极金属层225,而于对应第二沟槽231中导电结构235的位置的磊晶层2及层间绝缘层221之上形成金属层227。源极金属层225可通过接触通孔223电性连接至源极掺杂区219。金属层227可通过接触通孔223电性连接第二沟槽231中导电结构235。此外,金属层227可依耐压设计需求为浮接、接地或是电性连接主动区21内元件的栅极金属层(图未示),故本发明并不限制。
最后,在步骤S190中,如图8K所示,沉积一由衬垫氧化层(oxidepad)以及氮化硅层(nitride)形成的保护层229覆盖于于源极金属层225以及金属层227之上,以对源极金属层225与金属层227进行保护,避免源极金属层225以及金属层227受到污染。
据此,主动区21内第一沟槽211以及耐压区23内的第二沟槽231可同时形成,进而可减少制造的复杂度。同时,可借助于设计第二沟槽231的排列方式、第二沟槽231的结构以及相邻第二沟槽231之间第一、第二掺杂物的设置方式,来调整耐压区23的耐电压能力。要说明的是,图8A到图8K仅为对应实施例六所述沟槽式功率金氧半场效晶体管的结构制造过程示意图,并非用来限定本发明。
综上所述,本发明提供一种沟槽式功率金氧半场效晶体管,可利用降低表面电场(ReduceSurfaceField,Resurf)原理,借助于耐压区内布设多个由主动区侧向外延伸并具有导电材料的沟槽围绕于主动区内的元件,提升沟槽式功率金氧半场效晶体管的耐电压能力。
所述槽式功率金氧半场效晶体管可借助于耐压区内布设的沟槽中的导电材料的电位侧边夹挤效应产生电场舒缓的效果,有效地提升沟槽式功率金氧半场效晶体管的崩溃电压。据此,可将磊晶层的电阻值与磊晶层厚度进行相应调整,以降低导通电阻,进而降低导通损失。此外,本发明实施例还可借助于设计耐压区内沟槽的结构与形状、布设方式、沟槽内导电槽料与绝缘层的分布以及调整植入于相邻沟槽之间掺杂区的设置方式(例如浓度、数量或位置等)来配置槽式功率金氧半场效晶体管的耐电压能力。
另外,本发明实施例虽以沟槽式功率金氧半场效晶体管的制造方式为例,但所述的沟槽式耐压设计亦可应用于其他功率半导体制程,例如水平式双扩散金氧半场效晶体管(LDMOS)、功率集成电路Bipolar-CMOS-DMOS,BCD)或超高压(UltraHighVoltage,UHV)等制造。所述槽式功率金氧半场效晶体管可在制造主动区内的元件时,同时制造耐压区内的沟槽降低制程时间,还可减少耐压设计所需的空间,进而降低制作成本。
以上所述仅为本发明的实施例,其并非用来局限本发明的权利要求范围。

Claims (16)

1.一种沟槽式功率金氧半场效晶体管,其特征在于,包括:
一基材,具有一主动区与一耐压区,且该耐压区环绕该主动区;
多个第一沟槽,位于该主动区内;以及
多个具有一绝缘层与一导电材料的第二沟槽,位于该耐压区内,且该多个第二沟槽分别由该主动区侧向外延伸;
多个一第一掺杂区;
其中,该绝缘层位于第二沟槽的内侧表面
该多个第一掺杂区大小相同,且该多个相同大小的第一掺杂区分别自第二沟槽靠近主动区的一端,往远离主动区的方向布设于相邻第二沟槽之间。
2.如权利要求1所述的沟槽式功率金氧半场效晶体管,其特征在于,
该第一掺杂区的导电型与该基材的导电型相异。
3.如权利要求2所述的沟槽式功率金氧半场效晶体管,其特征在于,还包括:
至少一第二掺杂区,形成在该多个第二沟槽之间,其中该第二掺杂区位于该第一掺杂区之上,且该第二掺杂区的导电型与该基材的导电型相同或相反。
4.如权利要求1所述的沟槽式功率金氧半场效晶体管,其特征在于,该多个第二沟槽以放射状排列在该主动区周围。
5.如权利要求1所述的沟槽式功率金氧半场效晶体管,其特征在于,该耐压区至少具有一侧边区域与一转角区域,位于该转角区域中的该多个第二沟槽以扇形方式排列。
6.如权利要求5所述的沟槽式功率金氧半场效晶体管,其特征在于,位于该转角区域中的该多个第二沟槽以等距方式排列。
7.如权利要求5所述的沟槽式功率金氧半场效晶体管,其特征在于,位于该转角区域中的该多个第二沟槽邻近该主动区的一端的沟槽宽度小于远离该主动区的一端的沟槽宽度。
8.如权利要求1所述的沟槽式功率金氧半场效晶体管,其特征在于,该多个第二沟槽中具有两个以上由导电材料形成的导电结构。
9.一种沟槽式功率金氧半场效晶体管的制造方法,其特征在于,包括下列步骤:
提供一基材,且该基材具有一主动区与一耐压区,该耐压区环绕该主动区;
形成多个第一沟槽在该主动区内;
形成多个第二沟槽在该耐压区内,其中该多个第二沟槽分别由该主动区侧向外延伸;
形成多个第一掺杂区,所述的多个第一掺杂区大小相同,且多个相同大小的第一掺杂区分别自第二沟槽靠近主动区的一端,往远离主动区的方向布设于相邻第二沟槽之间;
形成一绝缘层在该多个第二沟槽的内侧表面;以及
填入一导电材料在该多个第二沟槽中。
10.如权利要求9所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,该第一掺杂区的导电型与该基材的导电型相异。
11.如权利要求10所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,还包括:
在该多个第二沟槽之间形成至少一第二掺杂区,位于该第一掺杂区之上,且该第二掺杂区的导电型与该基材的导电型相同或相反。
12.如权利要求9所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,该多个第二沟槽以放射状形成于该主动区的周围。
13.如权利要求9所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,该耐压区至少具有一侧边区域与一转角区域,位于该转角区域中的该多个第二沟槽以扇形方式排列。
14.如权利要求13所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,位于该转角区域中的该多个第二沟槽以等距方式排列。
15.如权利要求13所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,位于该转角区域中的该多个第二沟槽邻近该主动区的一端的沟槽宽度小于远离该主动区的一端的沟槽宽度。
16.如权利要求9所述的沟槽式功率金氧半场效晶体管的制造方法,其特征在于,该多个第二沟槽中具有两个以上由导电材料形成的导电结构。
CN201210157733.7A 2012-05-21 2012-05-21 沟槽式功率金氧半场效晶体管与其制造方法 Expired - Fee Related CN103426906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210157733.7A CN103426906B (zh) 2012-05-21 2012-05-21 沟槽式功率金氧半场效晶体管与其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210157733.7A CN103426906B (zh) 2012-05-21 2012-05-21 沟槽式功率金氧半场效晶体管与其制造方法

Publications (2)

Publication Number Publication Date
CN103426906A CN103426906A (zh) 2013-12-04
CN103426906B true CN103426906B (zh) 2016-05-04

Family

ID=49651411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210157733.7A Expired - Fee Related CN103426906B (zh) 2012-05-21 2012-05-21 沟槽式功率金氧半场效晶体管与其制造方法

Country Status (1)

Country Link
CN (1) CN103426906B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10339488B3 (de) * 2003-08-27 2005-04-14 Infineon Technologies Ag Laterales Halbleiterbauelement mit einer wenigstens eine Feldelektrode aufweisenden Driftzone
CN103762243B (zh) * 2007-09-21 2017-07-28 飞兆半导体公司 功率器件
CN100565879C (zh) * 2008-01-08 2009-12-02 苏州硅能半导体科技股份有限公司 一种深沟槽大功率mos器件及其制造方法
US8928065B2 (en) * 2010-03-16 2015-01-06 Vishay General Semiconductor Llc Trench DMOS device with improved termination structure for high voltage applications

Also Published As

Publication number Publication date
CN103426906A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
US20240170558A1 (en) Semiconductor device having a protrusion projection formed under a gate electrode and between body regions
US7521755B2 (en) Trench semiconductor device of improved voltage strength, and method of fabrication
TWI469353B (zh) 溝槽式功率金氧半場效電晶體與其製造方法
CN102867842B (zh) 超级结器件及制造方法
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
CN101924137B (zh) 纳米管半导体器件及其制备方法
US20100001362A1 (en) Edge termination for semiconductor device
CN101404283A (zh) 集成有肖特基二极管的平面mosfet及其布局方法
CN102315247B (zh) 具有沟槽型终端结构的超级结半导体器件
KR20160085707A (ko) 반도체 장치 및 반도체 장치의 제조 방법
CN102034818A (zh) 通过p-体电荷的最小化改善高压mosfet二极管的反向恢复
JP2006332607A (ja) 半導体装置
JP4998524B2 (ja) 半導体装置
US10763352B2 (en) Semiconductor device
CN103426906B (zh) 沟槽式功率金氧半场效晶体管与其制造方法
CN104900697A (zh) 半导体装置及其制作方法
US10700172B2 (en) Semiconductor device and method for fabricating a semiconductor device
US10038088B2 (en) Power MOSFET having improved manufacturability, low on-resistance and high breakdown voltage
US8072027B2 (en) 3D channel architecture for semiconductor devices
EP4307390A1 (en) Semiconductor die and method of manufacturing the same
CN110970497A (zh) Igbt功率器件
US12002849B2 (en) Super junction semiconductor device and method of manufacturing the same
KR102417149B1 (ko) 전력 반도체 소자
KR102379156B1 (ko) 전력 반도체 소자 및 그 제조 방법
CN104576339B (zh) Rfldmos中栅场板的制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170421

Address after: Hsinchu County, Taiwan, China

Patentee after: Shuaiqun Microelectronic Co., Ltd.

Address before: Chinese Taiwan New Taipei City

Patentee before: Kexuan Microelectronic Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160504

Termination date: 20180521