CN103422054B - 导电薄膜、其制备方法及应用 - Google Patents

导电薄膜、其制备方法及应用 Download PDF

Info

Publication number
CN103422054B
CN103422054B CN201210148487.9A CN201210148487A CN103422054B CN 103422054 B CN103422054 B CN 103422054B CN 201210148487 A CN201210148487 A CN 201210148487A CN 103422054 B CN103422054 B CN 103422054B
Authority
CN
China
Prior art keywords
target
conductive film
cumo
aluminium oxide
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210148487.9A
Other languages
English (en)
Other versions
CN103422054A (zh
Inventor
周明杰
王平
陈吉星
黄辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd, Shenzhen Oceans King Lighting Engineering Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Priority to CN201210148487.9A priority Critical patent/CN103422054B/zh
Publication of CN103422054A publication Critical patent/CN103422054A/zh
Application granted granted Critical
Publication of CN103422054B publication Critical patent/CN103422054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种导电薄膜,包括层叠的氧化锌铝层及CuMO2层,其中,M为Al、Ga或In。上述导电薄膜通过在氧化锌铝层的表面沉积高功函的P型氧化物薄膜制备双层导电薄膜,既能保持氧化锌铝层的良好的导电性能,又使导电薄膜的功函数得到了显著的提高。本发明还提供一种导电薄膜的制备方法及应用。

Description

导电薄膜、其制备方法及应用
技术领域
本发明涉及半导体光电材料,特别是涉及导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基底、其制备方法及有机电致发光器件。
背景技术
导电薄膜电极是有机电致发光器件(OLED)的基础构件,其性能的优劣直接影响着整个器件的发光效率。其中,氧化锌铝(AZO)是近年来研究最广泛的透明导电薄膜材料,具有较高的可见光透光率和低的电阻率。但要提高器件的发光效率,要求透明导电薄膜阳极具有较高的表面功函数。而AZO的功函数一般只有4.3eV,经过UV光辐射或臭氧等处理之后也只能达到4.5~5.1eV,与一般的有机发光层的HOMO能级(典型的为5.7~6.3eV)还有比较大的能级差距,造成载流子注入势垒的增加,妨碍发光效率的提高。
发明内容
基于此,有必要针对氧化锌铝导电薄膜功函数较低的问题,提供一种功函数较高的导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基底、其制备方法及有机电致发光器件。
一种导电薄膜,包括层叠的氧化锌铝层及CuMO2层,其中,M为Al、Ga或In。
一种导电薄膜的制备方法,包括以下步骤:
将氧化锌铝靶材、CuMO2靶材及衬底装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In;
在所述衬底表面溅镀氧化锌铝层,溅镀所述氧化锌铝层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;
在所述氧化锌铝层表面溅镀CuMO2层,溅镀所述CuMO2层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;及
剥离所述衬底,得到所述导电薄膜。
在其中一个实施例中,所述氧化锌铝层的厚度为50nm~300nm,所述CuMO2层的厚度为0.5nm~5nm。
在其中一个实施例中,所述氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成靶材。
在其中一个实施例中,所述CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1300℃下烧结制成靶材。
一种有机电致发光器件的基底,包括依次层叠的衬底、氧化锌铝层及CuMO2层,其中,M为Al、Ga或In。
一种有机电致发光器件的基底的制备方法,包括以下步骤:
将氧化锌铝靶材、CuMO2靶材及衬底装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In;
在所述衬底表面溅镀氧化锌铝层,溅镀所述氧化锌铝层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;及
在所述氧化锌铝层表面溅镀CuMO2层,溅镀所述CuMO2层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
在其中一个实施例中,所述氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成靶材。
在其中一个实施例中,所述CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1300℃下烧结制成靶材。
一种有机电致发光器件,包括依次层叠的阳极、发光层以及阴极,所述阳极包括层叠的氧化锌铝层及CuMO2层,其中,M为Al、Ga或In。
上述导电薄膜通过在氧化锌铝层的表面沉积高功函的P型氧化物薄膜制备双层导电薄膜,既能保持氧化锌铝层的良好的导电性能,又使导电薄膜的功函数得到了显著的提高,导电薄膜在450~790nm波长范围可见光透过率85%~90%,方块电阻范围15~150Ω/□,表面功函数5.1~5.7eV;上述导电薄膜的制备方法,仅仅使用磁控溅射镀膜设备即可连续制备氧化锌铝层及沉积在氧化锌铝层表面的CuMO2层,工艺较为简单;使用该导电薄膜作为有机电致发光器件的阳极,导电薄膜的表面功函数与一般的有机发光层的HOMO能级之间差距较小,降低了载流子的注入势垒,可显著的提高发光效率。
附图说明
图1为一实施方式的导电薄膜的结构示意图;
图2为一实施方式的有机电致发光器件的基底的结构示意图;
图3为一实施方式的有机电致发光器件的结构示意图;
图4为实施例1制备的导电薄膜的透射光谱谱图。
具体实施方式
下面结合附图和具体实施例对导电薄膜、其制备方法、使用该导电薄膜的有机电致发光器件的基底、其制备方法及有机电致发光器件进一步阐明。
请参阅图1,一实施方式的导电薄膜100包括层叠的氧化锌铝层10及CuMO2层30,其中,M为Al、Ga或In。
氧化锌铝层10的厚度为50nm~300nm,优选为150nm。
CuMO2层30的厚度为0.5nm~5nm,优选为2nm。
上述导电薄膜100通过在氧化锌铝层10的表面沉积高功函的P型氧化物薄膜制备双层导电薄膜,既能保持氧化锌铝层10的良好的导电性能,又使导电薄膜100的功函数得到了显著的提高,导电薄膜100在450~790nm波长范围可见光透过率85%~90%,方块电阻范围15~150Ω/□,表面功函数5.1~5.7eV。
上述导电薄膜100的制备方法,包括以下步骤:
S110、将氧化锌铝靶材、CuMO2靶材及衬底装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In。
本实施方式中,氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成直径为50mm,厚度为2mm的靶材。优选的,Al2O3的质量百分数为0.3%,混合均匀的粉体在1250℃下烧结制成氧化锌铝靶材。
CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1200℃下烧结制成直径为50mm,厚度为2mm的靶材。优选的,CuO的质量百分数为50%,混合均匀的粉体在1100℃下烧结制成CuMO2靶材。
衬底为玻璃衬底。优选的,衬底在使用前用丙酮、无水乙醇和去离子水超声清洗。
本实施方式中,真空腔体的真空度优选为5×10-4Pa。
步骤S120、在衬底表面溅镀氧化锌铝层10,溅镀氧化锌铝层10的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
优选的,基靶间距为60mm,溅射功率为100W,磁控溅射工作压强2Pa,工作气体为氩气,工作气体的流量为25sccm,衬底温度为500℃。
形成的氧化锌铝层10的厚度为50nm~300nm,优选为150nm。
步骤S130、在氧化锌铝层10表面溅镀CuMO2层30,溅镀CuMO2层30的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
优选的,基靶间距为60mm,溅射功率为100W,磁控溅射工作压强2Pa,工作气体为氩气,工作气体的流量为25sccm,衬底温度为500℃。
形成的CuMO2层30的厚度为0.5nm~5nm,优选为2nm。
步骤S140、剥离衬底,得到导电薄膜100。
上述导电薄膜的制备方法,仅仅使用磁控溅射镀膜设备即可连续制备氧化锌铝层10及沉积在氧化锌铝层10表面的CuMO2层30,工艺较为简单。
请参阅图2,一实施方式的有机电致发光器件的基底200,包括层叠的衬底201、氧化锌铝层202及CuMO2层203,其中,M为Al、Ga或In。
衬底201为玻璃衬底。衬底201的厚度为0.1mm~3.0mm,优选为1mm。
氧化锌铝层202的厚度为50nm~300nm,优选为150nm。
CuMO2层203的厚度为0.5nm~5nm,优选为2nm。
上述有机电致发光器件的基底200通过在氧化锌铝层202的表面沉积高功函的P型氧化物薄膜,既能保持氧化锌铝层202的良好的导电性能,又使有机电致发光器件的基底200的功函数得到了显著的提高。
上述有机电致发光器件的基底200的制备方法,包括以下步骤:
S210、将氧化锌铝靶材、CuMO2靶材及衬底201装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In。
本实施方式中,氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成直径为50mm,厚度为2mm的靶材。优选的,Al2O3的质量百分数为0.3%,混合均匀的粉体在1250℃下烧结制成氧化锌铝靶材。
CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1300℃下烧结制成直径为50mm,厚度为2mm的靶材。优选的,CuO的质量百分数为50%,混合均匀的粉体在1100℃下烧结制成CuMO2靶材。
衬底为玻璃衬底。优选的,衬底在使用前用丙酮、无水乙醇和去离子水超声清洗。
本实施方式中,真空腔体的真空度优选为5×10-4Pa。
步骤S220、在衬底表面溅镀氧化锌铝层202,溅镀氧化锌铝层202的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
优选的,基靶间距为60mm,溅射功率为100W,磁控溅射工作压强2Pa,工作气体为氩气,工作气体的流量为25sccm,衬底温度为500℃。
形成的氧化锌铝层202的厚度为50nm~300nm,优选为150nm。
步骤S230、在氧化锌铝层202表面溅镀CuMO2层203,溅镀CuMO2层203的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
优选的,基靶间距为60mm,溅射功率为100W,磁控溅射工作压强2Pa,工作气体为氩气,工作气体的流量为25sccm,衬底温度为500℃。
形成的CuMO2层203的厚度为0.5nm~5nm,优选为2nm。
上述有机电致发光器件的基底200的制备方法,仅仅使用磁控溅射镀膜设备即可连续在衬底201上制备氧化锌铝层202及沉积在氧化锌铝层202表面的CuMO2层203,工艺较为简单。
请参阅图3,一实施方式的有机电致发光器件300包括依次层叠的衬底301、阳极302、发光层303以及阴极304。阳极302由导电薄膜100制成,包括层叠的氧化锌铝层及CuMO2层,其中,M为Al、Ga或In。衬底301为玻璃衬底,可以理解,根据有机电致发光器件300具体结构的不同,衬底301可以省略。发光层303的材料为4-(二腈甲基)-2-丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTB)、9,10-二-β-亚萘基蒽(AND)、二(2-甲基-8-羟基喹啉)-(4-联苯酚)铝(BALQ)、4-(二腈甲烯基)-2-异丙基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTI)、二甲基喹吖啶酮(DMQA)、8-羟基喹啉铝(Alq3)、双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱(FIrpic)、二(2-甲基-二苯基[f,h]喹喔啉)(乙酰丙酮)合铱(Ir(MDQ)2(acac))或三(2-苯基吡啶)合铱(Ir(ppy)3)。阴极304的材质为银(Ag)、金(Au)、铝(Al)、铂(Pt)或镁银合金。
氧化锌铝层的厚度为50nm~300nm,优选为150nm。CuMO2层的厚度为0.5nm~5nm,优选为2nm。
可以理解,上述有机电致发光器件300也可根据使用需求设置其他功能层。
上述有机电致发光器件300,使用导电薄膜100作为有机电致发光器件的阳极,导电薄膜的表面功函数5.1~5.7eV,与一般的有机发光层的HOMO能级(典型的为5.7~6.3eV)之间差距较小,降低了载流子的注入势垒,可提高发光效率。
下面为具体实施例。
实施例1
选用纯度为99.9%的粉体,194g的ZnO和6g的Al2O3经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,100g的CuO和100g的Al2O3在1100℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,氩气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,溅射功率为100W。先后溅射AZO和CuAlO2的靶材,分别沉积150nm和2nm薄膜的薄膜,得到AZO-CuAlO2双层的透明导电薄膜,方块电阻范围20Ω/□,表面功函数5.4eV。
请参阅图4,图4所示为得到的透明导电薄膜的透射光谱,使用紫外可见分光光度计测试,测试波长为300~900nm。由图4可以看出薄膜在可见光470~790nm波长范围平均透过率已经达到90%。
实施例2
选用纯度为99.9%的粉体,180g的ZnO和20g的Al2O3经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,120g的CuO和80g的Al2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,氩气的工作气体流量为10sccm,压强调节为0.2Pa,衬底温度为250℃,溅射功率为150W。先后溅射AZO和CuAlO2的靶材,分别沉积50和5nm薄膜的薄膜,得到AZO-CuAlO2双层的透明导电薄膜,方块电阻范围90Ω/□,表面功函数5.7eV。
实施例3
选用纯度为99.9%的粉体,199g的ZnO和1g的Al2O3经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,80g的CuO和120g的Al2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,氩气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃。,溅射功率为30W。先后溅射AZO和CuAlO2的靶材,分别沉积300和0.5nm薄膜的薄膜,得到AZO-CuAlO2双层的透明导电薄膜,方块电阻范围20Ω/□,表面功函数5.1eV。
实施例4
选用纯度为99.9%的粉体,194g的ZnO和6g的Al2O3经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,100g的CuO和100g的Ga2O3在1100℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,氩气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,溅射功率为100W。先后溅射AZO和CuGaO2的靶材,分别沉积150和2nm薄膜的薄膜,得到AZO-CuGaO2双层的透明导电薄膜,方块电阻范围20Ω/□,表面功函数5.4eV。
实施例5
选用纯度为99.9%的粉体,180g的ZnO和20g的Ga2O3经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,120g的CuO和80g的Ga2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,氩气的工作气体流量为10sccm,压强调节为0.2Pa,衬底温度为250℃,溅射功率为150W。先后溅射AZO和CuGaO2的靶材,分别沉积50和5nm薄膜的薄膜,得到AZO-CuGaO2双层的透明导电薄膜,方块电阻范围100Ω/□,表面功函数5.6eV。
实施例6
选用纯度为99.9%的粉体,199g的ZnO和1g的Ga2O3经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,80g的CuO和120g的Ga2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,氩气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃。,溅射功率为30W。先后溅射AZO和CuGaO2的靶材,分别沉积300和0.5nm薄膜的薄膜,得到AZO-CuGaO2双层的透明导电薄膜,方块电阻范围30Ω/□,表面功函数5.1eV。
实施例7
选用纯度为99.9%的粉体,194g的ZnO和6g的In2O3经过均匀混合后,在1250℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,100g的CuO和100g的In2O3在1100℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为60mm。用机械泵和分子泵把腔体的真空度抽到5.0×10-4Pa,氩气的工作气体流量为25sccm,压强调节为2.0Pa,衬底温度为500℃,溅射功率为100W。先后溅射AZO和CuInO2的靶材,分别沉积150和2nm薄膜的薄膜,得到AZO-CuInO2双层的透明导电薄膜,方块电阻范围25Ω/□,表面功函数5.4eV。
实施例8
选用纯度为99.9%的粉体,180g的ZnO和20g的In2O3经过均匀混合后,在900℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,120g的CuO和80g的In2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为45mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-3Pa,氩气的工作气体流量为10sccm,压强调节为0.2Pa,衬底温度为250℃,溅射功率为150W。先后溅射AZO和CuInO2的靶材,分别沉积50和5nm薄膜的薄膜,得到AZO-CuInO2双层的透明导电薄膜,方块电阻范围75Ω/□,表面功函数5.8eV。
实施例9
选用纯度为99.9%的粉体,199g的ZnO和1g的In2O3经过均匀混合后,在1300℃下烧结成直径为50mm,厚度为2mm的AZO陶瓷靶材,80g的CuO和120g的In2O3在800℃下烧结成直径为50mm,厚度为2mm的陶瓷靶材,并将两个靶材装入真空腔体内。然后,先后用丙酮、无水乙醇和去离子水超声清洗玻璃衬底,放入真空腔体。把靶材和衬底的距离设定为95mm。用机械泵和分子泵把腔体的真空度抽到1.0×10-5Pa,氩气的工作气体流量为35sccm,压强调节为4.0Pa,衬底温度为750℃,溅射功率为30W。先后溅射AZO和CuInO2的靶材,分别沉积300和0.5nm薄膜的薄膜,得到AZO-CuInO2双层的透明导电薄膜,方块电阻范围20Ω/□,表面功函数5.2eV。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种导电薄膜的制备方法,其特征在于,包括以下步骤:
将氧化锌铝靶材、CuMO2靶材及衬底装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In;
在所述衬底表面溅镀氧化锌铝层,溅镀所述氧化锌铝层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;
在所述氧化锌铝层表面溅镀CuMO2层,溅镀所述CuMO2层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;及
剥离所述衬底,得到所述导电薄膜。
2.根据权利要求1所述的导电薄膜的制备方法,其特征在于,所述氧化锌铝层的厚度为50nm~300nm,所述CuMO2层的厚度为0.5nm~5nm。
3.根据权利要求1所述的导电薄膜的制备方法,其特征在于,所述氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成靶材。
4.根据权利要求1所述的导电薄膜的制备方法,其特征在于,所述CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1300℃下烧结制成靶材。
5.一种有机电致发光器件的基底的制备方法,其特征在于,包括以下步骤:
将氧化锌铝靶材、CuMO2靶材及衬底装入磁控溅射镀膜设备的真空腔体,其中,真空腔体的真空度为1.0×10-3Pa~1.0×10-5Pa,M为Al、Ga或In;
在所述衬底表面溅镀氧化锌铝层,溅镀所述氧化锌铝层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃;及
在所述氧化锌铝层表面溅镀CuMO2层,溅镀所述CuMO2层的工艺参数为:基靶间距为45mm~95mm,溅射功率为30W~150W,磁控溅射工作压强0.2Pa~4Pa,工作气体的流量为10sccm~35sccm,衬底温度为250℃~750℃。
6.根据权利要求5所述的有机电致发光器件的基底的制备方法,其特征在于,所述氧化锌铝靶材由以下步骤得到:将ZnO和Al2O3粉体混合均匀,其中Al2O3的质量百分数为0.5%~10%,将混合均匀的粉体在900℃~1300℃下烧结制成靶材。
7.根据权利要求5所述的有机电致发光器件的基底的制备方法,其特征在于,所述CuMO2靶材由以下步骤得到:将CuO和M2O3粉体混合均匀,其中CuO的质量百分数为40%~60%,将混合均匀的粉体在800℃~1300℃下烧结制成靶材。
CN201210148487.9A 2012-05-14 2012-05-14 导电薄膜、其制备方法及应用 Active CN103422054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210148487.9A CN103422054B (zh) 2012-05-14 2012-05-14 导电薄膜、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210148487.9A CN103422054B (zh) 2012-05-14 2012-05-14 导电薄膜、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN103422054A CN103422054A (zh) 2013-12-04
CN103422054B true CN103422054B (zh) 2016-01-13

Family

ID=49647433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210148487.9A Active CN103422054B (zh) 2012-05-14 2012-05-14 导电薄膜、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN103422054B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489656A (zh) * 2016-01-15 2016-04-13 河南大学 一种p型氧化物半导体薄膜晶体管及其制备方法
CN111308848B (zh) 2018-12-12 2022-04-01 深圳光峰科技股份有限公司 一种投影屏幕制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165938A (zh) * 2006-10-19 2008-04-23 三星Sdi株式会社 有机薄膜晶体管、其制法及包括其的平板显示器
CN101897052A (zh) * 2007-12-14 2010-11-24 皇家飞利浦电子股份有限公司 具有可调节电荷载流子注入的有机发光装置
CN102244010A (zh) * 2011-06-03 2011-11-16 桂林电子科技大学 一种玻璃衬底p-CuAlO2/n-ZnO:Al透明薄膜异质结的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165938A (zh) * 2006-10-19 2008-04-23 三星Sdi株式会社 有机薄膜晶体管、其制法及包括其的平板显示器
CN101897052A (zh) * 2007-12-14 2010-11-24 皇家飞利浦电子股份有限公司 具有可调节电荷载流子注入的有机发光装置
CN102244010A (zh) * 2011-06-03 2011-11-16 桂林电子科技大学 一种玻璃衬底p-CuAlO2/n-ZnO:Al透明薄膜异质结的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electro-optical properties of all-oxide p-CuAlO2/n-ZnO: Al transparent heterojunction thin film diode fabricated on glass substrate;Arghya N.Banerjee et al;《Central European Journal of Physics》;20080331;第6卷(第1期);第57-63页 *

Also Published As

Publication number Publication date
CN103422054A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
CN103422054B (zh) 导电薄膜、其制备方法及应用
CN103427033A (zh) 导电薄膜、其制备方法及应用
CN103422057B (zh) 导电薄膜、其制备方法及应用
CN104210167A (zh) 导电薄膜、其制备方法及其应用
CN104060223A (zh) 导电薄膜、其制备方法及应用
CN103422064B (zh) 导电薄膜、其制备方法及应用
CN104099564A (zh) 导电薄膜、其制备方法及应用
CN104681130A (zh) 导电薄膜、其制备方法及应用
CN103963367A (zh) 导电薄膜、其制备方法及其应用
CN104099562A (zh) 导电薄膜、其制备方法及应用
CN104175642A (zh) 导电薄膜、其制备方法及应用
CN104178740A (zh) 导电薄膜、其制备方法及应用
CN106098960A (zh) 一种导电薄膜、其制备方法及其应用
CN104647815A (zh) 导电薄膜、其制备方法及应用
CN104217787A (zh) 导电薄膜、其制备方法及其应用
CN104175641B (zh) 导电薄膜的制备方法
CN105734492B (zh) 有机电致发光器件的基底
CN103243296B (zh) Ito-卤化铟双层导电膜及其制备方法
CN104178727A (zh) 导电薄膜、其制备方法及应用
CN104339746A (zh) 导电薄膜、其制备方法及应用
CN106167249A (zh) 一种导电薄膜、其制备方法及应用
CN104658639A (zh) 导电薄膜、其制备方法及应用
CN105755466B (zh) 有机电致发光器件的基底的制备方法
CN106119791A (zh) 一种导电薄膜、其制备方法及其应用
CN104178728A (zh) 导电薄膜、其制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant