CN103376185A - 微制造的热丝真空传感器 - Google Patents

微制造的热丝真空传感器 Download PDF

Info

Publication number
CN103376185A
CN103376185A CN2013102680503A CN201310268050A CN103376185A CN 103376185 A CN103376185 A CN 103376185A CN 2013102680503 A CN2013102680503 A CN 2013102680503A CN 201310268050 A CN201310268050 A CN 201310268050A CN 103376185 A CN103376185 A CN 103376185A
Authority
CN
China
Prior art keywords
integrated circuit
vacuum transducer
shell
vacuum
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102680503A
Other languages
English (en)
Other versions
CN103376185B (zh
Inventor
L·阿拉纳
Y·L·邹
J·赫克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN103376185A publication Critical patent/CN103376185A/zh
Application granted granted Critical
Publication of CN103376185B publication Critical patent/CN103376185B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/002Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by thermal means, e.g. hypsometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/12Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured measuring changes in electric resistance of measuring members, e.g. of filaments; Vacuum gauges of the Pirani type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/186Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3272Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers for verifying the internal pressure of closed containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

可使用半导体集成电路工艺形成微制造真空传感器。所述传感器可与微制造元件一并形成在外壳内。随后就可使用该传感器测量外壳内的压力。

Description

微制造的热丝真空传感器
本发明专利申请是国际申请号为PCT/US2005/008994,国际申请日为2005年3月18日,进入中国国家阶段的申请号为200580006186.0,名称为“微制造的热丝真空传感器”的发明专利申请的分案申请。
技术领域
本发明总的涉及在密封系统内感知压力的真空传感器。
背景技术
集成电路可被气密封装。对元件进行气密封装的原因很多,但主要是因为气密封装可以为这些元件隔绝周围环境的有害影响。在微系统中集成电路的真空封装可以增强器件性能和/或提高可靠性。
但由于独立的真空传感器通常过大且并入集成电路封装的成本过高,所以通常很难监视真空封装内的压力。因为缺乏内部传感器,所以真空封装空腔内的内部压力在产品使用寿命内都无法得知,并且仅能根据封装期间测得的气体压力而进行估计。
气密封装还能够使能对周围气体成分和/或压力的控制。业已存在以表示封装密闭度为特征的技术,诸如碳氟化合物气泡(fluorocarbon bubble)和氦检测测试。然而,尚未开发出能测量商用微机电系统中包括射频元件在内的极小空腔(诸如那些尺寸小于一立方厘米的空腔)封装密闭度的通用技术。
于是就需要更好的方法来测量空腔压力。
附图说明
图1是本发明一个实施例的透视图;
图2是本发明一个实施例的简化截面图;
图3是本发明另一个实施例的简化截面图;
图4是本发明一个实施例在制造过程中的简化截面图;
图5是根据本发明一个实施例的后续步骤的简化截面图;
图6是根据本发明一个实施例的后续制造步骤的简化截面图;以及
图7是根据本发明一个实施例对衬底沿着图1中线7-7切开的简化截面图。
具体实施方式
参见图1,微制造的热丝真空传感器10可通过在衬底(未示出)上使用集成电路制造技术而形成。在某些实施例中,传感器10可以测量内部空腔压力。在一个实施例中,传感器10可以测量真空封装微系统中范围在10-2至103托(Torr)之间的压力。传感器10还可用于密封集成电路或微系统封装的泄漏测试。通过使用已校准真空传感器10就可直接在真空封装设备中执行压力监视。而通过使用真空传感器10的合适计量就能执行密闭度测试。
可在绝缘体24上形成传感器10。第一U形接触件12位于传感器10的一侧而第二U形接触件12则位于相反的一侧。接触脚17支持悬空的蛇形导电微制造导线14。脚17还电气耦合接触件12和导线14。导线14在通过接触件12供应的电流通过其自身时会发热。在一个实施例中,接触件12可以包括两个使能进行四点电阻测量的引脚13。
导线14发热至部分由外加电压和周围压力决定的温度。可以测量导线14两端的电压以及通过的电流,并且使用合适校准还能测量导线14的温度。由导线14的电压和电流就能确定导线14的稳态热量散失。
为了测量悬空导线14的温度,可以局部使用四点电阻测量来测量导线14的电阻,并使用导线材料的已知的电阻温度系数或合适校准函数来计算温度。
导线本身起到热敏电阻或基于电阻的温度传感器的作用。此种安排可以实现一种更简单的传感器,这种仅带有一种结构材料的传感器适合集成电路、微制造并可并入集成电路或微系统。
参见图2,可在集成电路18上的绝缘体20上方形成传感器10。在一个实施例中,可以使用集成电路、单片制造技术来制造设备10。与此同时,也可使用单片微电路集成电路制造技术在衬底18上方形成微系统22。
随后可将系统22和传感器10密封在外壳24内。结果就形成了与周围空气隔绝的密封腔26。在一个实施例中,空腔26的体积可以小于一立方厘米。
外壳24例如可采取与衬底18相粘合的罩顶、诸如金属或陶瓷气密封装的传感器10和衬底18专用物理外壳或诸如真空室的密封室的形式。
在许多情况下,使用形成微系统22的制造工艺或对其稍加修改就能集成真空传感器10。
可以使用传感器10监视空腔26内部的压力。在一个实施例中,真空传感器10可以仅占用外壳24内容积的一相对较小的部分或衬底或管芯18表面相对较小的部分。例如在一个实施例中,传感器10可以集成入包括金悬臂射频开关的系统22而无需修改微制造工艺。在这样一个实施例中也可使用金制造导线14。
参见图3,根据本发明的另一个实施例,一种混合集成方案在密闭封装内使用真空传感器10。真空传感器10可以形成作为分立制造的集成电路管芯。微系统28也可形成为分立的集成电路管芯。可将用于传感器10和电路28的管芯封装在一公共外壳24内。在某些实施例中,衬底18可以是硅、玻璃、陶瓷或者有机管芯或封装衬底。
可以使用引线接合、倒装封装和/或其他电气互连技术将传感器10和电路28彼此耦合和/或耦合至其他元件。混合集成可能比图2所示的单片方法产出更大的封装。然而因为所述真空传感器10较小的管芯尺寸和简单的制造工艺,使其具有在大小和成本上优于现有技术中的真空传感器。
参见图4,传感器10的制造从在衬底18上沉积绝缘体20开始。可以沉积籽晶层12并形成图案,以在传感器10相对的两端上形成接触件12。
如图5所示,可以沉积牺牲层32并形成图案,以形成其中最终会形成脚17的开口34。随后参见图6,可以在牺牲层32上沉积导线14并形成图案。可以使用传统的光刻掩膜技术形成图案。
随后例如就通过化学蚀刻、加热或使用其他释放技术移除层32。结果如图7所示,得到安装在脚17上并悬在绝缘层20上方的导线14。
外壳24可采用与衬底相附连的罩顶、诸如金属和陶瓷气密封装的传感器和衬底专用的物理外壳或者诸如真空室的密闭室的形式。衬底18上的接触件12可在外壳24之下延伸以实现真空传感器10与外壳24外部的电气通路。电气接触可通过外壳24或者通过衬底18(例如,通过导电通孔)延伸至外壳24外部。
可以使用外部测量硬件(未示出)对传感器10进行操作。这些硬件包括DC电源、电流表和电压表。
系统22可以是例如微机械传感变换器、微机电系统、微型光学传感变换器、光学微机电系统、微型电离辐射传感变换器、微型热传感变换器、微型磁或电磁传感变换器、微型化学或生物传感变换器、或微型射流设备。系统22能够与真空传感器10密封在同一外壳24内。
作为两个实例,外壳24分别可以是集成电路封装的一部分或者本身也被封入其他封装内。
虽然参考了有限的实施例来描述本发明,但是本领域普通技术人员应该从中认识到各种修改和变化。应该理解所附权利要求覆盖所有这些修改和变化,它们都落入本发明的真实精神和范围之内。

Claims (18)

1.一种制造集成电路器件的方法,所述方法包括:
微制造真空传感器(10);
将所述真空传感器(10)和集成电路(22)集成到同一衬底(18)中;以及
在真空中将所述集成的真空传感器(10)和集成电路(22)密封入外壳(24)内。
2.如权利要求1所述的方法,其特征在于,所述微制造的真空传感器(10)被设置为分立制造的集成电路管芯且其中所述集成电路(22)被设置在分立的集成电路管芯上。
3.如权利要求1所述的方法,其特征在于,所述真空传感器(10)被微制造成蛇形导线(14)。
4.如权利要求3所述的方法,其特征在于,所述真空传感器(10)被微制造成悬空的蛇形导线(14)。
5.如权利要求3所述的方法,其特征在于,还包括在一表面上形成接触件(12),所述接触件耦合至所述导线(14)。
6.如权利要求5所述的方法,其特征在于,还包括将所述接触件(12)制造成U形。
7.如权利要求1所述的方法,其特征在于,所述外壳(24)覆盖所述真空传感器(10)和所述集成电路(22)并提供密封腔(26)。
8.如权利要求7所述的方法,其特征在于,还包括在所述外壳(24)下方提供至所述腔室(26)外部的电气连接(13)。
9.一种集成电路器件,包括:
微制造的真空传感器(10),其形成为集成电路管芯;
集成电路(22,28),其形成为集成电路管芯;
外壳(24);以及
衬底(18),用于根据混合集成方案支持所述真空传感器(10)和集成电路(22),
其中所述外壳(24)安装在所述衬底(18)上且在真空中密封所述真空传感器(10)和所述集成电路(22,28)两者。
10.如权利要求9所述的器件,其特征在于,所述真空传感器(10)和集成电路(28)形成在分立的集成电路芯片上。
11.如权利要求9所述的器件,其特征在于,所述真空传感器(10)包括蛇形导线(14)。
12.如权利要求11所述的器件,其特征在于,所述导线(14)是悬空的。
13.如权利要求11所述的器件,其特征在于,还包括耦合至所述导线(14)的接触件(12)。
14.如权利要求13所述的器件,其特征在于,所述接触件(12)是U形的。
15.如权利要求14所述的器件,其特征在于,还包括从所述接触件(12)向上延伸至所述导线(14)的垂直部分(17)。
16.如权利要求9所述的器件,其特征在于,所述外壳(24)是密封的。
17.如权利要求16所述的器件,其特征在于,包括从所述外壳(24)下方延伸至所述外壳(24)外部的电气连接(13)。
18.一种集成电路器件,包括:
衬底(18);
集成在所述衬底(18)中的真空传感器(10);
集成在所述衬底(18)中的集成电路(22,28);以及
外壳(24),其安装在所述衬底(18)上,并且在真空中密封所述集成的真空传感器(10)和集成电路(22,28)。
CN201310268050.3A 2004-03-24 2005-03-18 微制造的热丝真空传感器 Expired - Fee Related CN103376185B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/807,836 US7087451B2 (en) 2004-03-24 2004-03-24 Microfabricated hot wire vacuum sensor
US10/807,836 2004-03-24
CNA2005800061860A CN1926421A (zh) 2004-03-24 2005-03-18 微制造的热丝真空传感器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800061860A Division CN1926421A (zh) 2004-03-24 2005-03-18 微制造的热丝真空传感器

Publications (2)

Publication Number Publication Date
CN103376185A true CN103376185A (zh) 2013-10-30
CN103376185B CN103376185B (zh) 2016-08-24

Family

ID=34964447

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2005800061860A Pending CN1926421A (zh) 2004-03-24 2005-03-18 微制造的热丝真空传感器
CN201310268050.3A Expired - Fee Related CN103376185B (zh) 2004-03-24 2005-03-18 微制造的热丝真空传感器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2005800061860A Pending CN1926421A (zh) 2004-03-24 2005-03-18 微制造的热丝真空传感器

Country Status (5)

Country Link
US (1) US7087451B2 (zh)
EP (1) EP1728059A1 (zh)
JP (1) JP4601629B2 (zh)
CN (2) CN1926421A (zh)
WO (1) WO2005098386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546387A (zh) * 2016-10-28 2017-03-29 中国科学院微电子研究所 一种晶圆级传感器气密性检测装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872572B1 (fr) 2004-06-30 2006-09-22 Commissariat Energie Atomique Test de l'etancheite de mems ou de petits composants encapsules
EP2015046A1 (en) * 2007-06-06 2009-01-14 Infineon Technologies SensoNor AS Vacuum Sensor
US8171801B2 (en) * 2008-12-19 2012-05-08 Institut National D'optique Micro-thermistor gas pressure sensor
CA2746336C (en) * 2008-12-19 2014-05-27 Institut National D'optique Micro-thermistor gas pressure sensor
MY153788A (en) * 2011-02-23 2015-03-31 Mimos Berhad A photovoltaic device
EP2554980B1 (en) * 2011-08-03 2014-06-25 Nxp B.V. Integrated circuit with sensor and method of manufacturing such an integrated circuit
DE102013020388A1 (de) 2012-12-13 2014-06-18 Tesat-Spacecom Gmbh & Co. Kg Verfahren zur Dichteprüfung eines Gehäuses
US10598557B2 (en) * 2015-07-12 2020-03-24 Todos Technologies Ltd. Pressure level sensing device and a method for sensing pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172547A (zh) * 1994-11-22 1998-02-04 卡斯西部储备大学 电容性绝对压力传感器及其制造方法
DE10049556A1 (de) * 1999-10-08 2001-06-13 Trw Inc Integriertes Mikroelektronikmodul mit Getter-Volumenelement
JP2001324403A (ja) * 2000-05-12 2001-11-22 Yokogawa Electric Corp 真空度測定装置
US20030073292A1 (en) * 1999-06-24 2003-04-17 James L. Bartlett Hermetic chip scale packaging means and method including self test
CN1551979A (zh) * 2002-02-18 2004-12-01 起电真空板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284835A (ja) 1987-05-18 1988-11-22 Hitachi Ltd 気密封止型半導体装置の検査方法
CH684805A5 (de) 1992-07-20 1994-12-30 Balzers Hochvakuum Verfahren zur Wandlung eines gemessenen Signals, Wandler zu dessen Ausführung sowie Messanordnung.
US6140144A (en) * 1996-08-08 2000-10-31 Integrated Sensing Systems, Inc. Method for packaging microsensors
US6074891A (en) * 1998-06-16 2000-06-13 Delphi Technologies, Inc. Process for verifying a hermetic seal and semiconductor device therefor
JP2000074770A (ja) * 1998-09-03 2000-03-14 Murata Mfg Co Ltd 減圧パッケージ装置及びその真空度の測定方法
DE19903010B4 (de) 1999-01-26 2004-07-08 Plöchinger, Heinz, Dipl.-Ing. Pirani-Druckmeßanordnung und Kombinationssensor mit einer solchen Pirani-Druckmeßanordnung
US6553841B1 (en) * 2000-09-26 2003-04-29 Helix Technology Corporation Pressure transducer assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172547A (zh) * 1994-11-22 1998-02-04 卡斯西部储备大学 电容性绝对压力传感器及其制造方法
US20030073292A1 (en) * 1999-06-24 2003-04-17 James L. Bartlett Hermetic chip scale packaging means and method including self test
DE10049556A1 (de) * 1999-10-08 2001-06-13 Trw Inc Integriertes Mikroelektronikmodul mit Getter-Volumenelement
JP2001168240A (ja) * 1999-10-08 2001-06-22 Trw Inc 集積型マイクロエレクトロニクスモジュール
JP2001324403A (ja) * 2000-05-12 2001-11-22 Yokogawa Electric Corp 真空度測定装置
CN1551979A (zh) * 2002-02-18 2004-12-01 起电真空板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546387A (zh) * 2016-10-28 2017-03-29 中国科学院微电子研究所 一种晶圆级传感器气密性检测装置及方法

Also Published As

Publication number Publication date
US7087451B2 (en) 2006-08-08
EP1728059A1 (en) 2006-12-06
CN1926421A (zh) 2007-03-07
CN103376185B (zh) 2016-08-24
US20050212066A1 (en) 2005-09-29
JP4601629B2 (ja) 2010-12-22
JP2007522481A (ja) 2007-08-09
WO2005098386A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
CN103376185A (zh) 微制造的热丝真空传感器
US6405592B1 (en) Hermetically-sealed sensor with a movable microstructure
US7191661B2 (en) Capacitive pressure sensor
JP4388210B2 (ja) ウエハパッケージの製造方法
US7029829B2 (en) Low temperature method for forming a microcavity on a substrate and article having same
US7109055B2 (en) Methods and apparatus having wafer level chip scale package for sensing elements
US10794738B2 (en) Sensor device with integrated calibration system and calibration method
KR101447340B1 (ko) 온도 측정용 장치
JP3207123U (ja) 媒体隔離圧力センサ
CN104411619B (zh) 传感器mems器件悬臂封装
EP0480544A2 (en) Method of fabrication and trimming of a pressure sensor
US20050186703A1 (en) Method for packaging semiconductor chips and corresponding semiconductor chip system
US20080308886A1 (en) Semiconductor Sensor
US20110036168A1 (en) RFID Based Thermal Bubble Type Accelerometer And Method Of Manufacturing The Same
US6551853B2 (en) Sensor having membrane structure and method for manufacturing the same
JP2001068580A (ja) ウエハパッケージの製造方法
CN105158299B (zh) 用于制造气体传感器封装的方法
TWI439413B (zh) 微機電感測裝置及其製作方法
US20190144267A1 (en) Electronic sensors with sensor die in package structure cavity
EP3124962B1 (en) Gas sensor array and a method for manufacturing thereof
CN105189337A (zh) 微机电装置和制造方法
Zhang MEMS Hermetic Packaging for Extremely Sensitive Accelerometers with In-Package Pressure Sensing Solution
CN114858215B (zh) 一种多传感器组合结构及其加工方法、组合传感器
Yufeng et al. Study of MEMS packaging technology
Zhang et al. Measurement of In-Package Pressure Using Bondwires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20180318

CF01 Termination of patent right due to non-payment of annual fee