CN103357408B - WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用 - Google Patents

WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN103357408B
CN103357408B CN201210093269.XA CN201210093269A CN103357408B CN 103357408 B CN103357408 B CN 103357408B CN 201210093269 A CN201210093269 A CN 201210093269A CN 103357408 B CN103357408 B CN 103357408B
Authority
CN
China
Prior art keywords
cnt
tungsten carbide
carbon nano
platinum
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210093269.XA
Other languages
English (en)
Other versions
CN103357408A (zh
Inventor
马淳安
陈赵扬
林文锋
褚有群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Queens University of Belfast
Original Assignee
Zhejiang University of Technology ZJUT
Queens University of Belfast
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT, Queens University of Belfast filed Critical Zhejiang University of Technology ZJUT
Priority to CN201210093269.XA priority Critical patent/CN103357408B/zh
Priority to PCT/CN2012/086627 priority patent/WO2013143326A1/zh
Priority to US14/130,171 priority patent/US8969235B2/en
Publication of CN103357408A publication Critical patent/CN103357408A/zh
Application granted granted Critical
Publication of CN103357408B publication Critical patent/CN103357408B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用,所述WC/CNT/Pt复合材料包含直径在1-5微米的介孔球状碳化钨、碳纳米管和铂纳米颗粒,碳纳米管生长在介孔球状碳化钨表面并向外扩展,铂纳米颗粒生长于介孔球状碳化钨和碳纳米管表面。所述WC/CNT复合材料包含直径在1-5微米的介孔球状碳化钨和碳纳米管,碳纳米管生长在介孔球状碳化钨表面并向外扩展。本发明所述的WC/CNT/Pt复合材料作为电催化剂可用于甲醇燃料电池中,可明显提高催化转化效率和催化剂使用寿命。所述的WC/CNT复合材料作为电催化剂可用于芳香硝基化合物的电还原反应中,可明显提高有机电合成的效率。

Description

WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用
(一)技术领域
本发明涉及一种碳化钨/碳纳米管/铂(WC/CNT/Pt)三元复合材料、碳化钨/碳纳米管(WC/CNT)复合材料及其制备方法,以及它们在燃料电池、电合成等重要领域中的应用。
(二)背景技术
铂(Pt)作为燃料电池、电合成等重要领域中广泛应用的催化剂,一直以来都备受关注。Pt催化剂纳米化作为一个主要的研究方向,在过去20年来得到了深入研究。但与其它催化剂类似,纳米化以后的颗粒有着诸如团聚、稳定性不佳等诸多问题。进一步提高Pt催化剂的性能、利用效率和使用寿命是该系列催化剂发展的关键问题。
碳化钨(WC)作为一种性能优良的非贵金属催化材料,自上世纪六十年代报道其对环己烷脱氢、乙苯脱氢制苯乙烯具有良好的催化活性以来,其作为催化剂的应用潜力备受关注。文献报道(参见文献:Science,1973,181:547)指出,WC表面电子层与Pt相类似,在某些反应中具有类Pt的催化活性。WC不仅具备替代Pt等贵金属催化剂的特性和良好的抗中毒能力,而且还有很强的耐酸性和较好的电催化活性。然而,由于WC制备中的高温步骤和其相对较高的比重,其比表面积的增长受到局限,而增加其孔隙和抑制颗粒间团聚是主要可行的研究方向(参见文献:Microporous and Mesoporous Materials 2012,149:76)。因此,以分散良好的介孔结构碳化钨为催化剂主要成分制备WC-Pt复合材料,不仅能够降低Pt用量从而降低催化剂成本,而且能够增加复合材料的稳定性,增加使用寿命。而碳纳米管(CNT)由于一直以来都被认为是作为基体的良好材料,因其具有非常优异的力学、电子、热力学等特性,其在复合样品中的加入,可以有效增加孔隙、增加比表面积抑制颗粒团聚和增加导电性。
现有的Pt/WC、Pt/CNT、WC/CNT催化剂主要为负载型,通过对基体负载二元组份颗粒来完成复合材料的制备。且Pt负载多以气相还原、化学还原法来完成,过程相对复杂,造成了对成本的控制、工艺标准化控制的难度,使得大规模制备较为困难。因此,制备条件可控、Pt分散性良好且WC、CNT基体孔隙发达的复合催化剂是显著提高Pt纳米催化活性和稳定性的关键和重要途径。进一步的,如果能将部分组分同步制备,减少制备步骤,更可大幅度降低生产时间、能耗以及为此所产生的生产成本。
迄今为止,从未见到有关同步法制备球状WC/CNT/Pt复合材料和WC/CNT复合材料的报道。
(三)发明内容
本发明的第一个发明目的是提供一种碳化钨/碳纳米管/铂(WC/CNT/Pt)复合材料,该复合材料各组分间结合稳定,催化活性高,热稳定好,抗中毒能力强。
本发明的第二个发明目的是提供一种碳化钨/碳纳米管/铂(WC/CNT/Pt)复合材料的制备方法,所述制备方法中,CNT是在碳化生成球状WC步骤中同步生成且是从WC球体上生长,并且Pt颗粒通过置换Fe颗粒获得,载铂量可控,整体制备步骤简单、成本低。
本发明第三个发明目的是提供所述碳化钨/碳纳米管/铂(WC/CNT/Pt)复合材料作为电催化剂在甲醇燃料电池中的应用。
本发明第四个发明目的是提供一种碳化钨/碳纳米管(WC/CNT)复合材料,该复合材料中WC和CNT间结合稳定,催化活性高,热稳定好,抗中毒能力强。
本发明第五个发明目的是提供一种碳化钨/碳纳米管(WC/CNT)复合材料的制备方法,所述制备方法中,CNT是在碳化生成球状WC步骤中同步生成且是从WC球体上生长,制备步骤简单、成本低,组分间结合稳定。
本发明第六个发明目的是所述的WC/CNT复合材料作为电催化剂在芳香硝基化合物的电还原反应中的应用。
下面对本发明的技术方案做具体说明。
本发明提供了一种碳化钨/碳纳米管/铂(WC/CNT/Pt)复合材料,所述WC/CNT/Pt复合材料包含直径在1-5微米的介孔球状碳化钨、碳纳米管和铂纳米颗粒,碳纳米管生长在介孔球状碳化钨表面并向外扩展,铂纳米颗粒生长于介孔球状碳化钨和碳纳米管表面。
进一步,所述碳化钨/碳纳米管/铂复合催化剂的碳纳米管表面还可以生长碳化钨纳米粒子。
本发明还提供了所述的碳化钨/碳纳米管/铂复合催化剂的制备方法,所述制备方法包括以下步骤:
(1)将偏钨酸铵和硝酸铁混合溶液采用喷雾干燥的方法造粒;将得到的颗粒直接或者煅烧后采用程序升温-气固反应法进行碳化,碳化完成后得到碳化钨/碳纳米管/铁复合材料(WC/CNT/Fe);
(2)将碳化钨/碳纳米管/铁复合材料投入含铂化合物溶液中进行铂置换,得到碳化钨/碳纳米管/铂复合材料(WC/CNT/Pt)。
本发明中,所述的偏钨酸铵和硝酸铁混合溶液可按照如下方法进行配制:将偏钨酸铵与硝酸铁按质量比1∶0.3~1.3混合,加去离子水配制成5~50wt%的溶液;优选偏钨酸铵与硝酸铁的混合质量比为1∶0.8~1.2;优选偏钨酸铵和硝酸铁混合溶液中偏钨酸铵与硝酸铁的总质量分数为5~20wt%。本发明优选将配制得到的偏钨酸铵和硝酸铁混合溶液通过超声处理进行充分分散后再进行喷雾干燥,以使其在喷雾干燥后颗粒中的混合组分分布均匀;适当延长超声处理时间有助于得到分散更均匀的混合溶液,但最好不超过15分钟,故超声处理时间一般在1~15分钟,优选的,超声处理时间为3~5分钟。
本发明中,偏钨酸铵和硝酸铁混合溶液采用喷雾干燥的方法造粒,喷雾干燥可使用双气流喷雾干燥器,喷雾干燥器的进口温度可设置在150-230℃,优选进口温度为180-200℃。
本发明中,为防止喷雾干燥得到的颗粒受潮,可将其放入干燥器备用,或者经煅烧后备用。所述的煅烧条件可以是:在500-700℃下煅烧1-5小时。
本发明中,利用程序升温-气固反应法将颗粒进行碳化以制备得到WC/CNT/Fe复合材料。所述的碳化步骤在高温管式反应炉中在富氢气氛下进行,所述的富氢气氛是指H2所占比例在50%以上的混合气氛,在富氢气氛下碳化过程能极好地保持经喷雾干燥改造后前驱体的宏观形貌,并且在一定的程序升温过程中逐步去除反应颗粒中的可挥发成分,从而降低颗粒间的碰撞、团聚的机率,得到分散好、孔隙发达的WC材料。本发明优选富氢气氛为:体积比为1∶1.1~2.5的CO和H2混合气氛。所述的程序升温-气固反应法优选为:以1~10℃/min的速率程序升温至750~900℃保持2~8小时;进一步优选为:以3~7℃/min的程序升温速率升温至780~850℃保持3~6小时。碳化完成降温后即得WC/CNT/Fe复合材料。本发明中,CNT为碳化步骤中同步生成,并促进了WC和Fe纳米颗粒的分散。
本发明中,WC/CNT/Fe复合材料可通过在溶液中铂置换实现载铂,无需进行常规载铂需要的诸如高温气体还原、还原剂还原等步骤,节约了原料和能耗。本发明优选所述的含铂化合物溶液为浓度为1~20mmol/L的氯铂酸溶液;所述含铂化合物的用量以Pt的质量计为碳化钨/碳纳米管/铁复合材料质量的5%~30%;具体的,所述的铂置换是在室温~70℃的温度条件下将碳化钨/碳纳米管/铁复合材料置于含铂化合物溶液中保持2~12小时,优选置换温度为室温~50℃,优选置换时间为3-12小时。
本发明提供了所述的WC/CNT/Pt复合材料作为电催化剂在甲醇燃料电池中的应用。结果表明,所述的WC/CNT/Pt复合催化剂可明显提高催化转化效率和催化剂使用寿命。
本发明另外提供了一种碳化钨/碳纳米管(WC/CNT)复合材料,所述碳化钨/碳纳米管复合材料包含直径在1-5微米的介孔球状碳化钨和碳纳米管,碳纳米管生长在介孔球状碳化钨表面并向外扩展。
同时,本发明提供了所述的碳化钨/碳纳米管(WC/CNT)复合材料的制备方法,所述制备方法包括下列步骤:
(a)将偏钨酸铵和硝酸铁混合溶液采用喷雾干燥的方法造粒;将得到的颗粒直接或者煅烧后采用程序升温-气固反应法进行碳化,碳化完成后得到碳化钨/碳纳米管/铁复合材料;
(b)碳化钨/碳纳米管/铁复合材料经过酸处理后得到碳化钨/碳纳米管复合材料。
所述的步骤(a)同上述步骤(1),在此不再赘述。
所述的步骤(b)中,所述的酸处理具体采用的步骤为:将WC/CNT/Fe置于酸中,室温下磁力搅拌一定时间后清洗数次再经干燥即得WC/CNT复合材料。本发明优选所述的酸为盐酸溶液,例如10%的盐酸溶液;所述的搅拌时间为0.1~1小时,优选0.5小时。
本发明还提供了所述的WC/CNT复合材料作为电催化剂在芳香硝基化合物的电还原反应中的应用,所述的芳香硝基化合物可以是硝基苯、硝基甲烷、硝基萘、间二硝基苯等。结果表明,所述的WC/CNT复合材料可明显提高有机电合成的效率。
与现有的Pt纳米晶体催化剂相比,本发明具有以下突出的优点:
1.WC/CNT以及WC/CNT/Pt复合催化剂不仅催化活性高,热稳定性良好,且由于并非采用常规负载,各组分间结合稳定。
2.WC/CNT/Pt复合催化剂含有WC增加了催化剂的稳定性,使其抗中毒能力加强。
3.WC/CNT以及WC/CNT/Pt复合催化剂中的CNT为制备碳化步骤中同步生成,且从WC球体上生长,结合稳定,步骤简单。
4.WC/CNT/Pt复合催化剂中Pt颗粒由置换Fe颗粒获得,省去了诸多常规载Pt法中的步骤和还原剂等原料的消耗,步骤简单,成本获得有效降低。
5.WC/CNT/Pt复合催化剂可以通过前驱溶液中的Fe含量和后期氯铂酸溶液加入量调控载Pt量。
6.WC/CNT/Pt以及WC/CNT复合材料作为电催化剂可广泛应用于燃料电池、电合成等重要领域,催化性能明显提高。
(四)附图说明
图1为本发明实施例1中制备的WC/CNT/Pt复合材料的扫描电镜(SEM)图和内嵌透射电镜(TEM)图。
图2为本发明实施例1中制备的WC/CNT/Pt复合材料的DTG(微分热重)测试图。
图3为本发明实施例2中制备的WC/CNT/Pt复合材料的扫描电镜(SEM)图。
图4为本发明实施例3中制备的WC/CNT/Pt复合材料的扫描电镜(SEM)图。
图5为本发明实施例3中制备的WC/CNT/Pt复合材料对甲醇的催化活性表征图。在图4中,横坐标为工作电极电位/V(SCE,以饱和甘汞电极为参比电极),纵坐标为铂质量电流/(mA/mg Pt),曲线分别为WC/CNT/Pt和中国何森公司生产的碳载铂纳米晶体催化剂(铂含量为40wt%)。测量时的溶液为甲醇(2M)和硫酸(1M)的混合水溶液,扫速为50mV/s。
图6为本发明实施例3中制备的WC/CNT/Pt复合材料对甲醇的催化活性表征图。在图5中,横坐标为时间(S),纵坐标为质量电流/(mA·mg-1)。曲线分别为WC/CNT/Pt和中国何森公司生产的碳载铂纳米晶体催化剂(铂含量为40wt%)。测量时的溶液为甲醇(2M)和硫酸(1M)的混合水溶液,扫速为50mV/s,电位设置为0.65V。
图7为实施例6的WC/CNT样品的SEM形貌图。
图8为本发明实施例6中制备的WC/CNT对硝基还原的催化活性表征图。在图8中,横坐标为工作电极电位/V(SCE,以饱和甘汞电极为参比电极),纵坐标为电流/μA,曲线分别为WC/CNT和纳米WC催化剂[专利(ZL 101698511B一种片状纳米偏钨酸铵及其应用)实施例1得到的样品]。测量时的溶液为硝基苯(0.03M)和四丁基高氯酸铵(TBAP)(0.1M)的混合水溶液,扫速为50mV/s。
(五)具体实施方式:
以下给出的实施例将结合附图对本发明作进一步的说明,但本发明的保护范围不限于此:
实施例1:
取偏钨酸铵30g,硝酸铁27g,溶入250ml去离子水中,超声搅拌5min利用双气流喷雾干燥器进行喷雾干燥处理(进口温度200℃),将得到的固体颗粒放入干燥器备用。取部分进行600℃煅烧2小时。将煅烧后的样品放入管式炉中在CO∶H2(125∶250ml/min)混合气氛下以6℃/min经程序升温升至800℃保温4小时进行高温碳化得到WC/CNT/Fe样品。按铂加入量10wt%将5mmol/L氯铂酸溶液加入到WC-CNT-Fe样品中,至50℃恒温放置5小时后过滤清洗后烘干得到具有介孔结构的WC/CNT/Pt样品。
图1为所制备的WC/CNT/Pt催化剂的SEM图,和内嵌TEM图,由图1可看出介孔球状WC表面长出大量CNT,且可观察到的CNT表面具有2~5nm的Pt和WC颗粒。图2为样品在空气条件下的DTG(微分热重),表现出了样品在400℃高温内在空气气氛下具有良好的热稳定性。
实施例2:
与实施例1的过程类似,但硝酸铁的加入量为9g,其余步骤相同,得到WC/CNT/Pt样品。
图3为所制备的WC/CNT/Pt催化剂的SEM图。从图3可以看出样品中介孔球状WC和少量CNT的存在。由于Fe含量减少,因此在球状WC表面催化生长的CNT减少,而球状表面介孔结构显现。
实施例3:
与实施例1的过程类似,但硝酸铁的加入量为36g,其余步骤相同,得到WC/CNT/Pt样品。
图4为所制备的WC/CNT/Pt催化剂的SEM图。从图3可以看出样品中WC和大量CNT的存在。
图5为WC/CNT/Pt催化剂对甲醇的催化活性表征图,表明其单位质量铂的催化活性明显优于何森公司的商品化Pt纳米晶体催化剂(载铂量40wt%)。
此外,图6为WC/CNT/Pt催化剂对甲醇的催化活性的CA表征图,在电流达到稳定以后,WC/CNT/Pt表现出了更好的活性,说明其稳定性更好。
实施例4:
与实施例3的过程类似,但样品在氯铂酸溶液中时只在室温下(20℃)静置,处理时间为12小时,其余步骤相同,得到WC/CNT/Pt样品。
实施例5:
与实施例1的过程类似,但样品在喷雾干燥步骤完成后直接进行碳化步骤,其余步骤相同,得到WC/CNT/Pt样品。
实施例6
与实施例1过程类似,但样品在得到WC/CNT/Fe以后,利用10%的盐酸溶液将Fe去除后得到WC/CNT样品,形貌图如图7所示,并不再进行Pt置换。将此样品进行电合成中重要反应硝基还原反应性能评价,如图8所示,其电催化活性明显优于纳米WC。
实施例7:
与实施例1的过程类似,但前驱体偏钨酸铵和硝酸铁溶入1250ml去离子水中,其余过程相同。得到了WC/CNT/Pt样品。
实施例8:
与实施例1的过程类似,但混合溶液喷雾干燥进口温度为180℃,其它步骤相同。得到WC/CNT/Pt样品。
实施例9:
与实施例1的过程类似,但加入20mmol/L氯铂酸溶液为理论载铂量30%,其余步骤相同,得到WC/CNT/Pt样品。
实施例10:
与实施例1的过程类似,但加入1mmol/L氯铂酸溶液为理论载铂量1%,其余步骤相同,得到WC/CNT/Fe/Pt样品。

Claims (12)

1.碳化钨/碳纳米管/铂复合材料,其特征在于:所述碳化钨/碳纳米管/铂复合材料包含直径在1-5微米的介孔球状碳化钨、碳纳米管和铂纳米颗粒,碳纳米管生长在介孔球状碳化钨表面并向外扩展,铂纳米颗粒生长于介孔球状碳化钨和碳纳米管表面;所述碳化钨/碳纳米管/铂复合材料的制备方法包括以下步骤:
(1)将偏钨酸铵和硝酸铁混合溶液采用喷雾干燥的方法造粒;将得到的颗粒直接或者煅烧后采用程序升温-气固反应法进行碳化,碳化完成后得到碳化钨/碳纳米管/铁复合材料;
(2)将碳化钨/碳纳米管/铁复合材料投入含铂化合物溶液中进行铂置换,得到碳化钨/碳纳米管/铂复合催化材料。
2.如权利要求1所述的碳化钨/碳纳米管/铂复合材料,其特征在于:所述的偏钨酸铵和硝酸铁混合溶液按照如下方法进行配制:将偏钨酸铵与硝酸铁按质量比1:0.3~1.3混合,加去离子水配制成5~50wt%的溶液。
3.如权利要求1所述的碳化钨/碳纳米管/铂复合材料,其特征在于:步骤(1)所述的碳化是在氢气体积分数在50%以上的富氢气氛下进行。
4.如权利要求3所述的碳化钨/碳纳米管/铂复合材料,其特征在于:所述的富氢气氛为:体积比为1:1.1~2.5的CO和H2混合气氛。
5.如权利要求1~4之一所述的碳化钨/碳纳米管/铂复合材料,其特征在于:所述的程序升温-气固反应法具体为:将得到的颗粒直接或者煅烧后以1~10℃/min的升温速率升温至750~900℃保持2~8小时。
6.如权利要求1所述的碳化钨/碳纳米管/铂复合材料的制备方法,其特征在于:所述的含铂化合物溶液为浓度在1~20mmol/L的氯铂酸溶液;所述含铂化合物的用量以Pt的质量计为碳化钨/碳纳米管/铁复合材料质量的5%~30%。
7.如权利要求6所述的碳化钨/碳纳米管/铂复合材料的制备方法,其特征在于:所述的铂置换在室温~70℃的温度条件下进行,置换时间为2~12小时。
8.如权利要求1所述的碳化钨/碳纳米管/铂复合材料作为电催化剂在甲醇燃料电池中的应用。
9.一种碳化钨/碳纳米管复合材料,其特征在于:所述碳化钨/碳纳米管复合材料包含直径在1~5微米的介孔球状碳化钨和碳纳米管,碳纳米管生长在介孔球状碳化钨表面并向外扩展;所述碳化钨/碳纳米管复合材料的制备方法包括以下步骤:
(a)将偏钨酸铵和硝酸铁混合溶液采用喷雾干燥的方法造粒;将得到的颗粒直接或者煅烧后采用程序升温-气固反应法进行碳化,碳化完成后得到碳化钨/碳纳米管/铁复合材料;
(b)碳化钨/碳纳米管/铁复合材料经过酸处理后得到碳化钨/碳纳米管复合材料。
10.如权利要求9所述的碳化钨/碳纳米管复合材料,其特征在于:所述的偏钨酸铵和硝酸铁混合溶液按照如下方法进行配制:将偏钨酸铵与硝酸铁按质量比1:0.3~1.3混合,加去离子水配制成5~50wt%的溶液;步骤(a)所述的碳化是在氢气体积分数在50%以上的富氢气氛下进行;所述的程序升温-气固反应法具体为:将得到的颗粒直接或者煅烧后以1~10℃/min的升温速率升温至750~900℃保持2~8小时。
11.如权利要求9所述的碳化钨/碳纳米管复合材料,其特征在于:步骤(b)所述的酸处理采用盐酸溶液。
12.如权利要求9所述的碳化钨/碳纳米管复合材料作为电催化剂在芳香硝基化合物的电还原反应中的应用。
CN201210093269.XA 2012-03-31 2012-03-31 WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用 Expired - Fee Related CN103357408B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210093269.XA CN103357408B (zh) 2012-03-31 2012-03-31 WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用
PCT/CN2012/086627 WO2013143326A1 (zh) 2012-03-31 2012-12-14 WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用
US14/130,171 US8969235B2 (en) 2012-03-31 2012-12-14 WC/CNT, WC/CNT/Pt composite material and preparation process therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210093269.XA CN103357408B (zh) 2012-03-31 2012-03-31 WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103357408A CN103357408A (zh) 2013-10-23
CN103357408B true CN103357408B (zh) 2015-06-17

Family

ID=49258161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210093269.XA Expired - Fee Related CN103357408B (zh) 2012-03-31 2012-03-31 WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US8969235B2 (zh)
CN (1) CN103357408B (zh)
WO (1) WO2013143326A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874413A (zh) * 2015-05-08 2015-09-02 江苏大学 一种埃米尺度碳化物及其制备方法
CN106423238B (zh) * 2015-08-12 2019-01-25 中国石油化工股份有限公司 苯乙烯催化剂及其制备方法
CN106423187B (zh) * 2015-08-12 2019-02-19 中国石油化工股份有限公司 苯乙烯催化剂
CN106423239B (zh) * 2015-08-12 2019-01-25 中国石油化工股份有限公司 高稳定苯乙烯催化剂
CN105251487B (zh) * 2015-11-06 2018-01-26 上海电力学院 一种燃料电池用W@Pt/C核壳结构催化剂的制备方法
CN106995928A (zh) * 2016-01-23 2017-08-01 西南大学 基于在模拟海水中AuPdPt-WC/C纳米复合析氢催化剂的制备方法
CN106602088B (zh) * 2016-12-07 2019-04-09 浙江工业大学 一种纳米片状偏钨酸铵、cnt支撑的纳米片状氧化钨载钯复合材料及其应用
CN106920975B (zh) * 2017-04-11 2019-04-09 浙江工业大学 一种三维网络状碳化钨-碳纳米管复合材料的制备方法
CN107694586B (zh) * 2017-09-04 2019-03-05 温州大学 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用
CN110970688B (zh) * 2018-11-30 2020-12-29 宁德时代新能源科技股份有限公司 电池加热系统和方法
CN111346658A (zh) * 2018-12-24 2020-06-30 江南大学 一种铂掺杂碳化物的电解水催化材料及其制备方法
CN112436154A (zh) * 2020-12-01 2021-03-02 上海纳米技术及应用国家工程研究中心有限公司 一种燃料电池负极催化剂纳米粒子复合材料的制备方法
CN112599348B (zh) * 2020-12-09 2022-03-22 中国计量大学 一种同轴磁纳米电缆的制备方法
CN114988411B (zh) * 2022-06-02 2023-11-17 浙江工业大学 一种具有高比表面积的纯相w2c纳米材料及其制备方法和应用
CN114849694B (zh) * 2022-06-07 2023-07-21 西北工业大学 一种基于金属负载氧化钨氢化硝基芳烃的催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994560A (zh) * 2006-12-21 2007-07-11 浙江工业大学 一种碳化钨载铂催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1277611C (zh) 2004-10-13 2006-10-04 浙江工业大学 一种碳化钨催化剂及其制备方法和专用碳化炉
CN100493709C (zh) 2007-09-30 2009-06-03 浙江工业大学 一种碳管载纳米碳化钨催化剂及其制备方法
CN102069002B (zh) 2010-12-31 2012-05-30 浙江工业大学 一种高比表面积wc-c复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994560A (zh) * 2006-12-21 2007-07-11 浙江工业大学 一种碳化钨载铂催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Preparation of thin carbon nanotubes by catalytic pyrolysis on a support;E G Rakov;《Russian Chemical Reviews》;20071231;第76卷(第1期);第1-22页 *
WC/纳米碳管复合材料制备及其电化学性能;马淳安等;《化学学报》;20061231;第64卷(第20期);摘要和第2124页第1栏第2段 *
碳化钨负载纳米铂催化剂的制备及其析氢催化性能;盛江峰等;《物理化学学报》;20071231;第23卷(第2期);摘要 *
缺碳型介孔空心球状碳化钨制备及其对甲醇氧化的电化学行为;陈赵扬等;《化学学报》;20101231;第68卷(第4期);摘要及1.2节和第322页第1段 *

Also Published As

Publication number Publication date
CN103357408A (zh) 2013-10-23
US20150018199A1 (en) 2015-01-15
WO2013143326A1 (zh) 2013-10-03
US8969235B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
CN103357408B (zh) WC/CNT、WC/CNT/Pt复合材料及其制备方法和应用
CN100563823C (zh) 一种碳化钨载铂催化剂及其制备方法
Dong et al. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries
Ismagilov et al. Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials
Zhang et al. Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation
CN101733094B (zh) 一种Pt-CeO2/石墨烯电催化剂及其制备方法
Xiong et al. An oxygen reduction catalyst derived from a robust Pd-reducing bacterium
CN104923204A (zh) 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用
Mu et al. Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation
Luo et al. Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction
Chen et al. Studies on how to obtain the best catalytic activity of Pt/C catalyst by three reduction routes for methanol electro-oxidation
Liu et al. Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction
CN103413951A (zh) 氮掺杂石墨烯负载Pt基合金纳米电催化剂及其制备方法
CN103816894B (zh) 掺杂型石墨烯负载PtRu合金纳米电催化剂及其制备方法
Leng et al. Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction
CN103506144A (zh) 核壳结构的碳化钨/铂复合材料及其制备和应用
CN101108346A (zh) 一步法微波合成Pt-CeO2/C电催化剂的方法
CN104538648B (zh) 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
CN105789645A (zh) 一种Pt/WO3-RGO催化剂
Chen et al. A polarization boosted strategy for the modification of transition metal dichalcogenides as electrocatalysts for water‐splitting
CN110575840B (zh) 一种二维碳化钼/石墨烯纳米片复合材料的制备方法
Zheng et al. Electro-injection-enhanced catalytic formaldehyde degradation based on conductive MnOx cellulose aerogels at room temperature
Xu et al. FeWO4/nitrogen-doped multi-dimensional porous carbon for the highly efficient and stable oxygen reduction reaction
Ma et al. Hierarchically porous iron and nitrogen Co-doped carbon composite with enhanced ORR performance
Song et al. Nickel coating on carbon nanotubes and PProDOT-2CH2SH supported Pt nanoparticles as the electrocatalyst for methanol oxidation reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20190331

CF01 Termination of patent right due to non-payment of annual fee