CN103357386A - 一种快速、高效吸附铯的滤芯的制备方法 - Google Patents

一种快速、高效吸附铯的滤芯的制备方法 Download PDF

Info

Publication number
CN103357386A
CN103357386A CN2013103318191A CN201310331819A CN103357386A CN 103357386 A CN103357386 A CN 103357386A CN 2013103318191 A CN2013103318191 A CN 2013103318191A CN 201310331819 A CN201310331819 A CN 201310331819A CN 103357386 A CN103357386 A CN 103357386A
Authority
CN
China
Prior art keywords
ammonium phosphomolybdate
filter core
filter element
thickness
hno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103318191A
Other languages
English (en)
Other versions
CN103357386B (zh
Inventor
董振芳
石红旗
马德毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Institute of Oceanography SOA
Original Assignee
First Institute of Oceanography SOA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Institute of Oceanography SOA filed Critical First Institute of Oceanography SOA
Priority to CN201310331819.1A priority Critical patent/CN103357386B/zh
Publication of CN103357386A publication Critical patent/CN103357386A/zh
Priority to US14/267,457 priority patent/US9206529B2/en
Priority to EP14169889.4A priority patent/EP2832443B1/en
Priority to JP2014117806A priority patent/JP5860503B2/ja
Application granted granted Critical
Publication of CN103357386B publication Critical patent/CN103357386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种快速、高效吸附铯的滤芯的制备方法,包括以下步骤:在衬底材料中加入占衬底材料重量百分比为1~3%的耦合剂和1~10%的磷钼酸铵,加热至160~220℃,搅拌混匀,使衬底材料与磷钼酸铵结合在一起;经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上形成5~50mm厚度的吸附滤芯;外表面上均匀地涂装上磷钼酸铵,在80~120℃的条件下加热稳定老化处理3-12小时。本发明方法制备的滤芯,具有良好的透水性,耐受氧化、经受100℃以下热水长期浸泡、抗辐照分解、吸附性能稳定,检测速度快、效率高、精度高,不再需要进行稳定铯的测量以确定吸附率。

Description

一种快速、高效吸附铯的滤芯的制备方法
技术领域
本发明涉及放射性物质的吸附用材料领域,特别涉及一种快速、高效吸附铯的滤芯的制备方法。
背景技术
目前,吸附铯(Cs)的材料主要有AMP-PAN树脂、CuFeCN类树脂、天然矿物等,其特点是吸附缓慢,平衡时间长,吸附效率较低,用于环境监测需要进行吸附率检测,处理一个样品耗时约10小时,吸附处理水样体积在数十升水平。
用于核废水浓集吸附Cs的研究材料,包括AMP、CuFeCN类、沸石、高岭土、硅藻土、铁矿石等,这些材料的共同特点是耗时,吸附容量小,吸附率在40~95%之间。因此,现有吸附铯(Cs)的材料,普遍存在着吸附率低,吸附流量小的缺点,大多吸附率在95%以下,吸附耗时长,流速小。平衡吸附,需要时间十数小时,不适合快速高效的场合需求。
例如:在2011年3月11日福岛核事故后,美国WHOI在mid-July2011西太平洋福岛核事故放射性影响考察国际合作航次,K.Buesseler等使用了AMP-PAN树脂,吸附率95%,海水样品流速约35ml/min,处理20L海水样品需要耗时约600分钟,用吸附柱虽然实现了船上现场操作,然而也是十分耗时的,吸附率还得靠用ICP-MS测定透过吸附柱的海水中残留的稳定Cs,以确定吸附柱的吸附率,从而准确计算海水样品中的放射性Cs。
从国际原子能机构(International Atomic Energy Agency--IAEA)现在拥有的海洋放射性测量技术来看,还得需要采集大量海水样品,运到陆基实验室进行分析测量。
总之,现有吸附铯(Cs)的材料速度慢、效率低。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种快速、高效吸附铯(Cs)的滤芯的制备方法,具体方案包括以下步骤:
1)衬底材料的改性:
在衬底材料中加入占衬底材料重量百分比为1~3%的耦合剂和1~10%的磷钼酸铵,加热至160~220℃,搅拌混匀,使衬底材料与磷钼酸铵结合在一起;
2)滤芯熔喷成型:
将步骤1)中制得的材料经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上形成5~50mm厚度的吸附滤芯;
3)滤芯的涂装:
在步骤2)制得的吸附滤芯的表面上均匀地涂装上磷钼酸铵,使表面新涂装的磷钼酸铵与衬底材料内的磷钼酸铵相结合;
4)滤芯稳定老化处理:
经过步骤3)制得的滤芯,在80~120℃的条件下加热稳定老化处理3-12小时,获得快速、高效吸附铯的滤芯。
在上述方法中,步骤1)中的耦合剂为甲基丙烯酸甲酯或苯乙烯。
在上述方法中,步骤2)中的骨架材料为中空的聚丙烯熔喷管,公称粒径为5μm。
在上述方法中,步骤3)的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中AMP的质量百分比浓度为1-10%,之后,在10~95℃、pH=1~5、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,磷钼酸铵不会被洗脱为止,表面新涂装的磷钼酸铵的厚度小于1μm。
在上述方法中,在步骤1)中,所述衬底材料为PP,所述耦合剂为甲基丙烯酸甲酯,且重量百分比为2%,所述磷钼酸铵的重量百分比为5%,加热温度为190℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成30mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为1%,之后,在95℃、pH=1、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
在上述方法中,在步骤1)中,所述衬底材料为PES,所述耦合剂为苯乙烯,且重量百分比为3%,所述磷钼酸铵的重量百分比为10%,加热温度为220℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成50mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为1%,之后,在95℃、pH=1、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
在上述方法中,在步骤1)中,所述衬底材料为PP,所述耦合剂为甲基丙烯酸甲酯,且重量百分比为2%,所述磷钼酸铵的重量百分比为5%,加热温度为190℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成30mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为5%,之后,在55℃、pH=3、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
本发明有益效果:
本发明方法制备的快速高效铯吸附滤芯,具有良好的透水性,耐受氧化、经受100℃以下热水长期浸泡、抗辐照分解、吸附性能稳定。10分钟之内就可以完成AMP-PAN树脂需要10小时才能处理的海水样品;流速达到4L/min,吸附率高于99.9%,不再需要进行稳定铯的测量以确定吸附率。
附图说明
图1为本发明中样本01监测海区表层Cs吸附滤芯γ能谱图;
图2为本发明中样本03在中国近海表层海水铯吸附滤芯γ能谱图;
图3为标准137Cs(118.3Bq)吸附滤芯γ能谱图;
图4为本发明中中海洋放射性现场实时监测系统工作原理示意图。
图1、图2、图3中,上半部分为下半部分中方框部分的放大图。
具体实施方式
本发明提供的快速、高效吸附铯的滤芯的制备方法,由改性PP或PES为衬底材料进行微孔喷丝,并在圆筒型骨架材料上形成吸附滤芯,再涂装上AMP,下面结合具体实施例进行详细的说明,以下实施例仅用于对本发明做进一步的描述,并不是用来限制本发明的范围。
实施例1。
快速、高效吸附铯的滤芯的制备方法,具体的制备方法如下:
1)衬底材料的改性:
在衬底材料PP(聚丙烯树脂)中加入占重量百分比为1%的甲基丙烯酸甲酯和1%的AMP(Ammonium Phosphomolybdate Trihydrate,磷钼酸铵),加热至160℃,搅拌混匀,使PP与AMP结合在一起。
2)滤芯熔喷成型:
将步骤1)中制得的材料经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上缠绕形成5mm厚度的吸附滤芯,骨架材料为中空的聚丙烯熔喷管,公称粒径为5μm。
3)滤芯的涂装:
在步骤2)制得的吸附滤芯的外表面上均匀的涂装上AMP,涂装的具体步骤为:将AMP溶解于浓度为0.5mol/L的氨水中,其中AMP的质量百分比浓度为10%,之后,在10℃、pH=5、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,AMP不会被洗脱为止,使表面新涂装的AMP与衬底材料内的AMP相结合,表面新涂装的AMP的厚度小于1μm,洗脱下来的AMP回收重复利用。
4)滤芯稳定老化处理:
经过步骤3)制得的滤芯,在80℃的条件下加热稳定老化处理12小时,制得吸附铯的滤芯。
实施例2。
快速、高效吸附铯的滤芯的制备方法,具体的制备方法如下:
1)衬底材料的改性:
在衬底材料PES(聚醚砜树脂,Poly ether sulfones)中加入占重量百分比为3%的苯乙烯和10%的AMP,加热至220℃,搅拌混匀,使PES与AMP结合在一起;
2)滤芯熔喷成型:
将步骤1)中制得的材料经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上缠绕形成50mm厚度的吸附滤芯,所述骨架材料为中空的聚丙烯熔喷管,公称粒径为5μm。
3)滤芯的涂装:
在步骤2)制得的吸附滤芯的表面上均匀的涂装上AMP,涂装的具体步骤为:将AMP溶解于浓度为0.5mol/L的氨水中,其中AMP的质量百分比浓度为1%,之后,在95℃、pH=1、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,AMP不会被洗脱为止,使表面新涂装的AMP与衬底材料内的AMP相结合,表面新涂装的AMP的厚度小于1μm,洗脱下来的AMP回收重复利用。
4)滤芯稳定老化处理:
经过步骤3)制得的滤芯,在120℃的条件下加热稳定老化处理3小时,制得吸附铯的滤芯。
实施例3。
快速、高效吸附铯的滤芯的制备方法,具体的制备方法如下:
1)衬底材料的改性:
在衬底材料:PP中加入重量百分比为2%的甲基丙烯酸甲酯和5%的AMP,加热至190℃,搅拌混匀,使PP与AMP结合在一起;
2)滤芯熔喷成型:
将步骤1)中制得的材料经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上缠绕形成30mm厚度的吸附滤芯,所述骨架材料为中空的聚丙烯熔喷管,公称粒径5μm;
3)滤芯的涂装:
在步骤2)制得的吸附滤芯的表面上均匀的涂装上,涂装的具体步骤为:将AMP溶解于浓度为0.5mol/L的氨水中,其中AMP的质量百分比浓度为5%,之后,在55℃、pH=3、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,AMP不会被洗脱为止,使表面新涂装的AMP与衬底材料内的AMP相结合,表面新涂装的AMP的厚度小于1μm,洗脱下来的AMP回收重复利用。
4)滤芯稳定老化处理:
经过步骤3)制得的滤芯,在100℃的条件下加热稳定老化处理7小时,获得快速、高效吸附铯的滤芯。
采用本发明方法制备的滤芯,可用于核工程放射性废水处理和应急处置、海水及淡水中放射性Cs现场实时监测、乏燃料后处理放射性Cs浓集分离或Cs盐化工工艺过程中浓集提取分离,以下为具体测试试验。
取实施例1-3所述的方法制备的滤芯,长度为:100mm,滤芯外径为60mm,内径为25mm,分别编号为样本01、02和03。
(1)样本01进行快速高效吸附铯海上现场测试。
在西太平洋某海区,用自制便携式海洋放射性现场实时监测系统,检测系统如图4所示,自动抽取表层海水,用本发明制成的滤芯做成的吸附柱吸附海水中的放射性Cs,监测基本信息列入表1。
表1西太平洋海区某一特定监测样品数据记录
样本01吸附滤芯γ能谱图如图1所示。
这一组数据,与K.Buesseler的实验可以形成鲜明对比。K.Buesseler的现场海水中Cs富集过程,流速为35ml/min,本发明中是2288ml/min,K.Buesseler用了10小时处理了20L,而本发明富集了1529L,富集了如此之多的海水,吸附滤芯的134Cs、137Cs活度只有0.3~1.4Bq水平,对于20L水样,如此活度水平的海水,测量源的活度就在0.04Bq水平,对于活度很低的样品,γ能谱测起来,极其困难,甚至低于γ谱仪的检出下限。就是富集了1529L海水,测量γ能谱也用了6小时,精密度在5%~12%,完全可以达到监测精度要求。从γ能谱可以看出,样品清晰检出了134Cs和137Cs。不用高效快速Cs吸附滤芯,采集数十升海水,带回陆地进行γ能谱分析,对于监测海区的放射性污染水平,那几乎是无能为力的。采集数以吨计的海水样品回到陆地,数目少了勉强为之,分析操作起来,那也是办不到的。由此可见,快速高效铯吸附滤芯的重要意义。水环境放射性监测,是一件非常劳累繁杂的工作,有了快速高效铯吸附滤芯,这一工作变得轻松便捷了。
(2)样本02在不同流速下快速高效铯吸附的吸附率实验。
取40L海水放入实验用塑料桶内,按照每升海水加入1ml盐酸的比例进行酸化并搅匀。然后加入10mg铯载体,再加入23.6Bq137Cs,海水样品搅拌混匀。然后设定步进电机的脉冲频率,调整到预设的流速。进行滤芯的吸附实验。经过滤芯之后的海水,海水中残余的137Cs,用GB6767-86水中铯-137放射化学分析方法进行测量。测量结果列入表2所示。
表2不同流速下吸附试验数据记录
Figure BDA00003607018600101
通过样本02的实验可知,从0.6L/min到4.0L/min不同的流速,滤过液中残余放射性137Cs低于检出下限。根据测量下限估测出Cs吸附率高于99.9%。铯吸附滤芯的吸附率不会是100%。如要准确测定其吸附率,需要加大失踪剂137Cs的活度水平。水样在不同的流速下只要一次通过吸附滤芯就能达到如此之高的吸附率,完全可以满足水环境现场吸附的需要。
与同类型吸附材料相比,采用本发明方法制备的滤芯具有极其高效的吸附性能。环境放射性监测,是极其耗时的。每次测量都需要数小时甚至几天时间。能够现场大体积快速高效吸附,对于环境监测行业是非常重要的。
(3)样本03在中国近海表层海水吸附监测放射性Cs试验。
设定流速为2320.8ml/min,吸附时间为180min,海水取样量为417.7L。137Cs滤芯经过γ能谱测量,测到了γ能谱,见图2。经过计算,近海表层海水中137Cs的比活度为1.15±0.14Bq/m3。图3为标准137Cs(118.3Bq)吸附滤芯γ能谱图,用以进行标准刻度。通过图谱比对,可以清晰地看出,本专利的滤芯测量耗时少、精度高。
通过近海现场海水过滤实验,吸附海水体积为417升,能谱测量耗时10小时,能谱不够清晰突出,662keVγ特征能谱线,还是可以分辨出来的。其测量精度只有13%。而标准137Cs(118.3Bq)滤芯,能谱测量只用了1小时,能谱突出,背景几乎可以忽略,测量精度当然也高许多。因此说明,在放射性测量中,测量源的活度至关重要,在测量源活度很低的情况下,本发明方法制备的滤芯也能够现场实时监测。

Claims (7)

1.一种快速、高效吸附铯的滤芯的制备方法,其特征在于,包括以下步骤:
1)衬底材料的改性:
在衬底材料中加入占衬底材料重量百分比为1~3%的耦合剂和1~10%的磷钼酸铵,加热至160~220℃,搅拌混匀,使衬底材料与磷钼酸铵结合在一起;
2)滤芯熔喷成型:
将步骤1)中制得的材料经过5μm的微孔进行喷丝,喷出的细丝在旋转的圆筒型骨架材料上形成5~50mm厚度的吸附滤芯;
3)滤芯的涂装:
在步骤2)制得的吸附滤芯的表面上均匀地涂装上磷钼酸铵,使表面新涂装的磷钼酸铵与衬底材料内的磷钼酸铵相结合;
4)滤芯稳定老化处理:
经过步骤3)制得的滤芯,在80~120℃的条件下加热稳定老化处理3-12小时,获得快速、高效吸附铯的滤芯。
2.根据权利要求1所述的方法,其特征在于,步骤1)中的耦合剂为甲基丙烯酸甲酯或苯乙烯。
3.根据权利要求1所述的方法,其特征在于,步骤2)中的骨架材料为中空的聚丙烯熔喷管,公称粒径为5μm。
4.根据权利要求1所述的方法,其特征在于,步骤3)的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为1-10%,之后,在10~95℃、pH=1~5、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,AMP不会被洗脱为止,表面新涂装的AMP的厚度小于1μm。
5.根据权利要求1所述的方法,其特征在于,
在步骤1)中,所述衬底材料为PP,所述耦合剂为甲基丙烯酸甲酯,且重量百分比为2%,所述磷钼酸铵的重量百分比为5%,加热温度为190℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成30mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为1%,之后,在95℃、pH=1、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
6.根据权利要求1所述的方法,其特征在于,
在步骤1)中,所述衬底材料为PES,所述耦合剂为苯乙烯,且重量百分比为3%,所述磷钼酸铵的重量百分比为10%,加热温度为220℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成50mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为1%,之后,在95℃、pH=1、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
7.如权利要求1所述的方法,其特征在于,
在步骤1)中,所述衬底材料为PP,所述耦合剂为甲基丙烯酸甲酯,且重量百分比为2%,所述磷钼酸铵的重量百分比为5%,加热温度为190℃;
在步骤2)中,喷出的细丝在旋转的圆筒型骨架材料上形成30mm厚度的吸附滤芯;
在步骤3)中,涂装的具体步骤为:将磷钼酸铵溶解于浓度为0.5mol/L的氨水中,其中磷钼酸铵的质量百分比浓度为5%,之后,在55℃、pH=3、真空条件下,将步骤2)制成的吸附滤芯用上述溶液浸泡,浸泡时间为:1小时,之后用0.5mol/L的HNO3溶液进行冲洗,直到HNO3清洗液变得澄清,表面新涂装的磷钼酸铵的厚度小于1μm。
CN201310331819.1A 2013-08-01 2013-08-01 一种快速、高效吸附铯的滤芯的制备方法 Active CN103357386B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201310331819.1A CN103357386B (zh) 2013-08-01 2013-08-01 一种快速、高效吸附铯的滤芯的制备方法
US14/267,457 US9206529B2 (en) 2013-08-01 2014-05-01 Preparation methods of filter element for swift and highly efficient adsorption of CS
EP14169889.4A EP2832443B1 (en) 2013-08-01 2014-05-26 Method of preparing a filter element absorptive for cs
JP2014117806A JP5860503B2 (ja) 2013-08-01 2014-06-06 迅速、高効率なセシウム吸着フィルターの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310331819.1A CN103357386B (zh) 2013-08-01 2013-08-01 一种快速、高效吸附铯的滤芯的制备方法

Publications (2)

Publication Number Publication Date
CN103357386A true CN103357386A (zh) 2013-10-23
CN103357386B CN103357386B (zh) 2015-03-25

Family

ID=49360146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310331819.1A Active CN103357386B (zh) 2013-08-01 2013-08-01 一种快速、高效吸附铯的滤芯的制备方法

Country Status (3)

Country Link
US (1) US9206529B2 (zh)
JP (1) JP5860503B2 (zh)
CN (1) CN103357386B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786275A (zh) * 2018-06-08 2018-11-13 中国人民解放军海军工程大学 一种铯选择性吸附滤芯及其制备方法
CN109298437A (zh) * 2018-09-06 2019-02-01 国家海洋局第海洋研究所 海洋现场放射性核素铯-137、铯-134的应急快速测量方法
CN109569535A (zh) * 2018-12-11 2019-04-05 华东师范大学 一种富集海水中放射性碘的吸附材料及制备方法
CN114452950A (zh) * 2021-12-15 2022-05-10 淮阴工学院 一种高强度双交联网络铷/铯特效吸附剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093664A (en) * 1996-03-08 2000-07-25 3M Innovative Properties Company Adsorbent for metal ions and method of making and using
CN101104124A (zh) * 2006-08-23 2008-01-16 上海久洁科技有限公司 多功能熔喷滤芯和滤材及其制造方法
CN101518727A (zh) * 2009-04-08 2009-09-02 中国科学院青海盐湖研究所 海藻酸钙包埋的磷钼酸铵复合吸附剂及其制备和应用
JP2013137289A (ja) * 2011-11-30 2013-07-11 Ebara Kogyo Senjo Kk 放射性セシウム固体状被汚染物の除染方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115351A (en) * 1973-11-12 1978-09-19 Yasushi Joh Flame retardant composition
US4500667A (en) * 1983-10-26 1985-02-19 Uop Inc. Polymer blended membranes
JP2981554B1 (ja) * 1998-09-25 1999-11-22 工業技術院長 セシウム選択性複合無機イオン交換体及びその製造方法
WO2011004382A1 (en) * 2009-07-09 2011-01-13 The Secretary, Department Of Atomic Energy A polymer composite for extracting cesium from nuclear waste and/ or other inorganic wastes/ solutions
JP5733703B2 (ja) * 2011-06-20 2015-06-10 国立研究開発法人日本原子力研究開発機構 布状の放射性物質吸着材及びその製造方法
JP5282214B1 (ja) * 2012-10-25 2013-09-04 日本ミラクトラン株式会社 難燃性樹脂組成物
JP6089179B2 (ja) * 2012-10-30 2017-03-08 国立研究開発法人量子科学技術研究開発機構 セシウム除去用フィルターカートリッジの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093664A (en) * 1996-03-08 2000-07-25 3M Innovative Properties Company Adsorbent for metal ions and method of making and using
CN101104124A (zh) * 2006-08-23 2008-01-16 上海久洁科技有限公司 多功能熔喷滤芯和滤材及其制造方法
CN101518727A (zh) * 2009-04-08 2009-09-02 中国科学院青海盐湖研究所 海藻酸钙包埋的磷钼酸铵复合吸附剂及其制备和应用
JP2013137289A (ja) * 2011-11-30 2013-07-11 Ebara Kogyo Senjo Kk 放射性セシウム固体状被汚染物の除染方法及び装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOUNJIN PARK ET AL.: "Removal of cobalt,strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile(AMP–PAN)", 《CHEMICAL ENGINEERING JOURNAL》, vol. 162, 31 December 2010 (2010-12-31), pages 685 - 695, XP027190222 *
刘超 等: "新型抗菌PP-g-NDAM水过滤熔喷滤芯", 《非织造布》, vol. 18, no. 3, 31 August 2010 (2010-08-31), pages 14 - 17 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786275A (zh) * 2018-06-08 2018-11-13 中国人民解放军海军工程大学 一种铯选择性吸附滤芯及其制备方法
CN109298437A (zh) * 2018-09-06 2019-02-01 国家海洋局第海洋研究所 海洋现场放射性核素铯-137、铯-134的应急快速测量方法
CN109569535A (zh) * 2018-12-11 2019-04-05 华东师范大学 一种富集海水中放射性碘的吸附材料及制备方法
CN114452950A (zh) * 2021-12-15 2022-05-10 淮阴工学院 一种高强度双交联网络铷/铯特效吸附剂的制备方法及应用
CN114452950B (zh) * 2021-12-15 2023-10-20 淮阴工学院 一种高强度双交联网络铷/铯特效吸附剂的制备方法及应用

Also Published As

Publication number Publication date
CN103357386B (zh) 2015-03-25
JP2015029990A (ja) 2015-02-16
JP5860503B2 (ja) 2016-02-16
US20150035194A1 (en) 2015-02-05
US9206529B2 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
Buesseler et al. An intercomparison of small-and large-volume techniques for thorium-234 in seawater
CN103357386B (zh) 一种快速、高效吸附铯的滤芯的制备方法
Trojanowicz et al. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants
Lee et al. The use of a chelating resin column for preconcentration of trace elements from sea-water in their determination by neutron-activation analysis
Aoyama et al. Radiometric determination of anthropogenic radionuclides in seawater
Lee et al. Rapid sequential determination of Pu, 90Sr and 241Am nuclides in environmental samples using an anion exchange and Sr-Spec resins
Alam et al. Selective separation of radionuclides from environmental matrices using proprietary solid-phase extraction systems: A review
Mola et al. Uranium and thorium sequential separation from norm samples by using a SIA system
CN102266745B (zh) 一种无机铯选择性吸附剂的制备方法
Remenec The selective separation of 90Sr and 99Tc in nuclear waste using molecular recognition technology products
Koulouris et al. Pre-concentration of actinoids from waters: a comparison of various sorbents
Su et al. A Rapid Method for the Determination of^ 1^ 3^ 7Cs in Seawater
Liu et al. Method development for plutonium analysis in environmental water samples using TEVA microextraction chromatography separation and low background liquid scintillation counter measurement
Lan et al. Preconcentration of trace elements from natural water for analysis by neutron activation
RU2753380C1 (ru) Способ определения объемной активности радионуклидов продуктов деления и активированных продуктов коррозии в водном теплоносителе первого контура ЯЭУ
EP2832443B1 (en) Method of preparing a filter element absorptive for cs
Bland The preparation of thin α-particle sources from solutions at low concentrations
Rajec et al. Determination of radionuclides in environmentals samples
CN115901920A (zh) 一种应急状态下尿液中Pu、Np、U、Th、Am联合分析方法
Suutarinen et al. Determination of Pu, Am, and Cm concentrations and the oxidation states of Pu from aquatic samples
Lo et al. Preoconcentration of nickel-63 in sea water for liwuid scintillation counting
Varshney et al. Recovery of cesium from high level liquid nuclear waste by an advanced polymer composite
Perkins et al. NUCLEAR TECHNIQUES FOR TRACE ELEMENT AND RADIONUCLIDE MEASUREMENTS IN NATURAL WATERS.
TWI543939B (zh) 超鈾元素之自動萃取分析方法
Eriksson Nuclear fingerprinting of radioactive material in a radiological and nuclear safeguard perspective

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant