CN103241826B - 弱磁场强化类芬顿反应处理印染废水的方法 - Google Patents

弱磁场强化类芬顿反应处理印染废水的方法 Download PDF

Info

Publication number
CN103241826B
CN103241826B CN201310187459.2A CN201310187459A CN103241826B CN 103241826 B CN103241826 B CN 103241826B CN 201310187459 A CN201310187459 A CN 201310187459A CN 103241826 B CN103241826 B CN 103241826B
Authority
CN
China
Prior art keywords
magnetic field
zero
waste water
printing
valent iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310187459.2A
Other languages
English (en)
Other versions
CN103241826A (zh
Inventor
关小红
熊心美
乔俊莲
周恭明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201310187459.2A priority Critical patent/CN103241826B/zh
Publication of CN103241826A publication Critical patent/CN103241826A/zh
Application granted granted Critical
Publication of CN103241826B publication Critical patent/CN103241826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明属于废水处理技术领域,涉及一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,该方法包括以下步骤:(1)在反应器周围布置弱磁场,调节印染废水的pH呈酸性;(2)向印染废水中投加双氧水和零价铁,利用反应过程中生成的羟基自由基氧化印染废水,使印染废水得到净化。本方法能有效处理染料废水,而消耗的药剂量却大大减少;且只需布置弱磁场,反应过程更易控制,反应后无有毒金属离子残留。

Description

弱磁场强化类芬顿反应处理印染废水的方法
技术领域
本发明属于废水处理技术领域,涉及一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法。
背景技术
随着印染工业的迅速发展,印染废水对水环境的危害日益严重。印染废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质及无机盐等杂质。染料废水由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大,传统的废水处理技术已经难以应对。印染废水主要有以下特点:
废水排放量大,间歇排放导致水质随时间的变化范围大;废水多呈碱性,pH值一般为6.0~10.0;组分复杂,且朝着抗光解、抗氧化、抗生物降解的方向发展,一般方法无法处理;染料中间体主要为苯环或多环的芳烃类有机物,易生成多种副产物,难于分析。
传统的印染废水处理方法分为物理法和生物法。物理法(如吸附、气浮、过滤、混凝等)具有设备简单、操作简便和工艺成熟的优点,但是这类处理方法通常是将有机物从液相转移到固相或气相,不仅没有完全消除有机污染物、消耗大量化学药剂,而且造成废物堆积和二次污染。生物法(好氧法和厌氧法)只能除去印染废水中的BOD,对于COD特别是有毒难降解有机物和色度的去除效果不明显(特别是可溶性染料及高分子合成浆料),而且生物法中的微生物系统存在对环境因素的变化比较敏感、营养系统维持微生物的生长难以较长时间控制等问题,此外厌氧菌系统还存在不能将染料充分矿物化的问题,将好氧菌和厌氧菌系统结合起来的方法因存在一系列问题也难于实现工业化。因此,传统的处理方法已不能满足当前印染废水发展的要求。
为了克服传统的生物和物理处理方法处理印染废水的不足,人们尝试着开发各种新的技术来加以弥补。寻求高效、经济、适应性强、清洁性的废水处理技术是当前染料废水处理技术发展的必然方向。芬顿高级氧化技术(H2O2/Fe2+)因其反应快速、处理对象广泛、易于操作控制等优点而成为废水处理技术研究领域的重要研究方向。由于均相催化氧化体系存在催化剂流失等缺点,而零价铁价廉易得,很多研究者利用零价铁来代替Fe2+与H2O2构成类芬顿体系(H2O2/Fe0)。然而,H2O2/Fe0类芬顿体系的效率受制于Fe2+向水中的释放,其有效氧化pH范围窄(pH=2.8~3.0附近),当pH提高时,其氧化速率大大降低,从而限制了其应用,亟待采取一定的措施来提高H2O2/Fe0类芬顿体系处理印染废水的效率。
发明内容
本发明的目的在于为了克服现有技术中H2O2/Fe0类芬顿体系处理印染废水时反应速率慢和适用pH低的缺陷,而提供一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法。
为实现上述目的,本发明采用以下技术方案:
本发明提供的方法
一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,该方法包括以下步骤:
(1)在反应器周围布置弱磁场,调节印染废水的pH呈酸性,
(2)向印染废水中投加双氧水(H2O2)和零价铁(Fe0),利用反应过程中生成的羟基自由基氧化印染废水,使印染废水得到净化。
所述的染料废水为偶氮、三苯甲烷、噻嗪类、蒽醌或砏嗪等染料废水中的一种或一种以上。
所述的步骤(1)将印染废水的pH调节为3.0~4.5。
所述的步骤(1)中,染料废水的初始浓度为20~200mg/L。
所述的步骤(1)中,磁场为恒定磁场、交变磁场、脉动磁场或脉冲磁场。
所述的步骤(1)中,弱磁场的强度为0.2~30mT。
所述的步骤(2)中,双氧水和零价铁的投加顺序为先投加双氧水再投加零价铁。
所述的步骤(2)中,双氧水的投加量为50~200mg/L,零价铁的投加量控制为50~500mg/L。
所述的步骤(2)中,反应时间为10~90min。
本发明主要针对印染废水的预处理或深度处理开发的。本发明的基本原理是通过外加弱磁场(0.2~30mT),加速Fe2+从零价铁表面的释放和H+在零价铁表面的富集,加速零价铁的腐蚀产生Fe2+,并促进三价铁与零价铁之间的还原反应,从而加速羟基自由基的生成,大大提高染料的去除速率,强化处理效果。
本发明同现有技术相比,具有如下优点和有益效果:
1、本发明与现行的H2O2/Fe0类芬顿处理印染废水的技术相比,在pH为3.0~4.5的条件下反应速率大大提高,可利用的pH范围更广,反应器的容积可大大减小;
2、本发明与现行的其他强化H2O2/Fe0类芬顿反应效率的方法相比,只需布置弱磁场,反应过程更易控制,不需另外投加任何药剂,反应后无有毒金属离子残留。
附图说明
图1是本发明实施例中,在pHi=4.0,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除亚甲基蓝(噻嗪类染料)的影响,图中表示无磁场存在条件下亚甲基蓝的去除率曲线,表示磁场存在条件下亚甲基蓝的去除率曲线。
图2是本发明实施例中,在pHi=3.0,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除孔雀石绿(三苯甲烷染料)的影响,图中表示无磁场存在条件下孔雀石绿的去除率曲线,表示磁场存在条件下孔雀石绿的去除率曲线。
图3是本发明实施例中,在pHi=4.0,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除中性红(碱性吩嗪染料)的影响,图中表示无磁场存在条件下中性红的去除率曲线,表示磁场存在条件下中性红的去除率曲线。
图4是本发明实施例中,pHi=4.0,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除橙黄Ⅱ(偶氮染料)的影响,图中表示无磁场存在条件下橙黄Ⅱ的去除率曲线,表示磁场存在条件下橙黄Ⅱ的去除率曲线。
图5是本发明实施例中,pHi=4.0,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除金橙G(偶氮染料)的影响,图中表示无磁场存在条件下金橙G的去除率曲线,表示磁场存在条件下金橙G的去除率曲线。
图6是本发明实施例中,pHi=3.6,染料初始浓度50mg/L,零价铁浓度100mg/L,H2O2的投加量为170mg/L时磁场对零价铁/双氧水类芬顿体系强化去除活性蓝4(蒽醌染料)的影响,图中表示无磁场存在条件下活性蓝4的去除率曲线,表示磁场存在条件下活性蓝4的去除率曲线。
图7是本发明实施例中,pHi=3.0,染料初始浓度100mg/L时,在有无磁场存在的条件下,零价铁/双氧水类芬顿体系对孔雀石绿(三苯甲烷染料)的去除率达到一致时的药剂投加量。图中表示无磁场存在条件下零价铁浓度1000mg/L,H2O2的投加量为340mg/L时孔雀石绿的去除率曲线,表示磁场存在条件下零价铁浓度80mg/L,H2O2的投加量为85mg/L时孔雀石绿的去除率曲线。
具体实施方式
下面结合实施例和附图进一步说明本发明。
实施例1
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为交变磁场,磁场强度约为0.2~15mT;在完全混合反应器中,印染废水甲基蓝初始浓度50mg/L,调节初始pH值为4.0;
(2)向上述印染废水中先投加170mg/L的双氧水,再投加100mg/L的零价铁启动反应,在磁场存在的条件下,零价铁/双氧水对亚甲基蓝的去除率在20min内可达到100%;而磁场不存在的情况下,完全去除亚甲基蓝需要90min。结果见图1。由图1中可见,H2O2-Fe0类芬顿体系对亚甲基蓝的去除是可行的,而交变弱磁场的存在可大大提高反应速率,缩短反应时间。
实施例2
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,是在完全混合反应器中,所用磁场为永久磁场,磁场强度约为10~30mT。孔雀石绿初始浓度50mg/L,调节初始pH值为3.0;
(2)向上述印染废水中先后投加100mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,零价铁/双氧水对孔雀石绿的去除率在20min内可达到100%;而磁场不存在的情况下,完全去除孔雀石绿需要45min。结果见图2。由图2中可见,永久性弱磁场可以明显提高H2O2-Fe0类芬顿体系对孔雀石绿的降解速率,反应时间缩短了一半。
实施例3
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为恒定磁场,磁场强度约为0.8~25mT;在完全混合反应器中,中性红初始浓度50mg/L,调节初始pH值为4.0;
(2)向上述印染废水中先后投加100mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,零价铁/双氧水对中性红的去除率在30min内可达到95%;而磁场不存在的情况下,30min内对中性红的去除率只有45%。结果见图3。由图3中可见,恒定弱磁场使H2O2-Fe0类芬顿体系对中性红的去除率在30min内增加了一倍。
实施例4
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为交变磁场,磁场强度约为0.8~15mT。是在完全混合反应器中,橙黄Ⅱ的初始浓度为50mg/L,调节初始pH值为4.0;
(2)向上述印染废水中先后投加100mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,零价铁/双氧水对橙黄Ⅱ的去除率在90min内可达到100%;而磁场不存在的情况下,90min内对橙黄Ⅱ的去除率只有39%。结果见图4。由图4中可见,对比其他染料的降解效果,弱磁场对H2O2-Fe0类芬顿体系去除橙黄Ⅱ的强化效果是最明显的,前90min内的去除率提高了将近3倍。
实施例5
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为恒定磁场,磁场强度约为15~30mT;是在完全混合反应器中,金橙G的初始浓度为50mg/L,调节初始pH值为4.0;
(2)向上述印染废水中先后投加100mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,零价铁/双氧水对金橙G的去除率在60min内可达到99%;而磁场不存在的情况下,180min内对金橙G的去除率只有84%。结果见图5。由图5中可见,金橙G与上述的橙黄Ⅱ同属于偶氮染料,弱磁场对H2O2-Fe0类芬顿体系去除金橙G的强化效果也是非常明显的。
实施例6
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为脉冲磁场,磁场强度约为2.0~25mT。在完全混合反应器中,活性蓝4的初始浓度为50mg/L,调节初始pH值为3.6;
(2)向上述印染废水中先后投加100mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,零价铁/双氧水对活性蓝4的去除率在20min内可达到99%;而磁场不存在的情况下,20min内活性蓝4的去除率只有51%。结果见图6。由图6中可见,脉冲弱磁场同样能够强化H2O2-Fe0类芬顿体系处理印染废水。。
实施例7
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为脉动磁场,磁场强度约为2.0~25mT。在完全混合反应器中,孔雀石绿的初始浓度为100mg/L,调节初始pH值为3.0;
(2)向上述印染废水中在磁场存在的条件下,先后投加80mg/L的零价铁和85mg/L的双氧水,对孔雀石绿的去除率在20min内可达到100%;而磁场不存在的情况下,要达到相同的去除效果需投加1000mg L-1的零价铁和340mg/L的双氧水。所以磁场可大大减少处理药剂的投加量,降低成本,减轻后续处理的压力。结果见图7。
实施例8
本实施例中的一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,包括以下步骤:
(1)在反应器周围布置弱磁场,所用磁场为恒定磁场,磁场强度约为10~30mT;是在完全混合反应器中,橙黄Ⅱ的初始浓度为100mg/L,金橙G的初始浓度为100mg/L(两种染料同时存在),调节初始pH值为4.0;
(2)向上述印染废水中先后投加300mg/L的零价铁和170mg/L的双氧水,在磁场存在的条件下,反应60min后,零价铁/双氧水对橙黄Ⅱ和金橙G的去除率分别达到85%和95%;而磁场不存在的情况下,180min内对橙黄Ⅱ和金橙G的去除率只有40%和75%。由此可见,弱磁场能够强化H2O2-Fe0类芬顿体系处理多种染料的混合废水,大大提升该方法在实际中的推广和应用。
实施例9
本实施例与实施例1不同的是投加80mg/L的零价铁和200mg/L的双氧水,其它步骤及参数与实施例1相同。本实施例中在弱磁场存在的条件下亚甲基蓝的去除率在30min内可达到100%。
实施例10
本实施例与实施例1不同的是初始pH为4.5,染料初始浓度为20mg/L,其它步骤及参数与实施例1相同。本实施例中在弱磁场存在的条件下亚甲基蓝的去除率在30min内可达到99%。
实施例11
本实施例与实施例2不同的是染料初始浓度为100mg/L,投加100mg/L的零价铁和50mg/L的双氧水,其它步骤及参数与实施例2相同。本实施例中在弱磁场存在的条件下孔雀石绿的去除率在30min内可达到98%。
实施例12
本实施例与实施例2不同的是染料初始浓度为100mg/L,零价铁的投加量为500mg/L,其它步骤及参数与实施例2相同。本实施例中在弱磁场存在的条件下孔雀石绿的去除率在10min内可达到99%。
实施例13
本实施例与实施例3不同的是投加50mg/L的零价铁和50mg/L的双氧水,其它步骤及参数与实施例3相同。本实施例中在弱磁场存在的条件下中性红的去除率在40min内可达到90%。
实施例14
本实施例与实施例4不同的是染料初始浓度为100mg/L,零价铁的投加量为300mg/L,其它步骤及参数与实施例4相同。本实施例中在弱磁场存在的条件下橙黄Ⅱ的去除率在60min内可达到99%。
实施例15
本实施例与实施例5不同的是初始pH为4.5,其它步骤及参数与实施例5相同。本实施例中在弱磁场存在的条件下金橙G的去除率在60min内可达到90%。
实施例16
本实施例与实施例6不同的是投加80mg/L的零价铁和100mg/L的双氧水,其它步骤及参数与实施例6相同。本实施例中在弱磁场存在的条件下活性蓝4的去除率在25min内可达到99%。
实施例17
本实施例与实施例6不同的是染料初始浓度为200mg/L,其它步骤及参数与实施例6相同。本实施例中在弱磁场存在的条件下,活性蓝4的去除率在40min内可达到99%。
实施例18
本实施例与实施例8不同的是反应初始pH值为3.0,孔雀石绿的初始浓度为100mg/L,活性蓝4的初始浓度为100mg/L(两种染料同时存在),双氧水的投加量为200mg/L,其它步骤及参数与实施例8相同。本实施例中在弱磁场存在的条件下,反应25min后孔雀石绿和活性蓝4的去除率分别达到100%和95%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种弱磁场强化H2O2-Fe0类芬顿反应处理印染废水的方法,其特征在于:该方法包括以下步骤:
(1)在反应器周围布置弱磁场,调节印染废水的pH呈酸性;
(2)向印染废水中投加双氧水和零价铁,利用反应过程中生成的羟基自由基氧化印染废水,使印染废水得到净化;
所述的步骤(1)中,弱磁场的强度为0.2~30mT。
2.根据权利要求1所述的方法,其特征在于:所述的印染废水为偶氮、三苯甲烷、噻嗪类、蒽醌或砏嗪中的一种或一种以上。
3.根据权利要求1所述的方法,其特征在于:所述的步骤(1)将印染废水的pH调节为3.0~4.5。
4.根据权利要求1所述的方法,其特征在于:所述的步骤(1)中,印染废水的初始浓度为20~200mg/L。
5.根据权利要求1所述的方法,其特征在于:所述的步骤(1)中,磁场为恒定磁场、交变磁场、脉动磁场或脉冲磁场。
6.根据权利要求1所述的方法,其特征在于:所述的步骤(2)中,双氧水和零价铁的投加顺序为先投加双氧水再投加零价铁。
7.根据权利要求1所述的方法,其特征在于:所述的步骤(2)中,双氧水的投加量为50~200mg/L,零价铁的投加量控制为50~500mg/L。
8.根据权利要求1所述的方法,其特征在于:所述的步骤(2)中,反应时间为10~90min。
CN201310187459.2A 2013-05-20 2013-05-20 弱磁场强化类芬顿反应处理印染废水的方法 Active CN103241826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310187459.2A CN103241826B (zh) 2013-05-20 2013-05-20 弱磁场强化类芬顿反应处理印染废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310187459.2A CN103241826B (zh) 2013-05-20 2013-05-20 弱磁场强化类芬顿反应处理印染废水的方法

Publications (2)

Publication Number Publication Date
CN103241826A CN103241826A (zh) 2013-08-14
CN103241826B true CN103241826B (zh) 2015-02-18

Family

ID=48921739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310187459.2A Active CN103241826B (zh) 2013-05-20 2013-05-20 弱磁场强化类芬顿反应处理印染废水的方法

Country Status (1)

Country Link
CN (1) CN103241826B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773808A (zh) * 2015-04-14 2015-07-15 河海大学 一种处理难降解有机废水的磁芬顿方法
CN104743654A (zh) * 2015-04-17 2015-07-01 南开大学 一种预磁化Fe0/H2O2体系高效处理有机废水方法
CN104876306A (zh) * 2015-05-11 2015-09-02 河海大学 利用磁场处理污水的方法
CN105776491B (zh) * 2016-03-10 2018-10-26 同济大学 弱磁场强化零价铁除污反应器的加磁方法
CN106565010A (zh) * 2016-10-18 2017-04-19 哈尔滨工业大学 一种处理水中有机污染物的方法
CN109607935B (zh) * 2019-02-12 2021-09-14 鞍钢股份有限公司 一种焦化废水中重金属的去除方法
CN112645427A (zh) * 2019-10-11 2021-04-13 杭州特种纸业有限公司 一种基于零价铁-亚铁催化类芬顿氧化处理废水方法
CN113912174A (zh) * 2021-10-29 2022-01-11 华中科技大学 一种提升污水处理催化剂性能的方法、产品以及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100564286C (zh) * 2007-07-11 2009-12-02 浙江大学 一种处理含络合金属废水的方法和装置
CN201670750U (zh) * 2010-04-07 2010-12-15 长安大学 一种基于光-电-磁协同作用的有机污染物降解装置
JP5631047B2 (ja) * 2010-04-28 2014-11-26 敬一郎 浅岡 有機性廃棄物の分解処理方法及びその方法に用いる微生物活性剤
CN102335670A (zh) * 2010-07-19 2012-02-01 浅冈敬一郎 有机废弃物的分解处理方法
CN102807272B (zh) * 2012-09-01 2013-07-17 同济大学 磁场强化零价铁去除水中Se(IV)/Se(VI)的方法
CN102874915A (zh) * 2012-10-24 2013-01-16 西南大学 微波协同磁性类芬顿催化剂处理染料废水的方法

Also Published As

Publication number Publication date
CN103241826A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103241826B (zh) 弱磁场强化类芬顿反应处理印染废水的方法
CN103342408A (zh) 一种处理水中难降解有机污染物的方法
CN107311291A (zh) 利用曝气条件下非均相铁基材料复合亚硫酸盐氧化降解水中有机污染物的方法
CN102976568B (zh) 一种利用磁场的芬顿氧化-好氧颗粒污泥一体化装置及其处理方法
CN102627360B (zh) 利用新生态亚铁还原预处理工业废水的方法
CN104190434A (zh) Fe3O4-MnO2复合催化剂的制备及利用其去除印染废水中有机染料的方法
CN106045130B (zh) 一种利用白云鄂博矿石催化过硫酸盐降解有机废水的方法
CN107473435A (zh) 一种低浓度生物难降解工业有机废水处理的催化氧化方法
CN106430759A (zh) 一种微波‑紫外耦合催化过硫酸盐处理有机废水的方法
CN111036297A (zh) 一种基于海藻酸铁改性的碳纤维及制备方法与应用
CN111003791A (zh) 一种利用非均相芬顿体系降解有机染料的方法
CN109179883A (zh) 一种针对老龄生活垃圾渗滤液的预处理方法及装置
CN103787486A (zh) 一种有机废水催化氧化方法
CN112851041A (zh) 一种生物处理耦合辐照处理印染废水的工艺
CN110526310A (zh) 利用绿茶纳米铁活化过硫酸盐体系修复有机污染水体的方法
CN104926033A (zh) 一种印染废水的高效处理方法
CN111268849A (zh) 一种基于芬顿反应的高效废水处理工艺
CN106219821A (zh) 一种利用纤维素基集成Fenton催化剂Fe3+C2O4/R深度处理印染废水的方法
CN110526311A (zh) 利用绿茶纳米铁活化过硫酸盐体系修复有机污染水体的药剂
CN110563223A (zh) 一种处理高含硫气田采出水中难降解cod的工艺方法
CN111807496B (zh) 一种铜渣活化过硫酸盐深度处理炼油废水的方法
CN111410339A (zh) 基于分子氧活化强化絮凝预处理餐厨垃圾渗滤液的方法
CN103466868B (zh) 利用微波诱导氧化处理高浓度难降解有机废水的方法
CN110342627A (zh) 一种化工废水生化出水的臭氧催化氧化深度处理方法
CN205347048U (zh) 一种污水处理器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant