CN103215648A - 基于氮化镓生长半导体异质结构的方法 - Google Patents

基于氮化镓生长半导体异质结构的方法 Download PDF

Info

Publication number
CN103215648A
CN103215648A CN201310119866XA CN201310119866A CN103215648A CN 103215648 A CN103215648 A CN 103215648A CN 201310119866X A CN201310119866X A CN 201310119866XA CN 201310119866 A CN201310119866 A CN 201310119866A CN 103215648 A CN103215648 A CN 103215648A
Authority
CN
China
Prior art keywords
layer
heterojunction structure
substrate
growth
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310119866XA
Other languages
English (en)
Other versions
CN103215648B (zh
Inventor
弗拉季米尔·西蒙诺维奇·阿布拉莫夫
诺姆·佩托维奇·索西沁
瓦列里·佩托维奇·苏切科夫
尼古拉·瓦伦蒂诺维奇·施切巴科夫
弗拉季米尔·瓦拉迪米诺维奇·艾伦科夫
塞尔盖·亚历克桑德诺维奇·萨克哈若夫
弗拉季米尔·亚历克桑德诺维奇·戈比列夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul Semiconductor Co Ltd
Original Assignee
Seoul Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul Semiconductor Co Ltd filed Critical Seoul Semiconductor Co Ltd
Publication of CN103215648A publication Critical patent/CN103215648A/zh
Application granted granted Critical
Publication of CN103215648B publication Critical patent/CN103215648B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0218Substrates comprising semiconducting materials from different groups of the periodic system than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Luminescent Compositions (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明是基于氮化镓生长半导体异质结构的方法。提供了一种基于III族氮化物元素的化合物和合金生长用于发光二极管的外延异质结构的方法,所述方法包括在硅酸镓镧基底上利用气相沉积生长由式子AlxGa1-xN表示的一层或多层异质结构层的步骤,其中,0≤x≤1,其中,硅酸镓镧基底用Ce和Pr进行掺杂。

Description

基于氮化镓生长半导体异质结构的方法
本申请是申请日为2007年2月6日、申请号为200780004671.3、题为“基于氮化镓生长半导体异质结构的方法”的PCT申请的分案申请。
技术领域
本发明涉及半导体材料和半导体器件的制造方法,更具体地讲,涉及通过有机金属气相外延(又称OMVPE)来制造第三族元素氮化物的非极性外延异质结构(又称A3N结构),A3N结构通常用于诸如激光器、发光二极管(LED)尤其是白色LED的器件。
背景技术
A3N半导体异质结构是用来设计和制造处于光谱的可见部分和紫外部分的辐射的高效发光二极管和激光器(包括白色LED)的基本材料。
在参考文献[1]中,首次提出了用材料(stocks)磷光体来覆盖这些结构,从而将GaN-MIS结构的深蓝和/或紫外辐射转换成处于光谱的可见部分的波长较长的辐射。
在参考文献[2]中,已经提出了基于被钇-铝-石榴石磷光体覆盖的深蓝p-nAlGaInN异质结构发射器来设计白色发光二极管。发射器的初级深蓝辐射的部分被转换成磷光体的黄色辐射。结果,来自发射器的蓝色辐射和通过磷光体中的蓝色辐射产出的互补的黄色荧光的混合通过LED生成具有一定色坐标的白光。
白色发光二极管的本质上互不相同的三种基本设计如下:
-基于深蓝色荧光体的发射器的发光二极管,其中,该发射器由将深蓝辐射的一部分转换成黄色辐射的材料磷光体的层覆盖;
-基于紫外辐射的发射器的发光二极管,其中,该发射器由将紫外辐射转换成荧光体的红色波段荧光、绿色波段荧光和深蓝色波段荧光(RGB系统)的材料磷光体的层覆盖;
-包含三个单独的发射器的全彩色发光二极管,其中,全彩色发光二极管包含在光谱的红色部分、绿色部分和深蓝色部分(RGB系统)进行辐射的三种单独的发射器。
不管有何区别,所有列出的类型的白色发光二极管的参数的改进都要求完善外延A3N-异质结构生长的方法和增加磷光体的辐射的量子输出。
为了批量生产发光二极管,制造A3N-异质结构的最优选的方法是有机金属气相外延(OMVPE)法。
蓝宝石(Al2O3)、碳化硅(6H-SiC)、氮化镓(GaN)和氮化铝(AlN)用作A3N外延结构生长的基底。使用最多的是较为便宜的蓝宝石基底。碳化硅基底往往比蓝宝石基底昂贵,因此并不是经常使用。理想的基底可以是由GaN或AlN制成的基底,但是尚未实现它们的批量生产。
普通的用于发光二极管的A3N-异质结构包含下列功能部分:
●蓝宝石或碳化硅的单晶基底,该基底的表面是限定A3N外延层的晶型的c晶面(0001),例如,限定A3N外延层的纤锌矿型晶体结构和晶格的方位角取向的c晶面;
●宽带隙发射器,通常为n型和p型AlxGa1-xN层,提供电子和空穴的有效注入,并将电子和空穴限制在异质结构的有源区内;
●有源区,通常包含诸如通常没有被特别掺杂的InxGa1-xN合金的材料的一组窄带隙层;
●n型和p型导电的接触外延GaN层,在器件的截面部分提供均匀分布的电流密度和低比电阻的欧姆接触。
在各种器件中使用的A3N-外延异质结构中,具体地讲,在发光二极管和激光器中,缺陷(位错、堆积缺陷等)的密度还有机械应力的水平应当尽可能得低。例如,GaAs激光器异质结构的位错密度值通常不超过102-103cm-2
在A3N异质结构中,基本存在两种缺陷源,其一是关于基底和A3N外延层的晶格参数的差异,其二是关于异质结构内部的层(例如,GaN层和AlxGa1-xN层之间或者GaN层和InxGa1-xN层之间)的晶格参数的不匹配。对于GaN基底或AlN基底的情形,第一缺陷源的分布减少,而与第二缺陷源的分布相当。
A3N单晶外延层具有纤锌矿型晶体结构:生长在沿着(0001)面取向的单晶Al2O3基底(氧的子晶格参数a=0.275nm)上或者在6H-SiC基底(a=0.308nm)上的AlN(晶格参数a=0.311nm)、GaN(a=0.316nm)和InN(a=0.354nm),所述A3N单晶外延层总是包含高密度的缺陷(基本上为位错)。
因为基底和外延层的晶格参数有着本质的区别,所以在“基底-外延层”的界面内形成位错。外延层的晶格参数大于基底的晶格参数(差值达16%),位错将通过异质结构层进行传播。在用于已生长在蓝宝石基底上的蓝色发光二极管和绿色发光二极管的普通的AlGaInN异质结构中,位错密度的值可以是108-1010cm-2。对于生长在SiC基底上的相似的异质结构来说,位错密度的值可以是107-109cm-2。因此,第一源缺陷的分布被限定为值107-109cm-2,第二缺陷源(异质结构内部的位错形成)的分布等于106-107cm-2。具体地讲,GaN层和AlN层的晶格参数的不同(差为3.5%)和它们的热膨胀系数值的不同造成高密度位错的形成甚至使AlGaN层产生裂纹。
对于解决这些问题的部分方案,可以使用如下方法。在第一种方法中,在生长AlGaN层之前,例如,生长n型发射器层(薄的In0.1Ga0.9N层)(厚度为大约0.1微米)以防止使后面的AlxGa1-xN(x=0.15-0.20)层产生裂纹。在第二种方法中,生长应变多量子超晶格AlGaN/GaN层来代替x值恒定的体(bulk)AlxGa1-xN n型发射器层。超晶格中每层的厚度为大约0.25nm。
用于A3N异质结构生长的有机金属气相外延的非常特殊的特征是必须在工艺过程期间使基底温度突变。所以,在生长缓冲层(通常是非常薄的非晶GaN或AlN层)时,蓝宝石基底或碳化硅基底的温度从1050℃-1100℃迅速下降到550℃;在完成非晶GaN或AlN层生长之后,基底温度迅速升高到单晶GaN层的生长温度(1050℃)。如果对具有缓冲GaN或AlN层的基底进行加热的过程缓慢,那么将导致薄的(大约20nm)GaN层的结晶,并且随后进行的厚的GaN层的生长导致具有大量缺陷和生长图形的不平坦膜的形成。
此外,在于异质结构的有源区内生长InxGa1-xN层(在x>0.1处)时,必须生长过程中改变基底温度。这些层在高于850℃-870℃的温度下趋于热分解。在这种情况下,在较低(800℃-850℃)的温度下完成InxGa1-xN层的生长。在使基底温度升高到1000℃-1050℃的过程中,应该在异质结构生长的工艺中进行不对基底提供(submission)有机金属Ga、Al和In前驱物的操作。为了防止InxGa1-xN层的热分解,有时用薄(~20nm)的保护Al0.2Ga0.8N层覆盖InxGa1-xN层。该保护Al0.2Ga0.8N层具有足够的稳定性而在达到大约1050℃的温度下才分解。具有沉积的外延层的基底的温度的急剧变化(除了在GaN或AlN缓冲GaN层生长期间之外)会造成另外地形成缺陷和裂纹生长层,例如AlGaN层。因此,期望有这样的A3N异质结构生长的方法,具体地讲,期望有这样的用于超亮发光二极管的结构的生长的方法,即,能够使生长温度平滑变化并防止在InxGa1-xN层生长的生长过程的中断。这些生长方法还降低了在A3N异质结构层的界面内产生的位错的密度。可以通过使用包括横向外延过生长(LEO技术)在内的特殊技术来实现渗透到在蓝宝石或碳化硅基底上生长的(0001)异质结构中的位错的减少。首先,在该技术中,薄的缓冲GaN层通常在低温下生长。然后,将SiO2膜或Si3N4膜沉积在结构表面上。在这层膜内,将相互平行的窄长窗口蚀刻到缓冲层,然后,在接下来的外延工艺期间,厚的GaN层已在高温下生长在SiO2或Si3N4膜表面上。在同一工艺中,A3N异质结构也长成。容易看出,LEO技术比常用技术较为复杂且更耗劳力。
理论上且局部地,实验研究预测了在许多器件中(尤其是在发光二极管和激光器中)使用非极性α面(又称α-A3N)异质结构的优点。与常用的沿着极性c向[0001]生长的极性异质结构相比,在α-A3N非极性异质结构中,不存在沿着生长方向的强的静电场。正因如此,消除了注入的电子和空穴在非极性α-A3N异质结构的有源区中的空间分离,因此,在此基础上制得的发光二极管和激光器中辐射的内部量子效率的增大是可以预期的。
许多出版物致力于α-A3N非极性异质结构的生长。在专利申请[3]中,描述了α-GaN(1120)膜在γ-面(1102)蓝宝石基底上的生长。在公开[4]中,Sh.Nakamura提出了在α-GaN基底上生长的改进的α-A3N非极性异质结构。
最后,在专利申请[3]中,提到了α-A3N非极性异质结构生长在碳化硅基底、硅基底、氧化锌基底、铝酸锂基底、铌酸锂基底和锗基底上的几率。
因此,提供低位错和结构缺陷密度的α-A3N非极性异质结构生长是解决提高发光二极管和激光器的内部量子效率及延长发光二极管和激光器的寿命的问题的技术发展的相当实际的方向。
发明内容
本发明的主题是一种基于AlGaInN系统中的化合物和合金生长非极性α-A3N外延均质结构和/或异质结构的新方法,该非极性α-A3N外延均质结构和/或异质结构在硅酸镓镧(α-La3Ga5SiO14)基底上而不是在由其它公知材料制成的基底上的层中具有低位错密度和结构缺陷密度,从而在设计和制造发光二极管和激光器方面使用这些A3N结构。A3N材料和硅酸镓镧的特征示出在表1中。
根据本发明的第一方面,为了减小“第一外延AlxGa1-xN层-基底”的界面处和发光异质结构的其它功能层中的位错密度,在生长方法中使用了一种α-硅酸镓镧基底。基底和第一外延AlxGa1-xN层的晶格参数c的不匹配性只是在从x=1处的-2.3%到x=0处的+1.7%的界限内,“基底和第一外延AlxGa1-xN层”的c轴方向上的热膨胀系数的不匹配性只是在从x=1处的+49%到x=0处的-11%的界限内。因此,具有这样的特定的x值,即在该x值处,不存在基底和第一外延AlxGa1-xN层的晶格参数c的不匹配性及基底和第一外延AlxGa1-xN层的沿着c轴方向的热膨胀系数的不匹配性(表1)。
根据本发明的第二方面,为了制造“具有内在磷光体的白色异质结构”,通过特殊杂质来掺杂硅酸镓镧基底,以将A3N异质结构的初级深蓝辐射(λMAX=455nm)的部分转换成基底的黄色辐射,因而基底结构对应于式子La3-x-yCexPryGa5SiO14
根据本发明的第三方面,提供了一种硅酸镓镧基底的拓扑和该发射器芯片的一种设计,异质结构的所有深蓝辐射被引向基底,以提高辐射功率,并实现白色辐射的色温的均匀的空间分布。
表1
Figure BDA00003022507600051
Figure BDA00003022507600061
附图说明
该申请中包括的附图对本发明的优点提供了详细的描述,并帮助理解本发明的实质。相似的标号始终表示相应的部分。
图1是通过外延原型[2]的常用方法生长的极性发光A3N异质结构的图示。
图2是在硅酸镓镧基底上生长的非极性发光A3N异质结构的图示。
图3是具有在A3N异质结构的表面上生长的另外的Ce和Pr掺杂的硅酸镓镧层的处于硅酸镓镧基底上的发光异质结构的示意图。
图4表示通过在Ce和Pr掺杂的硅酸镓镧基底上的发光二极管生成的发射光谱。
具体实施方式
本发明提供了一种基于III族氮化物元素的化合物和合金生长来用于白色发光二极管的非极性外延异质结构的方法,该方法包括气相沉积由式子AlxGa1-xN(0<x≤1)表示的一层或多层异质结构层。A3N材料和硅酸镓镧的特征示出在表1中。
表1
Figure BDA00003022507600062
Figure BDA00003022507600071
在本发明中,为了减小“第一外延AlxGa1-xN层-基底”的界面处和发光异质结构的其它功能层中的位错密度,在生长方法中使用了一种α-硅酸镓镧基底。如表1所示,基底和第一外延AlxGa1-xN层的晶格参数c的不匹配性只是在从x=1处的-2.3%到x=0处的+1.7%的界限内,“基底和第一外延AlxGa1-xN层”的c轴方向上的热膨胀系数的不匹配性只是在从x=1处的+49%到x=0处的-11%的界限内。因此,具有这样的特定的x值,即在该x值处,不存在基底和第一外延AlxGa1-xN层的晶格参数c的不匹配性及基底和第一外延AlxGa1-xN层的沿着c轴方向的热膨胀系数的不匹配性。
此外,在本发明中,硅酸镓镧基底的厚度不超过80微米。在本发明中,硅酸镓镧基底包括一些沉积在Si、Al2O3、Ge类材料上的通过Ce和Pr掺杂的硅酸镓镧缓冲层。
根据本发明,为了制造“具有内在磷光体的白色异质结构”,通过特殊杂质来掺杂硅酸镓镧基底,以将A3N异质结构的初级深蓝辐射(λMAX=455nm)的部分转换成基底的黄色辐射,因而基底结构对应于式子La3-x-yCexPryGa5SiO14
此外,在生长非极性外延异质结构之后,在该非极性外延异质结构的表面上进行生长另外的磷光体硅酸镓镧层。另外的硅酸镓镧层的厚度不超过3微米。
下面将参照附图来描述本发明。
图1表示普通的发光二极管异质结构和对应于原型改变异质结构层中的带隙能量;美国专利5,290,3933/1994,Nakamura;美国专利5,993,54211/1999,Yanashima;美国专利5,909,0366/1999Tanakana。该异质结构包含另外生长的n-InxGa1-xN层(4),用来防止随后的n-AlGaN发射器层(5)产生裂纹,该n-AlGaN发射器层(5)是在多量子阱InxGa1-xN/InyGa1-yN有源层(6)之前生长的。
图2表示在硅酸镓镧基底上生长的发光二极管异质结构。还示出了在不同的异质结构层中改变带隙能量的图示。与图1中示出的结构不同,在提供的结构中,n-InxGa1-xN层(4)和p-GaN层(8)没有生长。p-GaN层(8)是用于激光二极管(不是发光二极管中)的最有效的波导层。对于发光二极管异质结构的生长,将具有α面取向和完美表面处理(Ra<0.5nm)的硅酸镓镧基底(1)在非常纯净的氮气气氛条件下装载到OMVPE设备的反应器中。在用纯氮鼓吹反应器之后,反应器中的氢气压力下降到70托(Torr)左右的操作水平。然后,将具有基底的石墨感受器加热到1050℃。在以15升/分的氢气流速(flow rate)加热15分钟之后,以5升/分的流速将氨供应到反应器中。在该条件下,该过程维持5分钟。在降低高频加热功率之后且在6分钟之内,感受器的温度稳定在530℃的水平。
然后,为了使GaN缓冲层(2)长大,将作为源气体的三甲基镓(TMG)以4×10-5摩尔/分(mol/min)的流速通过单独的喷嘴向反应器中供应50秒。结果,使厚度为15nm的GaN缓冲层生长。此后,使感受器温度非常迅速地升高到1030℃,将具有用作施主杂质源的硅烷(SiH4)的TMG以7×10-5摩尔/分的流速供应到反应器中。TMG+SiH4气体混合物的流速是根据实验选择的使GaN层的掺杂水平为大约2×1018cm-3的值。厚度为大约3.2微米的n-GaN层(3)生长35分钟。然后,将三甲基铝(TMAl)作为源气体来供应,其流速在5分钟内从0线性增大到1×10-5摩尔/分。结果,具有0.5微米的厚度和铝含量的梯度的n-AlxGa1-xN(x<0.15)层(4)生长。此后,停止供应TMG、TMAl和SiH4,感受器温度在5分钟之内非常迅速地下降到860℃。现在,提供TMG和三甲基铟(TMI),通过将TMI的流速周期性地在7×10-6摩尔/分和3×10-5摩尔/分之间进行变换,发生形成多量子阱结构的InxGa1-xN/InyGa1-yN层(5)的生长。以较高的流速提供TMI的时间段耗时3秒,以较低的流速提供TMI的时间段耗时16秒。然后,感受器温度在5分钟之内上升到1030℃,再次将TMG+TMAL流供应到反应器中。在p-AlGaN层(6)和p-GaN层(7)的生长过程中,将双(环戊二烯)镁(Cp2Mg)作为受主杂质源供应到反应器中。Cp2Mg流速必须足够高,以获得用于提供低比电阻(specific resistance)的p-GaN接触层(7)的级数(order)为3×1018cm-3的受主浓度。
在图3中,表示用于白色发光二极管的发射器的设计。发射器由在光谱的深蓝色部分辐射的异质结构构成,根据本发明,该发射器的层(2)-(7)通过选择性的OMVPE外延在α-硅酸镓镧基底上生长。硅酸镓镧组合物由式子La3-x-yCexPryGa5SiO14来描述。在针对选择性的异质结构外延的基底中有专门准备的凹进(recess)。在将晶片分离成芯片的最终操作之前,有多步技术操作:光刻;通过蚀刻从选择性生长的异质结构的部分中去除层(5)、(6)和(7);沉积由镍和金的薄层组成的反射涂层;沉积由锡-金合金组成的欧姆接触层,锡-金合金是随后的在发光二极管的基体(base)上安装发射器所必需的。异质结构的深蓝辐射的吸收激发基底中的黄色光致发光,这是因硅酸镓镧中存在Ce和Pr而引起的。在选择性地生长的异质结构和从所有方向围绕异质结构的硅酸镓镧之间不存在空气中间层的情况下,提供将深蓝辐射部分有效地转变成黄色辐射。结果,由于深蓝辐射和黄色辐射的混合,使得发射器发射白光。
在图4中,表示白色发光二极管(原型)的普通设计,在该发光二极管中,使用的深蓝色发射器被常用的钇-铝-石榴石磷光体覆盖。
产业上的可利用性
通过在本发明中提出的方法生长的于α面硅酸镓镧基底上的A3N异质结构与通过常用方法的生长的结构相比具有较低的缺陷密度,并且没有微裂纹。在图2中表示的异质结构中的位错密度的值可以小于5×107cm-2。发射器具有色坐标为X=0.31,Y=0.31的白光。
[1]SU No.635813,07.08.1978。
[2]US No.5998925,07.12.1999。
[3]M.Craven at el,在非极性氮化镓薄膜中的位错减少(Dislocationreduction in non-polar gallium nitride thin films),PCT/US03/11177,15.04.2003。
[4]Sh.Nakamura,针对基于AlGaN的UV发射器的生长和器件策略(Growth and device strategies for AlGaN-based UV emitters),UCSB,2004。

Claims (11)

1.一种基于III族氮化物元素的化合物和合金生长用于发光二极管的外延异质结构的方法,所述方法包括:
在硅酸镓镧基底上利用气相沉积生长由式子AlxGa1-xN表示的一层或多层异质结构层的步骤,其中,0≤x≤1,
其中,硅酸镓镧基底用Ce和Pr进行掺杂。
2.如权利要求1所述的方法,其中,硅酸镓镧基底是α-硅酸镓镧基底。
3.如权利要求2所述的方法,其中,α-硅酸镓镧基底的厚度不超过80微米。
4.如权利要求2所述的方法,其中,所述一层或多层异质结构层是非极性的。
5.如权利要求1所述的方法,所述方法还包括在异质结构层上生长由Ce和Pr掺杂的另外的磷光体硅酸镓镧层的步骤。
6.如权利要求5所述的方法,其中,另外的磷光体硅酸镓镧层的厚度不超过3微米。
7.一种发光二极管,所述发光二极管包括:
由Ce和Pr掺杂的硅酸镓镧基底;以及一层或多层异质结构层,设置在硅酸镓镧基底上。
8.如权利要求7所述的发光二极管,其中,硅酸镓镧基底是α-硅酸镓镧基底。
9.如权利要求7所述的发光二极管,所述发光二极管还包括设置在异质结构层上的由Ce和Pr掺杂的另外的磷光体硅酸镓镧层。
10.如权利要求7所述的发光二极管,其中,异质结构层包括n-AlxGa1-xN层、p-AlyGa1-yN层及设置在n-AlxGa1-xN层和p-AlyGa1-yN层之间的活性层,其中,0≤x≤1,0≤y≤1。
11.如权利要求10所述的发光二极管,所述发光二极管还包括设置在硅酸镓镧基底和n-AlxGa1-xN层之间的GaN缓冲层。
CN201310119866.XA 2006-02-06 2007-02-06 基于氮化镓生长半导体异质结构的方法 Expired - Fee Related CN103215648B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2006103270 2006-02-06
RU2006103270/15A RU2315135C2 (ru) 2006-02-06 2006-02-06 Метод выращивания неполярных эпитаксиальных гетероструктур на основе нитридов элементов iii группы
CNA2007800046713A CN101379226A (zh) 2006-02-06 2007-02-06 基于氮化镓的生长半导体异质结构的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800046713A Division CN101379226A (zh) 2006-02-06 2007-02-06 基于氮化镓的生长半导体异质结构的方法

Publications (2)

Publication Number Publication Date
CN103215648A true CN103215648A (zh) 2013-07-24
CN103215648B CN103215648B (zh) 2016-01-20

Family

ID=38345566

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310119866.XA Expired - Fee Related CN103215648B (zh) 2006-02-06 2007-02-06 基于氮化镓生长半导体异质结构的方法
CNA2007800046713A Pending CN101379226A (zh) 2006-02-06 2007-02-06 基于氮化镓的生长半导体异质结构的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007800046713A Pending CN101379226A (zh) 2006-02-06 2007-02-06 基于氮化镓的生长半导体异质结构的方法

Country Status (8)

Country Link
US (3) US7998773B2 (zh)
JP (1) JP4999866B2 (zh)
KR (1) KR101423459B1 (zh)
CN (2) CN103215648B (zh)
DE (1) DE112007000313T5 (zh)
FI (1) FI20085827A (zh)
RU (1) RU2315135C2 (zh)
WO (1) WO2007091920A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018260A1 (zh) * 2013-08-07 2015-02-12 厦门市三安光电科技有限公司 Ⅲ族氮化物外延结构及其生长方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158660A1 (en) * 2005-12-22 2007-07-12 Acol Technologies S.A. Optically active compositions and combinations of same with InGaN semiconductors
TWI460881B (zh) 2006-12-11 2014-11-11 Univ California 透明發光二極體
CN101527341B (zh) * 2008-03-07 2013-04-24 展晶科技(深圳)有限公司 三族氮化合物半导体发光二极管
TW201007091A (en) * 2008-05-08 2010-02-16 Lok F Gmbh Lamp device
WO2010017148A1 (en) 2008-08-04 2010-02-11 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
KR20110034695A (ko) 2008-08-05 2011-04-05 더 리전츠 오브 더 유니버시티 오브 캘리포니아 편광 감응 발광 다이오드들을 기초로 하는 조정가능한 백색 광
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
EP2523228B1 (en) * 2010-01-05 2017-04-26 Seoul Viosys Co., Ltd Light emitting diode
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
CN102593290B (zh) * 2012-01-18 2014-08-13 鄂尔多斯市荣泰光电科技有限责任公司 白光led外延片及其制作工艺以及白光led芯片的制作方法
CN103236477B (zh) * 2013-04-19 2015-08-12 安徽三安光电有限公司 一种led外延结构及其制备方法
RU2548610C2 (ru) * 2013-06-20 2015-04-20 Федеральное государственное бюджетное учреждение высшего профессионального образования и науки Санкт-Петербургский Академический университет - научно-образовательный центр нанотехнологий Российской академии наук СВЕТОДИОД БЕЛОГО СВЕЧЕНИЯ И СВЕТОДИОДНАЯ ГЕТЕРОСТРУКТУРА НА ОСНОВЕ ПОЛУПРОВОДНИКОВЫХ ТВЕРДЫХ РАСТВОРОВ GaPAsN НА ПОДЛОЖКАХ GaP И Si
KR102164796B1 (ko) 2014-08-28 2020-10-14 삼성전자주식회사 나노구조 반도체 발광소자
CN108321672B (zh) * 2018-03-12 2020-06-23 中国科学院苏州生物医学工程技术研究所 一种高峰值功率的钬激光系统
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device
CN112038217B (zh) * 2020-09-11 2021-07-16 广东广纳芯科技有限公司 AlN单晶薄膜生长方法及具有该薄膜的声表面波谐振器
JP2023008449A (ja) * 2021-07-06 2023-01-19 日機装株式会社 窒化物半導体発光素子
JP7340047B2 (ja) * 2022-01-25 2023-09-06 日機装株式会社 窒化物半導体発光素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221392A (ja) * 1996-02-16 1997-08-26 Matsushita Electric Ind Co Ltd 複合圧電基板とその製造方法
CN1251625A (zh) * 1997-03-12 2000-04-26 拉菲达发展公司 硅酸镧镓晶片及其制备方法
CN1268250A (zh) * 1996-07-29 2000-09-27 日亚化学工业株式会社 发光装置及显示装置
US20030198837A1 (en) * 2002-04-15 2003-10-23 Craven Michael D. Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
US20040206967A1 (en) * 2003-04-15 2004-10-21 Hitachi Cable, Ltd. Porous substrate for epitaxial growth, method for manufacturing same, and method for manufacturing III-nitride semiconductor substrate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US311177A (en) 1885-01-27 Horizontal windmill
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
JP3644191B2 (ja) 1996-06-25 2005-04-27 住友電気工業株式会社 半導体素子
JP3721674B2 (ja) 1996-12-05 2005-11-30 ソニー株式会社 窒化物系iii−v族化合物半導体基板の製造方法
JPH11261367A (ja) * 1998-03-12 1999-09-24 Tdk Corp 弾性表面波装置
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
RU2233013C2 (ru) * 2002-03-06 2004-07-20 Институт проблем химической физики РАН Полупроводниковый электролюминесцентный источник света и способ его изготовления (варианты)
JP2004075890A (ja) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc 無機蛍光体固体微粒子分散物の製造方法
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
JP4989891B2 (ja) * 2004-01-29 2012-08-01 学校法人慶應義塾 金属酸化物系蛍光体微粒子を利用した蛍光体及びその製造方法並びに蛍光変換体
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
KR100665298B1 (ko) * 2004-06-10 2007-01-04 서울반도체 주식회사 발광장치
US20070158660A1 (en) * 2005-12-22 2007-07-12 Acol Technologies S.A. Optically active compositions and combinations of same with InGaN semiconductors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221392A (ja) * 1996-02-16 1997-08-26 Matsushita Electric Ind Co Ltd 複合圧電基板とその製造方法
CN1268250A (zh) * 1996-07-29 2000-09-27 日亚化学工业株式会社 发光装置及显示装置
CN1251625A (zh) * 1997-03-12 2000-04-26 拉菲达发展公司 硅酸镧镓晶片及其制备方法
US20030198837A1 (en) * 2002-04-15 2003-10-23 Craven Michael D. Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
WO2003089696A1 (en) * 2002-04-15 2003-10-30 The Regents Of The University Of California Dislocation reduction in non-polar gallium nitride thin films
US20040206967A1 (en) * 2003-04-15 2004-10-21 Hitachi Cable, Ltd. Porous substrate for epitaxial growth, method for manufacturing same, and method for manufacturing III-nitride semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018260A1 (zh) * 2013-08-07 2015-02-12 厦门市三安光电科技有限公司 Ⅲ族氮化物外延结构及其生长方法

Also Published As

Publication number Publication date
KR20090029685A (ko) 2009-03-23
US7998773B2 (en) 2011-08-16
US20110266555A1 (en) 2011-11-03
US20130099244A1 (en) 2013-04-25
US20100081226A1 (en) 2010-04-01
WO2007091920B1 (en) 2007-11-29
JP4999866B2 (ja) 2012-08-15
CN101379226A (zh) 2009-03-04
US8546830B2 (en) 2013-10-01
RU2006103270A (ru) 2007-08-20
WO2007091920A2 (en) 2007-08-16
RU2315135C2 (ru) 2008-01-20
JP2009526379A (ja) 2009-07-16
US8174042B2 (en) 2012-05-08
FI20085827A (fi) 2008-09-04
DE112007000313T5 (de) 2009-07-02
KR101423459B1 (ko) 2014-07-25
WO2007091920A3 (en) 2007-10-18
CN103215648B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103215648B (zh) 基于氮化镓生长半导体异质结构的方法
US8882910B2 (en) AlGaN substrate and production method thereof
US6156581A (en) GaN-based devices using (Ga, AL, In)N base layers
US8044414B2 (en) Semiconductor layered structure and its method of formation, and light emitting device
KR101151167B1 (ko) Ⅲ족 질화물 화합물 반도체 소자 및 그의 제조 방법, ⅲ족 질화물 화합물 반도체 발광 소자 및 그의 제조 방법, 및 램프
US6533874B1 (en) GaN-based devices using thick (Ga, Al, In)N base layers
US8415654B2 (en) Low resistance ultraviolet light emitting device and method of fabricating the same
JP3304782B2 (ja) 半導体発光素子
US20150176154A1 (en) Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
EP2270879B1 (en) Nitride semiconductor light emitting element and manufacturing method thereof
US6777253B2 (en) Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
US20110220867A1 (en) Superlattice free ultraviolet emitter
JP2002170776A (ja) 低転位バッファーおよびその製造方法ならびに低転位バッファーを備えた素子
JP2000091234A (ja) 窒化物系iii−v族化合物半導体の製造方法
JP4131618B2 (ja) フォトニックデバイス用基板の製造方法
US11616164B2 (en) Method for producing a nitride compound semiconductor component
JP2001308464A (ja) 窒化物半導体素子、窒化物半導体結晶の作製方法および窒化物半導体基板
JPH09148626A (ja) 3−5族化合物半導体の製造方法
KR20090030651A (ko) 질화갈륨계 발광소자
JP2519232B2 (ja) 化合物半導体結晶層の製造方法
JPH10214999A (ja) Iii−v族窒化物半導体素子
KR20070071915A (ko) 질화 갈륨계 화합물 반도체 및 이의 제조 방법
KR20220123780A (ko) 다중양자우물 구조를 포함하는 박막의 제조방법, 다중양자우물 구조를 포함하는 박막 및 이를 포함하는 반도체 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120