CN103209056B - 发射机和接收机 - Google Patents

发射机和接收机 Download PDF

Info

Publication number
CN103209056B
CN103209056B CN201310140750.4A CN201310140750A CN103209056B CN 103209056 B CN103209056 B CN 103209056B CN 201310140750 A CN201310140750 A CN 201310140750A CN 103209056 B CN103209056 B CN 103209056B
Authority
CN
China
Prior art keywords
channel
signal
signal stream
multiplexing
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310140750.4A
Other languages
English (en)
Other versions
CN103209056A (zh
Inventor
瀬山崇志
伊达木隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN103209056A publication Critical patent/CN103209056A/zh
Application granted granted Critical
Publication of CN103209056B publication Critical patent/CN103209056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0086Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Abstract

本发明涉及发射机和接收机。该发射机具有:时分复用处理部,其对包括第一信道及第二信道在内的多个信道的信号流进行时分复用;控制部,其控制所述时分复用处理部,使得在时域中,编码长度比所述第一信道的信号流长的第二信道的信号流的全部或者一部分介于时分复用信号的发射功率因所述发射机处的发射处理而变化的定时与所述第一信道的信号流的发射定时之间。

Description

发射机和接收机
本申请是申请号为200810213159.6、申请日为2008年9月18日、发明名称为“无线电通信系统中的信号复用方法和发射机”的原案申请的分案申请。
技术领域
本发明涉及无线电频率传送系统内的发射机和接收机。本发明可以用于该系统中,以对信号进行时分复用,并且将信号例如从作为发射机的一个示例的用户装备传送到作为接收机的一个示例的无线电频率基站。
背景技术
无线电频率通信的传送系统包括这样的传送系统,该传送系统周期复制有效符号的一部分,并且将CP(循环前缀)(也称为保护间隔(GI))添加到时域中的有效符号中,用于减小由延波导致的符号间干扰。
OFDM(正交频分复用)和DFT-SOFDM(离散傅立叶变换扩频OFDM)为这种传送系统的典范。
在这些传送系统中,DFT-SOFDM为单载波发射,从而使其PAPR(峰均功率比)特性优异,并且能够使功率放大器(PA)在高效的工作点处工作。
因此,DFT-SOFDM作为上行链路(UL)的传送系统是优选的,上行链路的方向是从用户装备(UE)到基站(BS或者eNodeB),并且在3GPP(第三代合作伙伴计划)E-UTRA(演进型通用陆基无线电接入)中,讨论了作为对UL通信使用DFT-SOFDM的接入系统的SC-FDMA(单载波频分多址)的应用(例如,将其称为非专利文献1)。
而且,在非专利文献2的图2中,公开了一种传送格式,用于邻近于复用有用于传播信道训练(信道估计)的基准信号(RS)的块而复用针对由下行链路(DL)传送的共享信道的ACK/NACK信号,和指示在接收机处测量的DL传播信道质量的CQI(信道质量指示符)信号。
即,在该传输格式内,一个时隙由七块形成,RS被复用到该时隙的第四块内,而ACK/NACK信号和CQI信号被复用在分别靠近RS的第三块的结束处和第五块的开始处。
同时,在3GPPLTE(长期演进)中,设定了关于表示信号质量的EVM(差错向量幅度)和SEM(谱发射屏蔽)和关于相邻信道泄漏比(ACLR)的规则(参考非专利文献3)。
[非专利文献1]3GPPTS36.211V8.0.0
[非专利文献2]3GPPTSG-RANWG1,R1-073572,"ControlSignalingLocationinPresenceofDatainE-UTRAUL",Samsung
[非专利文献3]3GPPTS36.101V.0.1.0
在用于通过将CP添加到有效符号而进行传送的传送系统中,在添加CP之后,信号在每个符号(OFDM符号和SC-FDMA符号)的边界处不连续,从而使频谱无限扩展,并且电功率从信号频带泄漏出去(这也被称为相邻频带辐射)。
为抑制这种泄漏,在传送系统内,存在一种情况,其中通过将窗口函数(时间窗口)比如升余弦函数与信号(符号)相乘并且通过频带限制滤波器等进行滤波来进行脉冲整形,以使信号在符号边界附近适度衰减。
然而,当进行这种脉冲整形时,存在一种情况,其中符号内包含因脉冲整形而导致的信号衰减部分,而因对相邻符号的脉冲整形而导致的信号衰减部分则在通过在接收机侧消除CP来检测有效符号时被混合为符号间干扰。因此,在符号边界附近复用的信号的信号质量(接收特性)比如EVM等与复用到其它部分的信号相比,相对容易被劣化。
而且,在无线电通信系统中,存在一种情况,其中发射机的发射功率由于发射功率控制等而变化。在这种情况下,当功率变化是相对于图22中的虚线所指示的理想功率变化的图22中的实线所指示的适度功率变化时,比如相对于在其它定时复用的信号,在功率变化定时附近复用的信号的质量(比如EVM)也相对容易被劣化。
然而,考虑到在符号边界和功率变化点附近的信号质量相对于其它部分容易劣化的特点,上述传统技术不对传送符号执行复用。比如,非专利文献2仅尝试通过将ACK/NACK信号和CQI信号在用于传播信道训练的RS的时间最近(相邻)位置处复用来改进ACK/NACK信号和CQI信号的接收质量。
发明内容
本发明的一个目的是:考虑到信号质量在符号边界和电功率变化点附近相比于其它部分容易劣化的特点,而指定一种作为第一信道的信号流的一个示例的控制信号比如ACK/NACK信号和CQI信号的复用方法,由此改进控制信号的接收特性。
其中,不限于上述目的,也可以将从在后面描述的用于实现本发明的优选实施方式中描述的每个配置得到并且可能无法通过常规技术获得的效果视为本发明的另一个目的。
为实现上述目的,本说明书公开了以下“无线电频率传送系统内的信号复用方法和发射机”。
(1)即,在此公开的发射机具有:时分复用处理部,其对包括第一信道及第二信道在内的多个信道的信号流进行时分复用;控制部,其控制所述时分复用处理部,使得在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的信号流长的第二信道的信号流的全部或者一部分介于该定时与所述第一信道的信号流的发射定时之间。
(2)在此公开的另一发射机具有:时分复用处理部,其对包括第一信道及第二信道在内的多个信道的信号流进行时分复用;控制部,其控制所述时分复用处理部,使得在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的第一信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的第一信号流的发射定时之间,编码长度比所述第一信道的第一信号流长、且比所述第二信道的信号流短的所述第一信道的第二信号流介于所述第一信道的所述第一信号流与所述第二信道的信号流的至少一部分之间。
(3)在此公开的接收机具有:接收部,其接收以如下方式对包括第一信道及第二信道在内的多个信道的信号流进行时分复用而成的信号:在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的信号流的发射定时之间;分离部,其从接收到的所述信号中分离所述第一信道的信号流和所述第二信道的信号流;解调部,其对所述第一信道的信号流进行解调;以及解码部,其对解调后的所述第一信道的信号进行纠错解码。
(4)在此公开的另一种接收机具有:接收部,其接收以如下方式对包括第一信道及第二信道在内的多个信道的信号流进行时分复用而成的信号:在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的第一信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的第一信号流的发射定时之间,编码长度比所述第一信道的第一信号流长、且比所述第二信道的信号流短的所述第一信道的第二信号流介于所述第一信道的所述第一信号流与所述第二信道的信号流的至少一部分之间;分离部,其从接收到的所述信号中分离所述第一信道的信号流和所述第二信道的信号流;解调部,其对所述第一信道的信号流进行解调;以及解码部,其对解调后的所述第一信道的信号进行纠错解码。
根据以上公开的技术,可以改进接收机处的第一信道的第一信号流(比如,控制信道的信号流)的接收质量。
通过参照附图仔细阅读以下描述,将会理解本发明的以上和其它目的与特征。将参照附图更详细地描述本发明的优选实施方式。附图为例示性的,而不构成对本发明的范围的限制。
附图说明
图1为例示了系统频带内的无线电资源分配示例的图;
图2为例示了根据第一实施方式的发射机(UE)的配置示例的框图;
图3为例示了图2中所示的发射机的信道复用器内的信道复用处理的一个示例的示意图;
图4为例示了图2中所示的发射机的信道复用处理的一个示例的示意图;
图5为例示了在图2中所示的发射机处进行的CP插入处理的一个示例的示意图;
图6为例示了在图2中所示的发射机处进行的窗口函数处理的一个示例的示意图;
图7为例示了根据第一实施方式的接收机(BS)的配置示例的框图;
图8为例示了在图7所示的接收机处进行的有效符号检测处理的一个示例的示意图;
图9为例示了EVM仿真结果的一个示例的图;
图10为例示了根据第二实施方式的发射机的配置示例的框图;
图11为例示了信道复用处理(算法)的一个示例的流程图;
图12为例示了由图11所示的算法进行的信道复用处理的示意图;
图13为例示了在图10所示的发射机处进行的信道复用处理的另一个示例的示意图;
图14为例示了根据第三实施方式的发射机(UE)的配置示例的框图;
图15为例示了在图14所示的发射机处进行的信道复用处理的一个示例的示意图;
图16为例示了用于确定(选择)在图14所示的发射机处进行的信道复用处理中所用的偏移符号数量的一个数据示例的图;
图17为例示了根据第四实施方式的发射机(UE)的配置示例的框图;
图18为例示了图17所示的发射机的变型例的框图;
图19为例示了在图17或图18所示的发射机处进行的信道复用处理的一个示例的示意图;
图20为例示了在图17或图18所示的发射机处进行的信道复用处理的另一个示例的示意图;
图21为例示了在图17或图18所示的发射机处进行的信道复用处理的另一个示例的示意图;以及
图22为例示了因在发射机处进行的发射功率控制而引起的功率变化的一个示例的示意图。
具体实施方式
之后,将参考附图描述本发明的实施方式。然而,以下将描述的实施方式仅为例示性的,而并未将没有明显在以下将描述的实施方式中示出的各种修改例和技术的应用排除在外。即,修改例比如所述实施方式的组合是可能的。
(1)简述
如上所述,使用CP(GI)的无线电通信系统具有如下特性,即,信号质量在作为通过添加CP而获得的信号单元的符号的边界附近和在发射功率的变化点(定时)附近与时域内的其它部分相比相对容易劣化。
因此,在以下将要描述的实施方式中,假定发射机在与这种符号边界和发射功率变化点隔开(偏移)一个或更多个符号时间的符号时间处对控制信号比如ACK/NACK信号和CQI信号进行时分复用,并且将该控制信号发射到接收机。
此时,如果构成为对与通常在符号时间上分配在符号边界和发射功率变化点之间的控制信号相比具有更长编码长度和更高容错性(纠错能力)的数据信号的一部分或者全部以及控制信号进行时分复用,则也可以限制该特性(纠错)对接收机处的解码特性的影响。
换句话说,优选的是:在信号功率因发射机处的发射处理而变化的时间间隔内,优先于控制信号对至少一部分数据信号进行时分复用。
其中,控制信号为控制信道的信号流,并且为第一信道的信号(符号)流的一个示例,而数据信号为数据信道的信号(符号)流,并且为第二信道的信号流的一个示例。
而且此后,将SC-FDMA系统引用为使用CP的无线电传送系统的一个示例。而且,为了区分通过将CP添加到上述有效符号而获得的信号单元(SC-FDMA符号)与形成SC-FDMA符号的信号单元,为方便起见,将SC-FDMA符号称为块,而将形成SC-FDMA符号的分量信号称为符号。
在SC-FDMA系统中,如图1所示,比如,可能的是:多个发射机(比如UE)在同一时间间隔(TTI:发射时间间隔)内共享系统频带内的频率资源(系统频率资源),以执行与接收机(比如BS或eNodeB)之间的通信。其中,系统频带是指可以由作为接收机的一个示例的BS或eNodeB分配给发射机的无线电资源(频率资源)的量。
比如在图1中,三个UE#1、#2和#3可以共享系统频率资源以在时间间隔TTI#1内执行与BS之间的通信,而两个UE#1和#4可以共享系统频率资源以在时间间隔TTI#2内执行与BS之间的通信。而且,一个UE#3可以占用所有的系统频率资源以在时间间隔TTI#3内执行与BS之间的通信,而两个UE#3和#2可以共享系统频率资源以在时间间隔TTI#4内执行与BS之间的通信。
(1)第一实施方式
图2为例示了根据第一实施方式的发射机的配置的框图,而图7为例示了通过无线电链路而与图2所示的发射机1通信的接收机3的配置的框图。有时候发射机1为用户装备(UE),而接收机3是基站(BS),而另一方面,其它时候发射机1为BS,而接收机3是UE。然而在以下描述中,将在假定发射机1为UE而接收机3是BS的情况下进行描述。
(发射机1)
如图2所示,本实施方式中的发射机(UE)1设置有比如数据生成器11、纠错编码器12、数据调制器13、控制信号生成器14、控制信号调制器15、信道复用器16、DFT(离散傅立叶变换器)17、基准信号生成器18、基准信号复用器19、子载波映射器20、IFFT(快速傅立叶逆变换器)21、CP插入器22、窗口函数处理器23、无线电单元24、发射天线25、接收天线26、接收处理器27、窗口函数处理控制器28和信道复用控制器29。
数据生成器11生成要发送给接收机3的数据信号。该数据信号包括除了控制信息之外的其它各种数据,比如音频、字母、图像和活动图像。
纠错编码器12对数据生成器11生成的数据信号进行纠错编码。纠错码包括TURBO码。
数据调制器13用预定的调制方案对纠错编码器12获取的比特流进行调制,并且在应用多级调制方案比如QPSK和16-QAM时,数据调制器13将比特流调制为具有同相分量(I分量)和正交分量(Q分量)的数据信号符号(此后也将其称为数据符号)。
控制信号生成器14生成包括ACK/NACK信号和CQI信号的控制信号。当正常执行了对从接收机3接收的信号的接收处理时(比如,没有CRC差错),生成了ACK信号,另一方面,当未正常执行该接收处理时,生成了NACK信号。而且,基于从接收机3接收到的信号的接收质量而循环确定且生成CQI信号。
控制信号调制器15用预定的调制方案(该调制方案可以与数据信号的调制方案相同或不同)对控制信号生成器14所生成的控制信号进行调制,并且在应用多级调制方案比如QPSK和16-QAM时,该控制信号调制器15将该控制信号调制为具有同相分量(I分量)和正交分量(Q分量)的控制信号。其中,控制信号可以由TURBO编码等纠错编码为数据信号。
信道复用器16对数据调制器13所获取的数据信号符号和控制信号调制器15所获取的控制信号符号进行时分复用,以生成NDFT符号流C(k)(0≤k≤NDFT-1)。
然而,本实施方式中的信道复用器16按如下方式执行复用(此后也将其称为偏移复用),即,比如把控制信号符号在时域内设置在与块边界隔开(偏移)预定数量个符号的时间段的位置(定时)处,如图3所示。偏移复用由比如信道复用控制器29所控制(设定)。
图3中的(1)到(3)中的每一个示出了把控制信号符号时分复用在相对于块边界偏移一个到三个符号时间的位置处(定时)的状态。换句话说,信道复用器16执行时分复用,以将一个或更多个控制信号之外的其它信号符号分配在控制信号与块边界之间。
此时,信号在块边界附近容易劣化,因此优选的是:要分配在控制信号与块边界之间的信号(偏移符号)是重要性低于控制信号的重要性的信号、容错性高于控制信号的容错性的信号,比如因其编码长度长于控制信号的编码长度且其纠错能力相对高于控制信号的纠错能力而几乎不会影响解码之后的接收特性信号(在该实施方式中为数据信号)的一部分或者全部。
因此,即使在相同的控制信号内,当重要性程度和编码长度不同时,针对具有较低重要性的信号和具有较长编码长度的信号的情况,可以设定成在更加靠近块边界的位置(定时)处执行时分复用。
比如,当将ACK/NACK信号与CQI信号进行比较时,通常,CQI信号的重要性和编码长度分别低于和长于ACK/NACK信号的重要性和编码长度(ACK/NACK信号大约为1或2比特,而CQI信号大约为20比特),从而优选的是,把CQI信号时分复用在更加靠近块边界的定时处。
然而,如稍后将描述的图3和图4所示,这并不排除把ACK/NACK信号时分复用在更加靠近块边界的定时处。
同时,考虑到信号衰减间隔的长度(Nwin)、单位符号的时间长度、系统所需的各种参数比如ACLR、SEM和EVM,需要确定偏移符号数量。稍后将描述这种情况的一个示例。
而且,不需要在块内实现偏移复用,并且可以将其限于一部分块。比如,当和在非专利文献2中一样周期发射基准信号(RS)时,可以将偏移复用的目标块限于与复用了RS的块相邻的块。
图4示出了这种情况的一个示例。图4中的(2)示出了这样一种状态,其中以将一个符号时间的数据符号分配在控制信号符号与块边界之间的方式把该控制信号符号复用在与RS块相邻且在时间上位于该RS块之前的块处,图4中的(3)示出了这样一种状态,其中以将一个符号时间的数据符号分配在控制信号符号与块边界之间的方式把该控制信号符号复用在与RS块相邻且在时间上位于该RS块之后的块处,而图4中的(1)则示出了这样一种状态,其中没有在与RS块不相邻的块内复用控制信号符号。
其中,偏移符号的数量可以为两个或更多个,并且可以考虑因根据偏移复用产生的控制信号与RS的时间距离而造成的用于补偿(均衡)控制信号的信道估计精度的劣化程度作为一个参数,来确定偏移符号的数量。
即,信道复用控制器29能够根据块边界是否为与复用了用于在接收机处估计传播信道估计的基准信号的块之间的边界,而确定在块边界与控制信号之间分配的数据信号量。
而且,偏移符号的数量可以针对偏移复用的每个目标块是相同的,或者可以针对每个目标块或一个或多个目标块是不同的。此外,可以将偏移符号的数量作为一个控制信号而由发射机1通知给接收机3,以便允许接收机3识别,或者可以将其作为系统规范而提前设置在发射机1(信道复用控制器29)和接收机3(CP消除器33)内。在后一种情况下,可以免去对于由发射机1向接收机3通知的需要。
接下来,如下面的公式(1)所表达的那样,DTF17通过以NDFT符号流C(k)为单位执行NDFT点DFT(离散傅里叶变换)而将信道复用器16所获取的复用信号转换为NDFT频域信号C(n)。
C ( n ) = 1 N D F T Σ k = 0 N D F T - 1 c ( k ) exp ( - j 2 π n k N D F T ) - - - ( 1 )
基准信号(RS)生成器18生成由接收机3所使用的RS,用于接收机3与发射机1之间的传播信道训练(信道估计)和传播信道补偿。
基准信号复用器19通过选择性地输出DTF17的输出和RS生成器18所生成的RS,而在时分复用了数据符号和控制信号符号的块与RS之间执行块间复用。
子载波映射器20将块间复用的信号映射到已分配的子载波分量。映射方法包括用于映射到NDFT串行子载波以维持单载波特性的局部映射法,和用于在发射信号之间周期插入0信号的分布式映射法。将0信号映射到未分配的子载波分量。因此,NDFT频域信号C(n)变成了NFFT频域信号C'(n)。
IFFT21通过执行在以下公式2中表示的NFFT点IFFT(快速傅立叶逆变换)而将NFFT频域信号C'(n)转化为NFFT采样时域信号s(k)。
s ( k ) = 1 N FFT Σ n = 0 N FFT - 1 C ′ ( n ) exp ( j 2 πnk N FFT ) - - - ( 2 )
CP插入器22将时域信号(有效符号)s(k)的尾部NCP采样添加到时域信号s(k)的开头,如以下公式(3)所表示的那样,以生成NFFT+NCP采样信号块Sblock(t)(参考图5)。注意:0≤t≤NCP+NFFT-1。
sblock(t)=s(t-NCP)(3)
窗口函数处理器23将Nwin/2采样信号复制到块的开头和末尾,从而使信号在块内连续,如下列公式(4)到(6)所表示和图6中的(1)和(2)所示的那样。在此,Nwin由窗口函数处理控制器28根据系统频带、已分配的传送带宽和已分配的传送频带来确定。作为倍乘了窗口函数的间隔(执行了信号衰减处理的间隔)的Nwin越长,EVM劣化越大。
s'(t)=sblock(t+NFFT-Nwin/2),-Nwin/2≤t≤-1(4)
s'(t)=sblock(t),0≤t≤NCP+NFFT-1(5)
s'(t)=sblock(t+NCP),NCP+NFFT≤t≤NCP+NFFT+Nwin/2-1(6)
其中,已分配的传送带宽是指作为频率资源而由接收机3分配给发射机1以作为要由发射机1使用来进行发射的频率资源的资源量,并且分配能够以称为资源块(RB)为单位进行。在此,1RB具有1个子载波带宽,并且这可以是当接收机3选择(调度)要分配给被允许进行发射的发射机1的频率资源(传送频带)时的基本单位。
另外,已分配的传送频带指示由接收机3分配给发射机1的频率资源在系统频带内的占用位置,比如,将已分配的传送带宽的设置(开始)位置指示为以RB为单位的偏移值等。
接下来,窗口函数处理器23倍乘窗口函数w(t),从而使信号在块的两端(Nwin的时间间隔)适度地衰减,如以下公式(7)表示和图6(2)和6(3)所示。
s”(t)=s'(t)·w(t)(7)
当将升余弦波形用作窗口函数w(t)的一个示例时,可以将其表示为以下公式(8):
w ( t ) = 1 2 + 1 2 sin ( π N w i n t ) - N w i n 2 ≤ t ≤ N w i n 2 - 1 1 N w i n 2 ≤ t ≤ N G I + N F F T - N w i n 2 - 1 1 2 - 1 2 sin ( π N w i n ( t - N G I - N F F T ) ) N G I + N F F T - N w i n 2 ≤ t ≤ N G I + N F F T + N w i n 2 - 1 - - - ( 8 )
接下来,窗口函数处理器23将信号衰减单元添加到相邻的块之间,从而使平均功率恒定,如下列公式(9)和(10)表示和图6中的(4)所示。
s T W ( t ) = s ′ ′ ( 1 - 1 , t + N G I + N F F T - 1 ) + s ′ ′ ( l , t ) , - N w i n 2 ≤ t ≤ N w i n 2 - 1 - - - ( 9 )
s T W ( t ) s ′ ′ ( l , t ) + s ′ ′ ( l , t - N G I - N F F T + 1 ) , N G I + N F F T - N w i n 2 - 1 ≤ t ≤ N G I + N F F T + N w i n 2 - 1 - - - ( 10 )
其中,上述窗口函数处理是用于抑制从信号频带泄漏功率的其中一种手段,除此之外,也可以应用使用频带限制滤波器来执行等效信号衰减处理的手段。
无线电单元24对窗口函数处理器23的输出执行数模(DA)转换和向无线电频率的变频(上变频),并且将其从发射天线25发射到接收机3。
接收处理器27执行对从接收机3由接收天线26所接收到的信号的接收处理。接收处理包括低噪声放大、向基带频率变频(下变频)、模数(AD)转换、解调、解码等。此外,所接收到的信号包括公共控制信道和单独控制信道的信号,公共控制信道的信号包括与系统频带有关的信息,而单独控制信道的信号包括与已分配的传送频带和已分配的传送带宽有关的信息。
窗口函数处理控制器28根据诸如在接收处理器27处获取的系统频带、已分配的传送带宽和已分配的传送频带的信息而在窗口函数处理器23处对窗口函数处理(Nwin的设定)进行控制。
(接收机3)
另一方面,如图7所示,接收机3设置有比如接收天线31、无线电单元32、CP消除器33、FFT(快速傅立叶变换器)34、子载波解映射器35、基准信号分离器36、信道估计器37、频域均衡器38、IDFT(离散傅立叶逆变换器)39、数据/控制信号分离器40、控制信号解调器41、数据解调器42、纠错解码器43、控制信道处理器51、发射处理器52和发射天线53。
无线电单元32对接收天线31所接收到的信号执行低噪声放大、从无线电频率到基带频率的变频(下变频),和AD转换。
CP消除器33从在无线电频率处理器32处处理过的接收信号中消除CP,并且提取(抽出)块的有效符号部分。这在图8中得到了例示。即,CP消除器32在接收功率最大的前导路径(在此为路径#1)的FFT定时处剪取有效符号部分。对于路径#2,虽然信号以包括CP的一部分的形式被剪取,但由于CP是通过循环复制有效符号而获取的,结果,可以正确地仅剪取有效符号(NFFT采样)。
然而,对于延迟时间长于CP长度的延迟波的路径#3,相邻块(第l-1个)的信号作为块间干扰而被混合到有效符号中。而且,对于路径#1,存在这样一种情况,其中信号在发射机1处被窗口函数处理所衰减的部分包含在有效符号内。而且,路径#2的(第l+1个)块的被执行窗口函数处理的一部分可以混合到相邻的第(l+1)个块的有效符号内。
这些事件可能造成设置在DFT-SOFDM内的块的开头和/或末尾的符号的EVM劣化。图9示出了在NDFT=1200、NFFT=2048和Nwin=12的情况中的每个符号的EVM仿真结果的一个示例。如图9所示,可以理解:在块边界附近(开头和末尾)的符号的劣化是显著的。
因此,当在块边界附近的符号处对控制信号比如编码长度要比数据信号的编码长度短的ACK/NACK信号和CQI信号进行时分复用时,容易受到EVM劣化的影响,并且其接收特性相对于其他符号更容易劣化。
然而,在本实施方式中,在发射机1内,由于对控制信号按与块边界通过数据符号的至少一部分而隔开一个或更多个符号的方式进行时分复用,因此较少受到EVM劣化的影响,并且可以抑制接收特性的劣化。在这种情况下,虽然在块边界附近复用的除控制信号之外的其它信号容易受到EVM劣化的影响,在该其它信号是编码长度比控制信号的编码长度长的信号的至少一部分的情况下,其被通过纠错解码而正确解码的可能性要高于控制信号的可能性。
而且,没有必要故意在时间方向(向前)上偏移CP消除器33的剪取范围,从而使实质性的CP长度变短,并且通过比CP长度时间长的多径能够避免块间干扰的增大。
接下来,FFT34通过NFFT点FFT处理而将通过在上述CP消除器33处消除CP而获取的接收信号(有效符号)转换为频域信号,并且将该频域信号输入到子载波解映射器35。
子载波解映射器35从通过FFT处理所获取的频域信号中取出已分配的传送频带的子载波分量,并且将该子载波分量输入到基准信号分离器36。
基准信号分离器36从由子载波解映射器35输入的子载波分量的接收信号中分离出RS和其它信道的信号,并且分别将RS输入到信道估计器,而将其他信道的信号输入到频域均衡器38。
信道估计器37使用RS来对信道估计器37与发射机1之间的接收信道状态进行估计。
频域均衡器38通过使用信道估计器37的估计结果(信道估计值)来在频域中对除分离出的RS之外的其它信道的接收信号进行均衡(补偿),并且将其输出到IDFT39。
IDFT39通过NDFT点离散傅立叶逆变换(IDFT)处理而将均衡后的接收信号转换为NDFT时域信号(接收符号流),并且将该NDFT时域信号输出到数据/控制信号分离器40。
数据/控制信号分离器40从NDFT时域接收符号流中分离出时分复用的接收数据符号和接收控制信号符号,并且分别将接收数据符号输入到数据解调器42,而将接收控制信号符号输入到控制信号解调器41。
控制信号解调器41用与发射机1处的调制方案对应的解调方案对输入的接收控制信号符号进行解调,并且数据解调单元42用与发射机1处的调制系统对应的解调方案对输入的接收数据符号进行解调。
纠错解码器43用与发射机1处的纠错编码方案对应的解码方案对解调后的接收数据符号进行纠错解码。
其中,当在发射机1处对控制信号符号进行纠错编码时,还用与纠错编码方案对应的解码方案对控制信号符号进行纠错解码。
控制信道处理器51生成包括有关系统频带的信息的公共控制信道的信号,以及包括有关传送分配带宽和传送分配频带的信息的单独控制信道的信号,并且将其传送到发射处理器52。
发射处理器52对每个控制信道的信号执行DA转换、向无线电频率的变频(上变频)和向预定发射功率的放大,并且将其从发射天线53传送到发射机1。
如上所述,根据本实施方式,由于当在发射机1处对数据信号和控制信号进行时分复用时,把控制信号复用为在时间上偏离块边界以在时域上在该控制信号与块边界之间分配作为该控制信号之外的其它信号的一个示例的数据信号的至少一部分,所以能够使控制信号在时间上远离在发射机1处的发射处理中利用窗口函数和频带限制滤波器等执行了脉冲整形处理(信号衰减处理)的块边界(信号衰减间隔)。
因此,可以对控制信号进行时分复用,同时避免信号质量在块边界附近劣化的符号,可以抑制信号质量比如有关控制信号的EVM因信号衰减处理而劣化,并且进一步可以改进接收机3处的控制信号的接收质量。
然后,作为一个优选方面,由于分配在控制信号与块边界之间的数据信号(符号)为编码长度比控制信号的编码长度长的数据信号的分量信号,即使块边界附近的信号质量容易劣化,对接收机3处的解码特性的影响也很小。
(3)第二实施方式
图10为例示了根据第二实施方式的发射机(UE)的配置的框图。图10中所示的发射机1不同于在图2中所示且已描述的发射机1之处在于,它作为替换还设置有信道复用控制器29a。其中,在图10中,具有与已经描述的标号相同的标号的组件设有与已经描述的组件相同或者类似的功能,除非此后另行说明。此外,接收机3的配置可以与已经描述的接收机的配置相同或者类似。
在此,该实施方式中的信道复用控制器29a基于分别在调制器13和调制器15处被调制的数据信号和控制信号(比如CQI信号和ACK/NACK信号)的编码长度对信道复用器16的时分复用处理进行控制。更具体地讲,按如下方式执行时分复用处理,即,把编码长度较长的信号相对于其他信号复用在更靠近块边界的定时处。
这是因为,编码长度较长的信号对在接收机3处解码之后的接收特性具有较少的影响,因为即使如上所述,该编码长度较长的信号包括信号质量容易被块边界附近的信号衰减处理而劣化的符号,该编码长度较长的信号的可以基于其余符号进行纠错解码的的可能性也会高于编码长度较短的信号的可能性。
图11例示了信道复用控制器29a执行的信道复用算法的一个示例。首先,信道复用控制器29a以编码长度的降序对Nchannel个信道(数据信道和控制信道)的信号进行排序(处理1010)。
然后,信道复用控制器29a对信道复用器16进行控制,以按从i=0起(即,从编码长度较长的信道的符号流起)、NDFT符号长度的块的第0个(头部)符号、第NDFT-1个(尾部)符号、第1个符号(头部符号的下一个符号)、第NDFT-2个(比尾部信号向块的中央部分靠近1个符号的)符号的顺序,从块的两端向中央部分交替复用符号,其中其信道的信号(符号流)为si(k),而其编码长度为Li(处理1020到1080)。
其中,处理1050是用于判断对块的开始侧和末尾侧的哪个符号进行复用的处理,并且在此,其是用于判断当将t除以2所得余数为0(在“是”的情况下)对块的开始侧进行复用,而当余数不是0时(在“否”的情况下)在块的末尾侧进行复用的处理。
而且,处理1060是用于确定在对块的开始侧的符号进行复用时(在处理1050中为“是”的情况下)的符号位置的处理,而处理1070是用于确定在对块的末尾侧的符号进行复用时(在处理1050中为“否”的情况下)的符号位置的处理。注意:“floor(x)”表示将不大于x的最大整数返回给输入变量x(实数)的函数。
信道复用控制器29a重复上述判断和符号位置确定,直到Nchannel个信道的所有符号被复用为止(直到在处理1030和1040中的任何一个循环(环)条件(i<Nchannel和k<Li)未被满足为止)。
图12例示了采用上述算法进行的信道复用的一个示例。
在图12中,交替复用的一个示例优先从编码长度较长的信道的信号开始,并且从块的开头和末尾到中央部分,假定NDFT=18(符号),数据信号的编码长度Ldata=10(符号),CQI信号的编码长度LCQI=6(符号),并且ACK/NACK信号的编码长度LACK/NACK=2(符号)。
在该示例中,编码长度最长的数据信号以符号位置(定时)d(0)到d(9)的顺序被时分复用在这些符号位置(定时)d(0)到d(9)处,而编码长度次之的CQI信号则以符号位置c(0)到c(5)的顺序被时分复用在这些符号位置c(0)到c(5)处,而编码长度最短的ACK/NACK信号则以符号位置a(0)到a(1)的顺序被时分复用在这些符号位置a(0)到a(1)。
即,信道复用控制器29a能够控制信道复用器16的时分复用处理,以使控制信号和数据信号以编码长度的降序排列在远离块边界的方向上。
根据该信道复用方法,编码长度较短的信道的信号容易被时分复用在块的中央部处,而较少经受窗口函数处理器23的脉冲整形(信号衰减)处理且较少经受多径影响。因此,编码长度比数据信号的编码长度短的控制信号(CQI信号和ACK/NACK信号)容易被时分复用到相比于数据信号更靠近块的中央部分的符号位置处,从而可以抑制接收机3处的控制信号的接收特性的劣化。
此外,相对而言,在更靠近块边界的符号位置处,容易时分复用编码长度较长的信号,从而信号对在接收机3处解码之后的接收特性的影响较小。
其中,也不需要在块内实现该实施方式的信道复用方法,而可以将其限于块的一部分。比如,当和在非专利文献2中一样周期传送基准信号(RS)时,可以将偏移复用的目标块限于和复用了RS的块相邻的块。
此外,当将和RS块相邻的块设定为该实施方式的信道复用方法的目标块时,可以在与RS块的边界侧设置了预定数量符号的数据信号之后,优先设置控制信号。
图13示出了这种情况的一个示例。如图13中的(2)和(3)所示,只有一个数据信号符号设置在与RS块的边界处,此后,优先设置控制信号(CQI信号和ACK/NACK信号)。注意:假定NDFT=18(符号),数据信号的编码长度Ldata=14(符号),CQI信号的编码长度LCQI=3(符号),并且ACK/NACK信号的编码长度LACK/NACK=1(符号)。
比如,在图13中的(2)所示的示例中,信道复用控制器29a按如下方式控制信道复用器16处的时分复用处理,即,在和RS块相邻且时间上在该RS块之前的块内,将数据信号符号d(0)设置在块的开头处的一个符号时间内,然后将数据信号符号d(1)设置在块的末尾处的一个符号时间内,此后,将CQI信号c(0)、c(1)和c(2)和ACK/NACK信号符号a(0)以该顺序朝着块的中央部分进行设置,并将剩余的12个符号d(2)到d(13)以该顺序针对剩余的12个符号时间从块的开头和末尾起交替地进行设置。
另一方面,在图13中的(3)所示的示例中,信道复用控制器29a按如下方式控制信道复用器16处的时分复用处理,即,在和RS块相邻且时间上在该RS块之后的块中,将数据信号符号d(0)设置在块的开头处的一个符号时间内,然后将CQI信号符号c(0)、c(1)和c(2)以及ACK/NACK信号符号a(0)以该顺序朝着块的中央部分进行设置,并将数据信号符号的剩余的12个符号d(2)到d(13)以该顺序针对剩余的12个符号时间而从块的开头和末尾起交替地进行设置。
其中,如图13中的(1)所示,对于和RS块不相邻的块,信道复用控制器29a按如下方式控制信道复用器16处的时分复用处理,即,将18个数据信号符号d(0)到d(17)以该顺序从块的开头侧和末尾侧起交替地进行设置。
也就是说,信道复用控制器29a能够按如下方式控制信道复用器16的时分复用处理,即,当块边界是与复用了用于在接收机3处进行传播信道估计的基准信号的RS块之间的边界时,在时分复用的过程中优先时分复用控制信号符号,从而使得数据符号的每个信号按照顺序排列在远离块边界的方向上。
在图12所示的信道复用方法中,更靠近块边界处的符号时间毫无例外地优先复用了编码长度较长的信道的信号,从而一般容易把编码长度比数据信号的编码长度短的控制信号(ACK/NACK信号和CQI信号)设置在块的中央部分处且在时间上远离RS,结果,用于在接收机3处对控制信号进行补偿的信道估计值的精度可能降低。
另一方面,根据图13所示的信道复用方法,能够防止控制信号在时间上过于远离RS,从而能够在接收机3处利用基于在时间上更靠近控制信号的RS而获取的具有更好精度的信道估计值来执行控制信号的信道补偿。
其中,在图13中,虽然只有一个数据信号符号设置在控制信号与和RS块的边界之间,还可以优先设置两个或更多个数据信号符号。而且对于偏移符号的数量,希望考虑到信道估计精度因作为一个参数的与RS的时间距离而劣化的程度相对于系统的诸如ACLR、SEM、EVM的参数之间的关系来确定它。
(4)第三实施方式
图14为例示了根据第三实施方式的发射机的配置的框图。图14所示的发射机1不同于已经描述的在图2中所示的发射机1之处在于,图14所示的发射机1作为替换设置有信道复用控制器29b。其中,在图14中,具有与已经描述的标号相同的标号的组件设有与已经描述的组件相同或者类似的功能,除非此后另行说明。此外,接收机3的配置可以与已经描述的接收机的配置相同或者类似。
在此,该实施方式的信道复用控制器29b基于在接收处理器27处接收到的(由接收机3通知或分配的)与系统频带、已分配的传送频带和已分配的传送带宽中的任一个有关的信息或者两个或更多个信息的组合,来确定控制信号的时分复用位置(定时)从块边界偏移的符号数,并且根据该偏移符号数来控制信道复用器16处的时分复用处理。
比如,在已分配的传送带宽为窄带,而已分配的传送频带(开始位置)位于系统频带的一端的情况下,考虑到ACLR和SEM,这是一种严格的条件,并且在窗口函数处理器23内,存在执行更适度的窗口函数处理(信号衰减处理)的情况,该窗口函数处理的时间窗口Nwin要比在已分配的传送频带被分配在系统频带的中央部分附近的情况中的时间窗口长。
图15中的(1)例示了这种情况的一个示例。在此,示出了系统带宽为4资源块(RB)、已分配的传送带宽为1RB而已分配的传送频带的开始位置位于系统频带的低频侧端部的示例。
在这种情况下,优选的是,把偏移符号数设置成大于在已分配的传送频带被分配在系统频带的中央部分附近的情况中的偏移符号数,如图15中的(2)所示。比如,在图15中的(1)所示的示例中,设定为偏移符号数=2。
此外,当已分配的传送带宽为宽带时,比如,当传送频带被分配在在系统频带的全频带(4RB)上时,如图15中的(3)所示,用于一个符号的时间间隔变短。因此,当由发射机1处的时间窗口处理(窗口函数处理器23)造成的块间干扰量与多径造成的块间干扰量相同时,相比于已分配的传送带宽较小时的情况,在块边界附近的更多符号受到影响。
而且在这种情况下,优选的是,把偏移符号数设置成大于在如图15中的(2)所示已分配的传送频带被分配在系统频带的中央部分附近的情况中的偏移符号数。比如,在图15中的(3)所示的示例中,设定为偏移符号数=6。
图16例示了在NFFT=8的情况中,根据已分配的传送频带(开始位置)和已分配的传送带宽而选择(确定)偏移符号数的标准的一个示例。在图16中,从0到7的传送频带(开始位置)表示比如以RB为单位从系统频带的低频侧端起的偏移位置,而从1到8的传送带宽表示比如RB的数量。
信道复用控制器29b将作为用于确定(选择)偏移符号数的标准的数据以表格形式等而保持在未显示的存储器等内,并且基于该数据确定(选择)与在接收处理器27处获取的已分配的传送频带(开始位置)和已分配的传送带宽(RB的数量)对应的偏移符号数。
比如,在图16所示的示例中,当把1RB的传送带宽分配到系统频带的端部(已分配的传送频带的开始位置为0或7)时,偏移符号数为3。即,选择了比在把1RB的相同传送带宽分配在系统频带端部之外的其它位置的情况中的偏移符号数大的偏移符号数。
通过这种方式,信道复用控制器29b能够根据系统内可用的频带(系统频带)、由接收机3分配的已分配频率带宽和由接收机3分配的已分配频带中的任何一个或者两个或更多个的组合,来确定分配在块边界与控制信号之间的数据信号量。
其中,可以将图16所示的数据(表格)作为一个控制信号而由发射机1通知给接收机3,或者可以将该数据作为系统规范而提前设置在发射机1和接收机3内(比如,CP消除器33内),以与接收机3共享。在后一种情况下,不需要由发射机1向接收机3进行通知。
而且,当设定多个系统频带时,可以通过允许信道复用控制器29b比如具有图16所示的针对每个系统频带的数据(表格),根据上述针对每个系统频带的已分配传送频带(开始位置)和已分配传送带宽(RB的数量),来执行偏移符号数的选择。
(5)第四实施方式
如上所述,在发射机1处的发射过程中,信号质量不仅在块边界附近因信号衰减处理而相对劣化,而且在发射功率变化点(定时)附近相对于其它部分而相对劣化。
因此,在该实施方式中,描述了与针对已描述实施方式中的块边界一样处理发射功率变化点,由此使控制信号从发射功率变化点偏移预定符号时间,以进行时分复用。
图17例示了该实施方式的发射机1的配置示例。图17所示的发射机1不同于图2中所示的已描述的发射机1之处在于,图17所示的发射机1上作为替换设置有信道复用控制器29c,另外还设置有发射功率控制器30a,并且分别在从数据调制器13到信道复用器16、从控制信号调制器15到信道复用器16和从基准信号生成器18到基准信号复用器19的信号线上设置有增益系数倍乘单元30-1、30-2和30-3。其中,在图17中,具有与已经描述的标号相同的标号的组件设有与已经描述的组件相同或者类似的功能,除非此后另行说明。此外,接收机3的配置可以与已经描述的接收机的配置相同或者类似。
在此,发射功率控制器30a基于由接收处理器27从接收机3接收到的发射功率控制信息而确定发射功率,并且通过分别在增益系数倍乘单元30-1、30-2和30-3处对数据信号、控制信号和基准信号倍乘依赖于发射功率的增益系数来控制作为数字信号处理的每个信号的信号功率。其中,增益系数可以是针对增益系数倍乘单元30-1、30-2和30-3中的每一个共同的值,或者可以是单独的值。
信道复用控制器29c按如下方式控制信道复用器16的时分复用处理,即,在接收到发射功率控制器30a对与功率控制定时有关的信息的通知时,基于该功率控制定时信息,把控制信号时分复用在与产生功率变化的定时偏离不小于一个符号时间的符号时间处。
其中,存在这样一种情况,即,通过无线电单元24处的模拟信号处理来实现发射机1处的发射功率的控制。比如,在需要(可能无法通过数字信号处理来实现的)功率控制(可变)宽度的情况中,优选地通过模拟信号处理来控制。在这种情况下,比如,如图18所示,作为替换可以设置用于对无线电单元24处的发射功率(比如,未示出的功率放大器的增益)进行控制的发射功率控制器30b。
图19例示了该实施方式的信道复用处理的一个示例。
即,该实施方式的信道复用器16在信道复用控制器29c的控制下,按如下方式执行复用,即,在时域内将控制信号符号设置在与发射功率控制器30a(或30b)的发射功率控制定时(功率变化点)隔开(偏离)预定数量个符号的时段的位置(定时)处。
图19中的(1)到(3)各例示了控制信号符号被时分复用在与功率变化点偏移一到三个符号时间的位置(定时)处的状态。注意,偏移符号数并不限于一到三个符号。
而且,在该实施方式中,还希望考虑到一个符号的时间长度和系统所需的各种参数比如ACLR、SEM和EVM来确定偏移符号数。
其中,如第二实施方式(图12)中所描述的那样,信道复用控制器29c可以基于数据信号和控制信号的编码长度来控制信道复用器16的时分复用处理。
即,比如,可以将信道复用器16控制(设定)成,使编码长度较长的信号被复用在比其它信号更靠近功率变化点的定时处。通过这种方式,可以获得与第二实施方式的效果和优点类似的效果和优点。
图20例示了这种情况的一个示例。图20例示了这样一种状态,即,假定编码长度按数据信号、CQI信号和ACK/NACK信号的顺序加长,编码长度较长的信号被时分复用在更靠近功率变化点的符号时间处。
即,信道复用控制器29c能够按如下方式控制信道复用器16处的时分复用处理,即,使控制信号和数据信号以每个信号的容错性的降序排列在远离功率变化点的定时的方向上。
其中,可以将与该实施方式的功率变化点有关的偏移复用和用于上述块边界的偏移复用一起实现。
在这种情况中,在时域中,关于功率变化点和块边界,信道复用控制器29c控制信道复用器16处的时分复用,以将数据信号的至少一部分(不少于一个符号)分配在它们与控制信号之间。
图21例示了所述信道复用的一个示例。图21例示了这样一种状态,即,隔着数据符号和CQI信号符号对编码长度比CQI信号的编码长度短的ACK/NACK信号进行时分复用,而使该ACK/NACK信号与功率变化点和块边界都隔开。注意,排列并不限于图21中所示的排列。
比如,当块边界为块与RS块之间的边界时,可以按如下方式进行控制,即,隔着一个或更多个数据符号把控制信号符号复用在更靠近RS块的符号时间处,以便在接收机3处基于RS块而应用高精度信道估计结果。
由于在不脱离本发明的基本特性的实质的情况下,可以按多种形式实现本发明,因此目前的实施方式为例示性的而不是限制性的,因为发明范围由所附的权利要求而不是由权利要求前面的描述来限定,因此所有落入权利要求的范围和边界或权利要求的范围和边界的等同物内的变化都被权利要求所涵盖。

Claims (6)

1.一种发射机,其特征在于,其具有:
时分复用处理部,其对包括第一信道及第二信道在内的多个信道的信号流进行时分复用;
控制部,其控制所述时分复用处理部,使得在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的信号流长的第二信道的信号流的全部或者一部分介于该定时与所述第一信道的信号流的发射定时之间。
2.根据权利要求1所述的发射机,其特征在于,
所述第一信道的信号流为控制信道的信号流,所述第二信道的信号流为数据信道的信号流。
3.一种发射机,其特征在于,其具有:
时分复用处理部,其对包括第一信道及第二信道在内的多个信道的信号流进行时分复用;
控制部,其控制所述时分复用处理部,使得在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的第一信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的第一信号流的发射定时之间,编码长度比所述第一信道的第一信号流长、且比所述第二信道的信号流短的所述第一信道的第二信号流介于所述第一信道的所述第一信号流与所述第二信道的信号流的至少一部分之间。
4.根据权利要求3所述的发射机,其特征在于,
所述第一信道的信号流是ACK信号或者NACK信号,所述第一信道的第2信号流是CQI信号,所述第二信道的信号流是数据信号。
5.一种接收机,其特征在于,其具有:
接收部,其接收以如下方式对包括第一信道及第二信道在内的多个信道的信号流进行时分复用而成的信号:在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的信号流的发射定时之间;
分离部,其从接收到的所述信号中分离所述第一信道的信号流和所述第二信道的信号流;
解调部,其对所述第一信道的信号流进行解调;以及
解码部,其对解调后的所述第一信道的信号进行纠错解码。
6.一种接收机,其特征在于,其具有:
接收部,其接收以如下方式对包括第一信道及第二信道在内的多个信道的信号流进行时分复用而成的信号:在时域中,在时分复用信号的发射功率因所述发射机处的发射处理而变化的定时的两侧,编码长度比所述第一信道的第一信号流长的第二信道的信号流的至少一部分介于该定时与所述第一信道的第一信号流的发射定时之间,编码长度比所述第一信道的第一信号流长、且比所述第二信道的信号流短的所述第一信道的第二信号流介于所述第一信道的所述第一信号流与所述第二信道的信号流的至少一部分之间;
分离部,其从接收到的所述信号中分离所述第一信道的信号流和所述第二信道的信号流;
解调部,其对所述第一信道的信号流进行解调;以及
解码部,其对解调后的所述第一信道的信号进行纠错解码。
CN201310140750.4A 2007-12-28 2008-09-18 发射机和接收机 Active CN103209056B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-340001 2007-12-28
JP2007340001A JP5061892B2 (ja) 2007-12-28 2007-12-28 無線通信システムにおける信号多重方法、送信局及び受信局
CN2008102131596A CN101471913B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008102131596A Division CN101471913B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机

Publications (2)

Publication Number Publication Date
CN103209056A CN103209056A (zh) 2013-07-17
CN103209056B true CN103209056B (zh) 2016-03-02

Family

ID=40532546

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2008102131596A Expired - Fee Related CN101471913B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机
CN201010602073XA Active CN102064930B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机
CN201310140750.4A Active CN103209056B (zh) 2007-12-28 2008-09-18 发射机和接收机

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN2008102131596A Expired - Fee Related CN101471913B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机
CN201010602073XA Active CN102064930B (zh) 2007-12-28 2008-09-18 无线电通信系统中的信号复用方法和发射机

Country Status (5)

Country Link
US (2) US8615000B2 (zh)
EP (2) EP2824867B1 (zh)
JP (1) JP5061892B2 (zh)
KR (2) KR101093341B1 (zh)
CN (3) CN101471913B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061892B2 (ja) * 2007-12-28 2012-10-31 富士通株式会社 無線通信システムにおける信号多重方法、送信局及び受信局
US8817588B2 (en) * 2009-10-28 2014-08-26 Qualcomm Incorporated Multiplexing data and reference information in a wireless communication system
KR101148727B1 (ko) 2009-12-15 2012-05-21 한국전자통신연구원 제어 정보를 기지국으로 전송하는 데이터 전송 시스템
JP5663179B2 (ja) * 2010-03-19 2015-02-04 京セラ株式会社 送信装置
US8611444B2 (en) * 2011-06-22 2013-12-17 Infomax Communication Co., Ltd. Receiver and signal receiving method thereof
WO2014085710A1 (en) * 2012-11-29 2014-06-05 Interdigital Patent Holdings, Inc. Reduction of spectral leakage in an ofdm system
CN104995885A (zh) * 2013-02-05 2015-10-21 交互数字专利控股公司 脉冲形状正交分频复用
JP6421345B2 (ja) * 2014-03-27 2018-11-14 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法
JP6214816B2 (ja) * 2015-02-23 2017-10-18 三菱電機株式会社 受信装置
JP2020031251A (ja) * 2016-12-21 2020-02-27 シャープ株式会社 基地局装置、端末装置及び通信方法
JP7167392B2 (ja) * 2018-11-22 2022-11-09 国立大学法人京都大学 送信装置および送信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231089A (zh) * 1997-07-01 1999-10-06 株式会社高级数字电视广播系统研究所 正交频分复用传输方式及其发送装置和接收装置
CN1358398A (zh) * 2000-02-16 2002-07-10 松下电器产业株式会社 基站装置、通信终端装置和通信方法
WO2005120116A1 (fr) * 2004-05-26 2005-12-15 Nortel Networks Limited Procede de radiocommunication avec protection de canaux de trafic et de canaux de signalisation, emetteurs et recepteurs pour la mise en oeuvre du procede
CN101233709A (zh) * 2005-07-29 2008-07-30 松下电器产业株式会社 无线通信装置和无线通信方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116313A (ja) * 1994-10-17 1996-05-07 Fujitsu Ltd 無線伝送方式
JPH11127138A (ja) * 1997-10-24 1999-05-11 Sony Corp 誤り訂正符号化方法及びその装置並びにデータ伝送方法
JP2962356B2 (ja) * 1998-02-10 1999-10-12 日本電気株式会社 時分割拡散符号送信制御装置
US7042895B1 (en) * 1999-09-24 2006-05-09 Agere Systems Inc. Method and apparatus for interfacing multiple communication devices to a time division multiplexing bus
JP3343107B2 (ja) * 2000-08-25 2002-11-11 松下電器産業株式会社 基地局装置、通信端末装置及び通信方法
JP2003204293A (ja) * 2002-01-08 2003-07-18 Communication Research Laboratory フェージング歪みあるいは周波数オフセットの補償伝送方法
US7103823B2 (en) * 2003-08-05 2006-09-05 Newisys, Inc. Communication between multi-processor clusters of multi-cluster computer systems
ES2516666T3 (es) 2004-06-18 2014-10-31 Panasonic Intellectual Property Corporation Of America Aparato terminal de comunicación, método de planificación, y método de derivación de potencia de transmisión
CN101091326A (zh) * 2004-12-28 2007-12-19 松下电器产业株式会社 发送功率控制装置、传播路径估计装置、发送功率控制方法及传播路径估计方法
EP1845636A4 (en) * 2005-02-03 2012-03-14 Fujitsu Ltd SYSTEM AND METHOD FOR WIRELESS COMMUNICATION
RU2480917C2 (ru) 2005-03-10 2013-04-27 Панасоник Корпорэйшн Радиоприемное устройство и радиопередающее устройство
WO2006095432A1 (ja) * 2005-03-10 2006-09-14 Matsushita Electric Industrial Co., Ltd. 送信方法
CN1838577A (zh) * 2005-03-25 2006-09-27 中国科学技术大学 一种移动通信中的帧分多址方法
KR100724949B1 (ko) * 2005-05-03 2007-06-04 삼성전자주식회사 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
US20070004465A1 (en) * 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems
EP1912344A1 (en) * 2005-09-16 2008-04-16 Matsushita Electric Industrial Co., Ltd. Radio transmitting apparatus, radio receiving apparatus, and data placing method
WO2007081145A1 (en) * 2006-01-09 2007-07-19 Samsung Electronics Co., Ltd. Method and apparatus for time multiplexing uplink data and uplink signaling information in an sc-fdma system
BRPI0706639A2 (pt) 2006-01-18 2011-04-05 Ntt Docomo Inc estação-base, terminal de comunicação, método de transmissão e método de recepção
RU2417521C2 (ru) * 2006-03-15 2011-04-27 Панасоник Корпорэйшн Устройство радиопередачи и способ радиопередачи
JP4984589B2 (ja) 2006-03-27 2012-07-25 富士通株式会社 無線送信装置及び無線送信電力制御方法
MX2008014738A (es) 2006-05-19 2009-03-05 Panasonic Corp Dispositivo de transmision de radio y metodo de transmision de radio.
JP5077525B2 (ja) * 2006-08-22 2012-11-21 日本電気株式会社 無線通信システムにおけるリファレンス信号多重方法および無線通信装置
US8130711B2 (en) * 2006-11-01 2012-03-06 Lg Electronics Inc. Method for allocating pilots
JP5014820B2 (ja) * 2007-01-09 2012-08-29 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、ユーザ装置及び通信方法
US8331328B2 (en) * 2007-06-08 2012-12-11 Samsung Electronic Co., Ltd Control and data signaling in SC-FDMA communication systems
JP5061892B2 (ja) * 2007-12-28 2012-10-31 富士通株式会社 無線通信システムにおける信号多重方法、送信局及び受信局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231089A (zh) * 1997-07-01 1999-10-06 株式会社高级数字电视广播系统研究所 正交频分复用传输方式及其发送装置和接收装置
CN1358398A (zh) * 2000-02-16 2002-07-10 松下电器产业株式会社 基站装置、通信终端装置和通信方法
WO2005120116A1 (fr) * 2004-05-26 2005-12-15 Nortel Networks Limited Procede de radiocommunication avec protection de canaux de trafic et de canaux de signalisation, emetteurs et recepteurs pour la mise en oeuvre du procede
CN101233709A (zh) * 2005-07-29 2008-07-30 松下电器产业株式会社 无线通信装置和无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mapping position of control channel for Uplink SC-FDMA;Panasonic;《3GPP TSG-RAN WG1 #43,R1-051395》;20051111;第1-6页 *

Also Published As

Publication number Publication date
JP5061892B2 (ja) 2012-10-31
US20130343361A1 (en) 2013-12-26
US20090168811A1 (en) 2009-07-02
CN101471913A (zh) 2009-07-01
EP2824867A3 (en) 2015-02-25
EP2075948A2 (en) 2009-07-01
CN103209056A (zh) 2013-07-17
CN102064930B (zh) 2013-11-13
US8615000B2 (en) 2013-12-24
KR101093341B1 (ko) 2011-12-14
CN101471913B (zh) 2013-05-29
JP2009164754A (ja) 2009-07-23
EP2075948A3 (en) 2014-05-21
CN102064930A (zh) 2011-05-18
EP2824867A2 (en) 2015-01-14
KR20110020284A (ko) 2011-03-02
US9497735B2 (en) 2016-11-15
KR20090072938A (ko) 2009-07-02
EP2824867B1 (en) 2016-07-27
KR101093331B1 (ko) 2011-12-14

Similar Documents

Publication Publication Date Title
CN103209056B (zh) 发射机和接收机
CN101072068B (zh) 无线电发送方法和装置及无线电接收方法和装置
US7961800B2 (en) Adaptive radio/modulation apparatus, receiver apparatus, wireless communication system, and wireless communication method
EP2067329B1 (en) Resource allocation including a DC sub-carrier in a wireless communication system
EP3289689B1 (en) Method and system for low data rate transmission
JP5092350B2 (ja) パイロット信号伝送方法及び移動通信システム
KR101481201B1 (ko) 통신 시스템에서 서로 다른 신호 타입을 송수신하는 방법 및 시스템
KR100981552B1 (ko) 주파수분할 다중접속 시스템에서 상향링크 파일롯의 송수신장치 및 방법
US9014165B2 (en) Method of transmitting pilot bits in a wireless communication system
US20080310531A1 (en) Robust channel estimation in communication systems
JP2010518732A (ja) 無線通信システムにおける制御情報送信方法及び装置
CN102449921A (zh) 无线通信装置以及跳频方法
CN114731321A (zh) 用于dft-s-ofdm的具有低papr的混合参考信号
JP5445624B2 (ja) 送信局及び受信局
JP5029745B2 (ja) 基地局及び端末局

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant