CN103201033B - 通过使用基于keggin-型结构杂多化合物的催化剂组合物将合成气转化成氧化物 - Google Patents

通过使用基于keggin-型结构杂多化合物的催化剂组合物将合成气转化成氧化物 Download PDF

Info

Publication number
CN103201033B
CN103201033B CN201180053555.7A CN201180053555A CN103201033B CN 103201033 B CN103201033 B CN 103201033B CN 201180053555 A CN201180053555 A CN 201180053555A CN 103201033 B CN103201033 B CN 103201033B
Authority
CN
China
Prior art keywords
mixture
aqueous solution
metal
cobalt
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180053555.7A
Other languages
English (en)
Other versions
CN103201033A (zh
Inventor
P.马尼坎丹
S.拉奥
D.G.巴顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN103201033A publication Critical patent/CN103201033A/zh
Application granted granted Critical
Publication of CN103201033B publication Critical patent/CN103201033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

使用含过渡金属的,Keggin-型杂多化合物作为催化剂将合成气转化成醇,尤其是C1–C6醇。

Description

通过使用基于KEGGIN-型结构杂多化合物的催化剂组合物将合成气转化成氧化物
本申请是非临时申请,要求2010年10月11日提交的题为“KEGGIN-TYPE STRUCTURE HETEROPOLY COMPOUND-BASEDCATALYST COMPOSITIONS AND THEIR USE IN CONVERSION OFSYNTHESIS GAS TO OXYGENATES”的美国临时专利申请61/391,739的优先权,将该申请的教导通过参考并入本申请,就像其全文再现于下文中一样。
本发明总地涉及基于Keggin-型结构杂多化合物的催化剂组合物,和它们在将合成气(synthesis gas)(一氧化碳(CO)和氢(H2)的混合物)转化成氧化物,尤其是含有2至6个碳原子(C2至C6)的醇。
合成气转化方法使用各种催化剂,该催化剂依次往往会产生产物的混合物(例如烃如乙烷和丙烷,和氧化的烃例如甲醇,乙醇,丙醇和丁醇)。实践这些方法的那些人一直在寻找改进的方法和催化剂,这样的方法和催化剂产生相对于烃来说对氧化物更有利的选择性的产物混合物,因为至少一些实践者相对于其它氧化物,例如甲醇而言,更喜欢某些氧化物,例如丙醇。这种偏爱至少部分源自,相对于将甲醇转化成烯烃中的挑战来说,C2至C6氧化物容易转化成相应的烯烃或者,通过加氢甲酰化反应,转化成较高的氧化物。
Claude Rocchioccioli-Deltcheff等人在“Silica-载体ed12-molybdophosphoric acid catalysts:Influence of the thermal treatments and ofthe Mo contents on their behavior,from IR,Raman,X-ray diffraction studies,and catalytic reactivity in the methanol oxidation”,Journal of Molecular Catalysis A:Chemical114(1996),pages331-342,中提出了磷12-钼酸(molybdophosphoric acid,H3PMo12O40)(也称为“杂多酸”)的酸性和氧化性广泛地用于催化作用和许多催化应用中,该活性物类被沉积在载体例如二氧化硅上。它们教导了阴离子PMo12O40 3-术语已知的Keggin结构。
O.A.Kholdeeva等人在“Polyfunctional action of transition metalsubstituted heteropolytungstates in alkene epoxidation by molecular oxygen inthe presence of aldehyde”.Journal of Molecular Catalysis A:Chemical114(1996),pages123-130,中使用包括钴(II),铁(III),钯(II),镍(II),铜(II),锰(II),钒(V),钌(IV),钛(IV),铯(IV)和锆(IV)的过渡金属取代基研究了取代的杂多钨酸盐的四丁基铵(TBA)盐。
US4,210,597(Huang)教导了通过使合成气与含有铑(Rh),钨(W)和碱金属(例如钠(Na))的固体催化剂接触而制备氧化化合物。
第VIII族金属包括铁(Fe),钴(Co),镍(Ni),钌(Ru),铑(Rh),钯(Pd),锇(Os),铱(Ir),和铂(Pt)。
US4,749,724(Quarderer等人)披露了Fischer-Tropsch反应来从合成气形成醇,该反应使用含有游离或组合形式的选自Mo,W和Re中的至少一种元素,碱金属或碱土金属促进剂,和,任选的,载体的催化剂。所述催化剂可含有有限量的一氧化碳氢化组分例如锌(Zn),铜(Cu)and钴(Co)。
US4,825,013(Quarderer等人)涉及到一种方法,其用于形成在动力汽油的范围内沸腾的醇部分,其富集了较高级的醇。该方法包括使用催化剂,所述催化剂包括含有游离或结合形式的Mo,W或其混合物的第一组分,游离或结合形式的碱金属或碱土金属元素或其混合物,含有游离或结合形式的Co,Ni或Fe或其混合物的任选的第三组分,和含有载体的任选的第四组分。
US4,607,055(Grazioso等人)教导了制备较低级脂肪族醇的混合物的方法,其通过使合成气与含有Mo,选自Co,Fe,Ni和银(Ag)的金属,和选自钾(K),铯(Cs)和铷(Rb)的促进剂的催化剂反应而制备。
US4,616,040(Grazioso等人)的教导与US4,607,056的那些相关,其提供了使用铜(Cu)而不是Re。
在一些方面,本发明是将合成气转化成氧化物的方法,该方法包括使氢和一氧化碳的混合物与基于含过渡金属的,Keggin-型杂多化合物的催化剂在足以将所述混合物转化成至少一种醇的温度、压力和气时空速的条件下接触,其中所述醇是一个碳至六个碳的醇,所述催化剂的结构表示为通式M1[HPA]M2M3,其中M1是至少一种选自下组的金属:碱金属,碱土金属,锌(Zn),钴(Co),铁(Fe),锰(Mn),镍(Ni)和铜(Cu);[HPA]是阴离子,其具有净负电荷并且由通式[XMo12-(x+y)WxTyO40]表示,其中Mo是钼,W是钨,T是选自钒,铜,钴,铁,钛,钯,钌,和锰的至少一种过渡金属,x=0-12,y=0-3,条件是x+y=0-12,和X为磷(P),硅(Si),锗(Ge),和Co中的至少一种;M1的总净电荷等于HPA的净负电荷;M2是铑(Rh),钯(Pd),铱(Ir),铼(Re),钌(Ru),铂(Pt)和金(Au)中的至少一种;和M3是至少一种碱金属或碱土金属,条件是当M1为任选的为碱金属或碱土金属的材料时,它是与M3不同的碱金属或碱土金属,和当M1为钴时,X是磷,硅和锗中的至少一种。所述催化剂优选包括选自二氧化硅,氧化铝,氧化镁,氧化锆,氧化钛,或这些载体中的两种或更多种的混合物,的载体,以及改性载体如氧化锆-改性的二氧化硅(ZrO2-SiO2)。参见Journal of Catalysis Vol111(1988),page336,和Journal of Molecular Catalysis A.vol.212(2004),page229中关于P,Si,Ge和/或Co对于X来说以类似的方式发挥作用的教导。
以上通式表示的特别优选的催化剂包括具有以下任意的那些:a)Cs和Co的组合作为M1;b)Li或K作为M3;c)[PMo12O40]作为HPA(X=P和x=0);和d)Rh作为M2
在组合条件下从合成气制备氧化物。该条件包括温度为200℃至450℃;压力为200psig(1.38MPa)至5,000psig(34.47MPa),优选200psig(1.38MPa)至3000psig(20.68MPa),和更优选300psig(2.07MPa)至1500psig(10.34MPa);气时空速(GHSV)为300小时的倒数(小时-1)至25,000小时-1,优选300小时-1至20,000小时-1,和更优选6000小时-1至7000小时-1;和气体氢(H2)与一氧化碳(CO)的比为10:1至1:10,优选5:1至1:5,在1:1的比例获得非常满意的结果。
如果期望,在与催化剂接触之前,可将合成气与一定量的烯烃例如乙烯或丙烯混合。当这样的烯烃接触该催化剂时,至少一部分所述烯烃转化成醇或者醛,或者醇和醛的混合物。所述量优选为1体积%(vol%)至50vol%,基于合成气加烯烃的总体积。
未担载的Keggin-型杂多化合物包括以下物质,基本上由以下物质组成,或由以下物质组成:M1,其量为2wt%至35wt%;[HPA],其量为65wt%至98wt%;M2的量为0.01wt%至10wt%,和M3的量为0wt%至10wt%,每个wt%都基于Mo或W,过渡金属和碱土金属或碱金属的总重量。在[HPA]中,X存在的量为1wt%至4wt%,W的量为62重量%(wt%)至77wt%,Mo存在的量为46wt%至63wt%,各wt%基于X,W和Mo的总重量。
对于担载的Keggin-型杂多化合物,该载体存在的量为大于0wt%至95wt%,由M1[HPA]M2表示的金属的组合存在的总量为5wt%至95wt%,和M3存在的量为0wt%,优选大于0wt%,至10wt%,每个wt%都基于载体,由M1[HPA]M2表示的金属的组合,和M3的总重量。
阿拉伯数字指代本发明的实施例(Ex),字母表示对比例(Comp Ex或CEx)。
Ex1(CsCu[PW 12 O 40 ]SiO 2 /Rh/K)
将六水硝酸铜(Cu(NO3)2·6H2O)(S.D.Fine,0.72克(g)在10毫升(ml)水中)的水溶液逐滴添加至80ml搅拌着的,室温(通常为25摄氏度(℃)磷钨酸(phosphotungstic acid)的水溶液(8.64g)。使得到的溶液达到50℃,并继续搅拌4小时(hr)。向其中逐滴添加(速率为约1立方厘米每分钟(~1cm3min-1))碳酸铯溶解在10ml水中的水溶液(Cs2CO3(Fluka,0.48g))并继续搅拌1小时。在90℃蒸发得到的溶液至干从而得到干固体。
通过将5.01g干燥的固体在10ml水中的水悬浮液与58.82g硅胶(34wt%在去离子水中的LUDOX胶状悬浮液,332.8毫摩尔(mmol))在室温以剧烈的搅拌而混合1小时,从而形成合并的溶液。在90℃将该结合的溶液蒸发至干,从而得到干固体,然后在350℃在静态空气下将该干固体烧结4小时。
将铑氯化物的水溶液(RhCl3(Aldrich),0.21g溶解在10ml水中)与10g烧结的固体混合,然后在100℃蒸发得到的混合物至干,并在300℃在静态空气中烧结该干混合物5小时从而得到Rh-浸渍的固体。
将碳酸钾的水溶液(K2CO3(Merck,0.54g溶于10ml水中)与10g Rh-浸渍的固体混合,然后在100℃蒸发得到的混合物至干,并在350℃在静态空气中烧结该干混合物4小时。该烧结的干混合物的计算的元素含量为0.81wt%Cs,0.39wt%Cu,2.87wt%K,13.49wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,各个wt%基于所述混合物的总重量。
使用高压(1500磅每平方英寸表压(psig)(10.34兆帕(MPa))管式微反应器系统,从而评价催化剂将合成气转化成混合的醇产物的活性。将1.5g所述催化剂置于垂直安装于炉中的不锈钢反应器的中心(外径(O.D.)为0.25英寸(0.63厘米(cm))。使用热质控制器来将合成气(一氧化碳与氢气的比(CO:H2)为1:1)从压缩气体缸经活性炭纯化器转移至该反应器,通过位于反应器下游的气动背压调节器(actuated back pressure regulator)控制反应器压力。使用电加热的铝块来控制反应器温度。在将合成气引入到反应器之前,在330℃预加热流动的氢气(H2)(150标准立方厘米每分钟(s-cm3/min))中的催化剂4小时。在预处理之后,将反应器温度降低至270℃,将气流改变为300s-cm3/min的合成气,然后将该反应器增压至1500psig(10.34MPa)。
通过使气相反应器流出流在环境压力(常常为1个大气压或0.1MPa)流过气体取样阀,在Siemens MAXUMTM气相色谱内,分析从反应器获得的产物。为了避免非挥发性产物的冷凝,将反应器所有的管道下游加热至160℃。通过与PORAPAKTMQS柱串联连接的REOPLEXTM前柱进行产物分离。从PORAPAK柱使用校正的火焰离子探测器(FID)对流出流进行定量。结果总结于下表1中。
Ex2(CsCo[PW 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,但是用六水硝酸钴的水溶液(Co(NO3)2·6H2O)(S.D.Fine,0.87g在10ml水中)代替Cu(NO3)2·6H2O的水溶液,并且将溶解在10ml水中的RhCl3增加至0.42g。该烧焦的干燥的混合物的计算元素含量为0.79wt%Cs,0.36wt%Co,2.87wt%K,13.51wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,各个wt%基于所述混合物的总重量。
Ex3(CsZn[PW 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,但是用六水硝酸锌的水溶液(Zn(NO3)2·6H2O)(S.D.Fine,0.88g在10ml水中)代替Cu(NO3)2·6H2O的水溶液,将磷钨酸的量增加至8.65g,并将溶解在10ml水中的Cs2CO3的量减少至0.48g。此外,将硅胶的量改变至50.69g,将RhCl3的量改变为0.22g。烧结的干混合物的计算的元素含量为0.81wt%Cs,0.40wt%Zn,2.87wt%K,13.48wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。
Ex4(CsNi[PW 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中有几个改变。首先,用六水硝酸镍的水溶液(Ni(NO3)2·6H2O(Chemport),0.86g在10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,将磷钨酸的量改变为8.64g。第三,将溶解在水中的Cs2CO3的量改变为0.48g。第四,将硅胶的量改变为50.65g。第五,将RhCl3的量改变为0.22g。该烧结的干混合物的计算的元素含量为0.81wt%Cs,0.36wt%Ni,2.87wt%K,13.51wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,各个wt%都基于所述混合物的总重量。
Ex5(CsCo[PW 12 O 40 ]SiO 2 /Rh/Li)
重复Ex1,其中具有几个改变。首先,用六水硝酸钴的水溶液(Ni(NO3)2·6H2O,0.87g在10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,将结合的溶液的量改变为5.00g干固体和50.07g硅胶,并将搅拌时间增加至2小时。第三,将RhCl3的量改变为0.41g,与其混合的烧结的固体的量为20.00g。第四,用碳酸锂水溶液(Li2CO3(Sisco),2.95g溶于10ml水中)代替K2CO3水溶液。该烧结的干混合物的计算的元素含量为0.75wt%Cs,0.33wt%Co,2.39wt%Li,12.42wt%W,0.17wt%P,0.86wt%Rh,和32.3wt%Si,每个wt%都基于所述混合物的总重量。
Ex6(CsFe[PW 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中具有改变。首先,用七水硫酸亚铁的水溶液(Fe(SO4)·7H2O,0.82g溶于10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,将与硅胶混合的干固体的量改变为5.00g。烧结的干混合物的计算的元素含量为0.81wt%Cs,0.34wt%Fe,2.87wt%K,13.53wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。
Ex7(CsMn[PW 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中具有改变。首先,用四水硝酸锰的水溶液(Mn(NO3)2·4H2O,0.73g溶于10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,用磷钼酸水溶液(8.64g)代替磷钨酸。第三,将Cs2CO3的量改变为0.48g。第四,将与硅胶混合的干固体的量改变为5.00g,将硅胶的量改变为58.73g。烧结的干混合物的计算的元素含量为0.82wt%Cs,0.34wt%Mn,2.87wt%K,13.53wt%W,0.19wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。
参见下表2,在不同的反应温度、反应压力和GHSV组合下比较Ex5和7。
表1
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=两个碳原子;和HC=烃
表2
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃
表1和2中的数据表明,当M1是以下物质和Cu的混合物:Cs(Ex1),Co(Ex2和Ex5),Zn(Ex3),Ni(Ex4),Fe(Ex6)或Mn(Ex7)时,M2是Rh和M3是K(Ex1-4,6和7)或Li(Ex5),基于W的杂多化合物用作有效的合成气转化催化剂。从表1看出,具有Li促进剂的Ex5,在CO转化率和对乙醇和丙醇的选择性方面,相对于甲醇,比Ex1-4,6和7,提供了更好的结果。表2中的数据表明,在较恒定的压力和GHSV,温度的升高导致增加的CO转化率和对醇的选择性,然而压力的降低会不利地影响CO转化。
Ex8(CsCu[PMo 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中具有改变。首先,用磷钼酸水溶液(8.64g)代替磷钨酸。第二,将Cs2CO3的量改变为0.48g。第三,将与硅胶混合的干固体的量改变为5g。第三,将RhCl3的量改变为0.21g,将溶解RhCl3的水的量改变为20ml,和与RhCl3的水溶液混合的干固体的量改变为10.00g。第四,对于RhCl3浸渍的材料,使用旋转蒸发器(rotavap)来除去液体,将干燥温度降低至90℃,将烧结温度改变为350℃,和将烧结时间改变为4小时。烧结的干混合物的计算的元素含量为1.24wt%Cs,0.59wt%Cu,2.87wt%K,10.72wt%Mo,0.29wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
Ex9(CsCo[PMo 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中具有改变。首先,用Co(NO3)2·6H2O水溶液(S.D.Fine,0.87g溶于10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,用磷钼酸水溶液(8.64g)代替磷钨酸。第三,将Cs2CO3的量改变为0.48g。第四,将与硅胶混合的干固体的量改变为5.00g,硅胶的量改变为50.07g,和混合时间改变为2小时。第五,将RhCl3的量改变为0.21g,溶解RhCl3的水的量改变为30ml,和与RhCl3水溶液混合的干固体的量改变为20.00g。第六,对于RhCl3浸渍的材料,使用旋转蒸发器除去液体,将干燥温度降低至90℃,将烧结温度改变为350℃,和将烧结时间改变为4小时。烧结的干混合物的计算的元素含量为1.24wt%Cs,0.55wt%Cu,2.87wt%K,10.74wt%Mo,0.29wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
Ex10(CsCo[PMo 12 O 40 ]SiO 2 /Rh/Li)
重复Ex9,其中具有改变。首先,将RhCl3的量改变为0.41g。第二,用Li2CO3水溶液(2.96g溶解在10ml水中)代替K2CO3水溶液。烧结的干混合物的计算的元素含量为1.14wt%Cs,0.51wt%Co,2.39wt%Li,9.87wt%Mo,0.27wt%P,0.86wt%Rh,和32.3wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
Ex11(CsFe[PMo 12 O 40 ]SiO 2 /Rh/K)
重复Ex1,其中具有改变。首先,用FeSO4·6H2O水溶液(S.D.Fine,0.83g溶于10ml水中)代替Cu(NO3)2.6H2O的水溶液。第二,用磷钼酸水溶液(9.03g)代替磷钨酸。第三,将Cs2CO3的量改变为0.64g。第四,将与硅胶混合的干固体的量改变为5g,将该干固体悬浮于25ml水中,然后将其在搅拌下逐滴添加到硅胶(58.82g)中,并将混合时间改变为2小时。第五,将RhCl3的量改变为0.21g,和溶解RhCl3的水的量改变为30ml。第六,对于RhCl3浸渍的材料,使用旋转蒸发器除去液体,将干燥温度降低至90℃,将烧结温度改变为350℃,和将烧结时间改变为4小时。烧结的干混合物的计算的元素含量为1.24wt%Cs,0.52wt%Fe,2.87wt%K,10.76wt%Mo,0.29wt%P,0.94wt%Rh,和35.14wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。也参见下表4,比较在不同的反应温度和GHSV组合的Ex9和Ex11。
Ex12(CsCu[PMo 12 O 40 ]SiO 2 /Pd)
重复Ex1,其中具有改变。首先,用Cu(NO3)2水溶液(0.12g溶于10ml水中)代替Cu(NO3)2·6H2O的水溶液。第二,用25ml磷钼酸水溶液(18.06g或8毫摩尔(mmol))代替80ml磷钨酸水溶液。第三,将Cs2CO3溶液改变为0.66g溶于5ml水中的Cs2CO3。第四,将干固体的水溶液(0.75g或0.24mmol溶于10ml水中)逐滴添加至12.5g硅胶,从而形成混合物,将该混合物的干燥温度改变为100℃,将混合物的烧结温度改变为300℃,将混合物的烧结时间改变为2小时。第五,用氯化钯水溶液(0.051g PdCl2溶于10ml水中,其含有三滴盐酸(HCl),在55℃)代替RhCl3水溶液,并且将其添加至3g烧结的硅胶混合物。第七,使用旋转蒸发器从PdCl2改性的烧结的硅胶混合物除去液体,将干燥温度降低至90℃,将烧结温度改变为350℃,和将烧结时间改变为4小时。烧结的干混合物的计算的元素含量为10.77wt%Cs,1.29wt%Cu,46.66wt%Mo,1.26wt%P,0.29wt%Pd,和6.45wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
Ex13(CsCo[PMo 12 O 40 ]SiO 2 /Pd)
重复Ex12,其中具有改变。首先,用Co(NO3)2水溶液(0.15g溶于5ml水中)代替Cu(NO3)2水溶液。第二,将25ml水中磷钼酸的量改变为4.52g。第三,将硅胶混合物的烧结温度改变为350℃,和将烧结时间改变为4小时。第四,将PdCl2水溶液改变为溶于含有1ml盐酸的9.5ml水中的50.5毫克(mg)PdCl2。第五,使用旋转蒸发器将PdCl2-改性的,烧结的硅胶混合物在80℃干燥,然后继续在120℃干燥90分钟,然后在400℃在空气中烧结干燥的固体2小时。烧结的干混合物的计算的元素含量为1.20wt%Co,10.78wt%Cs,46.70wt%Mo,1.26wt%P,0.29wt%Pd,和6.46wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
Ex14(CsFe[PMo 12 O 40 ]SiO 2 /Pd)
重复Ex12,其中具有改变。首先,用Fe(NO3)3·3H2O的水溶液(0.1374g溶于10ml水中)代替Cu(NO3)2水溶液。第二,将在50℃的搅拌时间增加至4小时。第三,将Cs2CO3溶液改变为2.61g的溶于5ml水中的Cs2CO3。第四,将Fe(NO3)3·3H2O和磷钼酸的Cs2CO3改性的组合的干燥温度改变为50℃。烧结的干混合物的计算的元素含量为10.79wt%Cs,1.13wt%Fe,46.73wt%Mo,1.26wt%P,0.29wt%Pd,和6.46wt%Si,每个wt%都基于所述混合物的总重量。结果参见表3。
表3
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃
表4
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃
表3和4中的数据证明Ex8-14的催化剂(其在杂多化合物中具有Mo而没有W)也用作有效的合成气转化催化剂。
CEx A(H 3 [PMo 12 O 40 ]SiO 2 /Rh)(对比实验)
在室温搅拌的同时,逐滴添加含有2.5g磷钼酸的5ml水溶液到29.41g硅胶(34wt%在去离子水中的LUDOX硅胶悬浮液,10g(166.43毫摩尔(mmol))二氧化硅)。在100℃将该合并的溶液蒸发至干得到干的固体,然后将该干固体在300℃在静态空气中烧结2小时。
在室温和搅拌下,将铑氯化物的水溶液(RhCl3(Aldrich),0.51g溶解在30ml水中)与20g烧结的固体混合1小时,然后使用rotovap将得到的混合物蒸发至干,然后在90℃进一步干燥4小时(hr),并在350℃静态空气中将该干燥的混合物烧结4小时产生铑浸渍的固体。烧结的干混合物的计算的元素含量为0.15wt%H,55.60wt%Mo,1.50wt%P,0.25wt%Rh,和5.43wt%Si,每个wt%都基于所述混合物的总重量。干燥的烧结物质的余量为氧。如Ex1中一样评价催化剂性能,并将试验结果总结于下表5中。
表5
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃
表5中的数据表明缺乏M1和M3的催化剂比含有M1和M3二者的那些(表1-4)提供差得多的对乙醇和丙醇的选择性。
Ex.15(Co 1 Cs 2 [PVMo 11 O 40 ]/SiO 2 /Rh/Li)
在安装有磁力搅拌棒的100ml圆底烧瓶中,将1.15g H3PO4(0.01mol,Acros,85%wt.在水中的溶液),0.92g V2O5(S.D.Fine,0.005mol)和15.91gMoO3(0.11mol,S.D.Fine)悬浮在150ml去离子水中。将烧瓶内容物回流24小时(hrs)得到橙色溶液。将该溶液过滤除去残余物,然后在80℃的温度从过滤的溶液将溶剂蒸发4小时,然后将烧瓶中剩余的内容物在120℃干燥10小时得到称为H4[PMo11VO40]的化合物(参见Dimitratos等人,Catalysis Today.122(2007)307)。
在100ml圆底烧瓶中,在室温(通常为25℃),将10ml H4[PVMo11O40]的水溶液(8g,4.49mmol),和10ml碳酸钴的水溶液(0.53g(4.49mmol)CoCO3,S.D.Fine)和碳酸铯(1.46g(4.49mmol)Cs2CO3)在一起搅拌60分钟。将烧瓶内容物在120℃干燥4小时得到称为Co1Cs2[PVMo11O40]的化合物。
将0.9g干燥的烧瓶内容物溶于30ml水中,并将该溶液添加到硅胶(SiO2)(Ludox,40wt%,9g)中,在室温搅拌60分钟从而形成混合物。将该混合物在100℃蒸发4小时至干,并在350℃烧结该干燥的混合物4小时。将含有0.30g三水合铑氯化物(RhCl3.3H2O)的5ml水溶液在室温添加至该烧结的干混合物,同时搅拌60min,然后重复干燥和烧结。添加含有0.14g的碳酸锂(Li2CO3)(Chemport)的1ml的水溶液,同时在室温搅拌60min,然后重复干燥和烧结。该干燥烧结的材料具有计算的元素含量为:0.54wt%Co;2.43wt%Cs;9.64wt%Mo;0.28wt%P;0.46wt%V;0.96wt%Rh;0.54wt%Li;0.47wt%C,和35.94wt%Si,每个wt%都基于所述材料的总重量。干燥烧结的材料的余量为氧。结果参见表6。
使用改进的微反应器系统和Ex1的方法来进行合成气和共进料的乙烯转化至混合的醇产物。用高压力(508psig(3.5MPa))管微反应器系统代替Ex1的系统,并且将催化剂的量改变为0.35g。使用Ex1中的热质控制器来从压缩的气缸中与一氧化碳、氢气和氮气一起递送乙烯(乙烯:CO:H2:N2的体积比=4.8,45.1,45.1,4.7),经活性炭纯化器到达微反应器。将该预处理温度改变为在300℃进行4小时。
如Ex1中一样分析来自反应器的产物,所不同的是将色谱改变为Siemens MAXUMTM气相色谱,通过将气相反应器流出流在环境压力(通常为1大气压或0.1MPa)流动通过Agilent气相色谱中的气体取样阀。为了避免非挥发性产物的冷凝,将反应器所有的下游管道加热至160℃。通过分析方法进行产物分离,使用三个平行的分离部件(separation trains),其中(i)分子筛填充的柱,和HayeSep T填充的柱,后者是为了防止CO2吸附在分子筛柱上,(ii)PoraBONDTMU毛细管柱,和(iii)毛细管CP Wax分离柱。按照Ex1定量流出流,并且总结下表8中的结果。
Ex.16(Cs 4 [PVMo 11 O 40 ]/SiO 2 /Rh/Li)
重复Ex15,但是用20ml碳酸铯的水溶液(2.93g(8.98mmol)Cs2CO3,Spectrochem)代替合并的碳酸钴/碳酸铯溶液,从而得到称为Cs4[PVMo11O40]的化合物。该干燥烧结的材料具有计算的元素含量为:4.42wt%Cs;8.78wt%Mo;0.26wt%P;0.42wt%V;0.96wt%Rh;0.65wt%Li;0.47wt%C,35.94wt%Si,各个wt%都基于所述材料的总重量。干燥的烧结材料的余量为氧。表6中可见没有乙烯共进料的结果,表8中可见具有乙烯共进料的结果。
Ex.17(Co 2 [PVMo 11 O 40 ]/SiO 2 /Rh/Li)
重复Ex15,但是用5ml碳酸钴的水溶液(1.07g(8.98mmol)CoCO3,S.D.Fine)代替合并的碳酸钴/碳酸铯溶液从而获得称为Co2[PVMo11O40]的化合物。该干燥烧结的材料具有计算的元素含量为:1.19wt%Co;10.69wt%Mo;0.31wt%P;0.52wt%V;0.96wt%Rh;0.54wt%Li;0.47wt%C,和35.94wt%Si,每个wt%都基于所述材料的总重量。该干燥的烧结材料的余量为氧。表7中可见没有乙烯共进料的结果,表8中可见具有乙烯共进料的结果。
Ex.18(Co 1 Cu 1 [PVMo 11 O 40 ]/SiO 2 /Rh/Li)
重复Ex15,但是用10ml含有0.53g CoCO3(4.49mmol,S.D.Fine)和0.50g CuCO3.Cu(OH)2(2.246mmol)的水溶液代替合并的碳酸钴/碳酸铯溶液,得到称为Co1Cu1[PVMo11O40]的物质。该干燥烧结的材料具有计算的元素含量为:0.6wt%Co;0.64wt%Cu,10.67wt%Mo;0.31wt%P;0.51wt%V;0.96wt%Rh;0.54wt%Li;0.47wt%C,和35.94wt%Si,各个wt%都基于所述物质的总重量。干燥的烧结物质的余量为氧。表7中可见没有乙烯共进料的结果,表8中可见具有乙烯共进料的结果。
表6
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃;S=选择性;Conv=转化;Prod=生产率
表7
MeOH=甲醇;EtOH=乙醇;PrOH=丙醇;CH4=甲烷;C2=2个碳原子;和HC=烃;S=选择性;Conv=转化;Prod=生产率
表6和7中的数据表明可以用过渡金属如钒代替至少一部分Mo。类似的结果应该是代替至少一部分W,以及用其它过渡金属,尤其是Cu,Co,Fe,Ti,Pd,Ru,和Mn代替,基于含在以下文献中的教导:Journal of MolecularCatalysis,114卷,第129-130页(1996)。用CO活化元素如Co,Cu完全代替Keggin-型杂多化合物的反阳离子,而不是用这些元素和碱金属部分代替该阳离子,带来了趋向较高CO转化率的优点。
表8
S=选择性;Conv=转化,还原条件:300℃,4小时,在H2流下,100ml/min,在大气压。
表8中的数据证明具有由通式M1[HPA]M2M3表示的结构的催化剂有效地将共进料的合成气和乙烯转化成混合的醇产物。

Claims (9)

1.一种用于将合成气转化成氧化物的方法,该方法包括使氢和一氧化碳的混合物与基于含过渡金属的,Keggin-型杂多化合物的催化剂在足以将所述混合物转化成至少一种醇的温度、压力和气时空速的条件下接触,其中所述醇是一个碳至六个碳的醇,所述催化剂的结构表示为通式M1[HPA]M2M3,其中M1是至少一种选自下组的金属:碱金属、碱土金属、锌、钴、铁、锰、镍或铜,其中M1的总的净电荷等于HPA阴离子的净负电荷;HPA由通式[XMo12-(x+y)WxTyO40]表示,其中Mo是钼,W是钨,T是至少一种选自钒、铜、钴、铁、钛、钯、钌、和锰的过渡金属,x=0-12,y=0-3,条件是x+y=0-12,和X是磷、硅、锗、和钴中的至少一种;M2是铑、钯、铱、铼、钌、铂和金中的至少一种,和M3是碱金属或碱土金属中的至少一种,条件是当M1是碱金属或碱土金属时,它是与M3不同的碱金属或碱土金属,当M1为钴时,X是磷,硅和锗中的至少一种。
2.权利要求1的方法,其中所述的温度,压力和气时空速的条件包括以下中的至少一个:温度为200℃至450℃范围内,压力为200psig至5,000psig范围内,和气时空速为300小时-1至25,000小时-1的范围内。
3.权利要求1或权利要求2的方法,其中所述催化剂还包括至少选自二氧化硅、氧化铝、氧化镁、氧化锆、氧化钛、氧化钨、氧化锌或其混合物的载体,和选自氧化锆-改性的二氧化硅、钨酸盐化的二氧化硅、沸石、双层氢氧化物、和粘土的改性载体。
4.权利要求1或2的方法,其中氢和一氧化碳的混合物中氢与一氧化碳的比例为10:1至1:10。
5.权利要求1或2的方法,其中M3是钾、锂或钾和锂的混合物。
6.权利要求1或2的方法,其中X是磷,x=0。
7.权利要求1或2的方法,其中M2是铑。
8.权利要求1或2的方法,其中M1是铯和钴的组合。
9.权利要求1或2的方法,其中一氧化碳和氢的混合物还包括选自乙烯、丙烯和丁烯的烯烃。
CN201180053555.7A 2010-10-11 2011-09-26 通过使用基于keggin-型结构杂多化合物的催化剂组合物将合成气转化成氧化物 Expired - Fee Related CN103201033B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39173910P 2010-10-11 2010-10-11
US61/391,739 2010-10-11
PCT/US2011/053202 WO2012050806A1 (en) 2010-10-11 2011-09-26 Conversion of synthesis gas to oxygenates by using keggin - type structure heteropoly compound - based catalyst compositions

Publications (2)

Publication Number Publication Date
CN103201033A CN103201033A (zh) 2013-07-10
CN103201033B true CN103201033B (zh) 2015-01-21

Family

ID=44789611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180053555.7A Expired - Fee Related CN103201033B (zh) 2010-10-11 2011-09-26 通过使用基于keggin-型结构杂多化合物的催化剂组合物将合成气转化成氧化物

Country Status (5)

Country Link
US (1) US8614258B2 (zh)
EP (1) EP2627445B1 (zh)
CN (1) CN103201033B (zh)
BR (1) BR112013006990A2 (zh)
WO (1) WO2012050806A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841447B (zh) * 2015-04-21 2017-05-31 上海大学 多金属氧酸盐和费托催化剂的复合催化剂、其制备和评价方法
CN104857972B (zh) * 2015-04-22 2017-12-22 大连瑞克科技有限公司 一种由合成气联产低碳醇和液体燃料的催化剂及制备方法
US9687825B1 (en) * 2016-06-27 2017-06-27 Chevron U.S.A. Inc. Stable tungsten-phosphorus modified support for a Fischer-Tropsch catalyst
US11123711B2 (en) 2017-12-28 2021-09-21 University Of Kentucky Research Foundation System and method for alcohol oxidation reaction of lignins
CN108997594B (zh) * 2018-08-31 2020-11-24 哈尔滨理工大学 一种多酸为模板的多酸基金属有机框架晶体材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210597A (en) 1979-05-14 1980-07-01 Ethyl Corporation Preparation of oxygenates from carbon monoxide and hydrogen
BR8406451A (pt) 1983-03-18 1985-03-12 Dow Chemical Co Processo catalitico para a producao de alcoois mistos,a partir de hidrogenio e monoxido de carbono
GB8334155D0 (en) 1983-12-22 1984-02-01 Ici Plc Catalytic composition
US4825013A (en) 1984-11-05 1989-04-25 The Dow Chemical Company Preparation of ethanol and higher alcohols from lower carbon number alcohols
US4607056A (en) 1985-07-03 1986-08-19 Texaco Inc. Mixed aliphatic alcohol production
US4607055A (en) 1985-07-03 1986-08-19 Texaco Inc. Aliphatic alcohol production
US4616040A (en) 1985-07-22 1986-10-07 Texaco Inc. Production of C2 -C6 aliphatic alcohols
CN1179993A (zh) * 1996-10-16 1998-04-29 厦门大学 合成气制低碳醇的铑基催化剂及其制备方法
US6278030B1 (en) * 1997-07-15 2001-08-21 Exxon Chemical Patents, Inc. Process for preparing alcohols by the Oxo process
US6127432A (en) 1998-01-29 2000-10-03 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates and catalysts therefor
US7923405B2 (en) * 2007-09-07 2011-04-12 Range Fuels, Inc. Cobalt-molybdenum sulfide catalyst materials and methods for ethanol production from syngas

Also Published As

Publication number Publication date
BR112013006990A2 (pt) 2020-11-24
EP2627445A1 (en) 2013-08-21
EP2627445B1 (en) 2015-01-07
US8614258B2 (en) 2013-12-24
US20130310470A1 (en) 2013-11-21
WO2012050806A1 (en) 2012-04-19
CN103201033A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
CN103201033B (zh) 通过使用基于keggin-型结构杂多化合物的催化剂组合物将合成气转化成氧化物
US4199522A (en) Process for producing olefins from carbon monoxide and hydrogen
CA2752017C (en) Process for the preparation of fischer-tropsch catalysts and their use
JP5065255B2 (ja) 触媒の製造方法
EP3400099B1 (en) Process for methanol synthesis using an indium oxide based catalyst
JP5795393B2 (ja) フィッシャー−トロプシュ反応に触媒作用を及ぼすために適切な触媒、及び該触媒をフィッシャー−トロプシュ反応に使用する方法、及び該触媒を使用したフィッシャー−トロプシュ法
WO2014074457A1 (en) Converting natural gas to organic compounds
WO2003035593A1 (en) Hydrogenolysis of 5-carbon sugars and alcohols
JPH0557251B2 (zh)
JP2008538579A (ja) 水素化触媒および水素化方法
EP1929570A1 (en) Process and catalyst for hydrogenation of carbon oxides
Bruno et al. Supported Ni–Au colloid precursors for active, selective, and stable alkyne partial hydrogenation catalysts
KR20080026643A (ko) 과산화수소 및 유기화합물 간의 반응의 개시
CN113101928B (zh) 1,4-丁炔二醇制备1,4-丁烯二醇用催化剂及其制备方法和应用
CN105727972A (zh) 一种用于甲烷二氧化碳重整制合成气的催化剂制备方法
EP1944299A1 (en) Catalyst system and process for the production of epoxides
CN101646641B (zh) 用于将合成气转化成含氧化合物的方法
EP3834929A1 (en) Catalyst for oxygenate synthesis and method for manufacturing same, device for manufacturing oxygenate, and method for manufacturing oxygenate
CN106928003B (zh) 一种碳二后加氢工艺的除炔方法
CA3141645C (en) Vapor phase methanol carbonylation catalyst
JP2003144928A (ja) 都市ガス原料製造用触媒および都市ガス原料の製造方法
JPS60199841A (ja) C↓2含酸素化合物の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150121

Termination date: 20180926

CF01 Termination of patent right due to non-payment of annual fee