CN103191991A - 铝合金型材快速下陷热成形模具及成形方法 - Google Patents

铝合金型材快速下陷热成形模具及成形方法 Download PDF

Info

Publication number
CN103191991A
CN103191991A CN2013101487621A CN201310148762A CN103191991A CN 103191991 A CN103191991 A CN 103191991A CN 2013101487621 A CN2013101487621 A CN 2013101487621A CN 201310148762 A CN201310148762 A CN 201310148762A CN 103191991 A CN103191991 A CN 103191991A
Authority
CN
China
Prior art keywords
aluminium alloy
alloy extrusions
die
thermoforming
fast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101487621A
Other languages
English (en)
Inventor
卢振
蒋少松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2013101487621A priority Critical patent/CN103191991A/zh
Publication of CN103191991A publication Critical patent/CN103191991A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

铝合金型材快速下陷热成形模具及成形方法,它涉及铝合金型材的热成形模具及方法,本发明要解决现有铝合金型材下陷热成形的加热效率低,尤其是大型铝合金型材局部加热困难,导致整个生产工艺的低效率,不适应批量生产的问题。本发明模具包括凸模、凹模、接触式电极、接触式热电偶、脉冲电源、PID控制系统和型材坯料;方法如下:将铝合金型材置于模具上,通过脉冲电流辅助自阻加热对型材进行局部快速加热,通过压力进行下陷成形得到具有希望形状的制品。本发明加热效率可提高300%~500%,缩短成形周期至10~50s,提高能源利用率200%~400%。本发明应用用航空航天领域。

Description

铝合金型材快速下陷热成形模具及成形方法
技术领域
本发明涉及铝合金型材的热成形模具及方法。
背景技术
铝合金作为一种低密度、高弹性模量、高比强度及比刚度的合金,在航空航天领域具有广阔的应用前景,是航空航天工业最具竞争力的轻质高强结构材料之一,目前铝合金型材已大量应用于航空航天领域,如飞机机翼骨架、等,因此,铝合金型材的成形成为一项关键技术,其中下陷热成形已被广泛应用于铝合金型材的局部成形中。
下陷热成形是把零件及模具加热到某一温度,进行压制成形下陷的加工方法,主要用于强度高、应力集中、敏感性强的材料制成的零件。这种加工方法的好处是可以在硬料状态下对零件进行局部加工成形,避免用软料成形零件后因热处理造成难以校正的变形,从而保证整个零件的质量。传统的下陷热成形加热方式有三种:1、采用加热炉直接加热铝合金坯料;2、加热模具然后对零件进行热传导;3、前两中方式的复合加热。
三种方法的共同缺点是:加热效率低,成形周期长,不适用于大型铝合金型材;另外,铝合金受热时间长,容易引起组织及力学性能改变,影响使用性能。急需开发新型快速下陷热成形方法。
发明内容
本发明目的是为了解决现有铝合金型材下陷热成形的加热效率低,尤其是大型铝合金型材局部加热困难,导致整个生产工艺的低效率,不适应批量生产的问题。而提供铝合金型材快速下陷热成形模具及成形方法。
本发明的铝合金型材快速下陷热成形模具,它包括凸模、凹模、两个接触式电极、接触式热电偶、脉冲电源和PID控制系统;所述的凸模中间部位突起,凹模与凸模中间部位突起相对应的部位具有凹陷,一个接触式电极通过绝缘结构固定在凹模上,另一个接触式电极通过绝缘结构固定在凹模,两个接触式电极相对于凹陷对称设置,PID控制系统的信号输入端与接触式热电偶的信号输出端连接,输出端连接脉冲电源的受控端以控制其输出的电流值,脉冲电源的正极和负极分别与一个接触式电极相连接,型材坯料设置在两个接触式电极上并且位于凹模与凸模之间。
本发明的铝合金型材快速下陷热成形模具的热成形方法,按以下步骤进行:
一、将型材坯料的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域;二、通过脉冲电源控制接触式电极在电流为3000~100000A,电压为3~7V的条件下,对待型材坯料的待处理区域加热施压,加热施压过程中,通过PID控制系统和接触式热电偶对加工区域温度进行控制,使加工区域的温度保持在100℃~350℃,进行凹模与凸模的合模实现型材的局部变形,即完成铝合金型材快速下陷热成形;其中所述的加工区域是由凸模和凹模共同形成的中空区域。
本发明包含以下有益效果:
采用本发明方法的加热效率可提高300%~500%,缩短成形周期至10~50s,单个铝合金型材下陷成形周期缩短至20~30s,提高能源利用率200%~400%。本发明通过接触式热电偶及PID控制系统可实现铝合金型局部温度的自动控制,控制精度可达1~5℃,通过接触式电极可实现铝合金型材局部均匀加热,温度均匀性可达5~10℃,满足下陷成形需要。
当本发明的通入脉冲电流为5000~20000A,适合于中型铝合金型材。
当本发明的通入脉冲电流为10000~100000A,适合于大型铝合金型材。
当本发明的加工区域温度为100℃~150℃,适合于变形量较小的下陷过程。
当本发明的加工区域温度250-350℃,适合于变形量较大,成形周期较长的的下陷过。
附图说明
图1为本发明的铝合金型材电流辅助快速下陷热成形模具结构示意图;
图2为试验中采用本发明的模具对铝合金型材下陷热成形示意图;其中,1为变形前铝合金型材示意图;2为下陷成形后铝合金型材示意图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式的铝合金型材电流辅助快速下陷热成形模具,它包括凸模1、凹模2、两个接触式电极3、接触式热电偶4、脉冲电源5和PID控制系统6;所述的凸模1中间部位突起,凹模2与凸模1中间部位突起相对应的部位具有凹陷,一个接触式电极3通过绝缘结构8固定在凹模2上,另一个接触式电极3通过绝缘结构8固定在凹模2,两个接触式电极3相对于凹陷对称设置,PID控制系统6的信号输入端与接触式热电偶4的信号输出端连接,输出端连接脉冲电源5的受控端以控制其输出的电流值,脉冲电源5的正极和负极分别与一个接触式电极3相连接,型材坯料7设置在两个接触式电极3上并且位于凹模2与凸模1之间。
本实施方式脉冲电源通过接触式热电偶与型材实现点接触,热电偶与型材间同样为点接触。
采用本实施方式方法的加热效率可达300%~500%,缩短成形周期至10~50s,单个铝合金型材下陷成形周期缩短至20~30s,提高能源利用率200%~400%。本实施方式通过接触式热电偶及PID控制系统可实现铝合金型局部温度的自动控制,控制精度可达1~5℃,通过接触式电极可实现铝合金型材局部均匀加热,温度均匀性可达5~10℃,满足下陷成形需要。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述的凸模1、凹模2为T型结构、Z型结构、∟型型结构或工字型型结构。其它与具体实施方式一相同。
具体实施方式三:本实施方式的铝合金型材快速下陷热成形是按以下步骤进行:
一、将型材坯料7的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域9;二、通过脉冲电源5控制接触式电极3在电流为3000~100000A,电压为3~7V的条件下,对待型材坯料7的待处理区域加热施压,加热施压过程中,通过PID控制系统6和接触式热电偶4对加工区域9温度进行控制,使加工区域9的温度保持在100℃~350℃,进行凹模2与凸模1的合模实现型材的局部变形,即完成铝合金型材快速下陷热成形;其中所述的加工区域9是由凸模1和凹模2共同形成的中空区域。
采用本实施方式方法的加热效率可达300%~500%,缩短成形周期至10~50s,单个铝合金型材下陷成形周期缩短至20~30s,提高能源利用率200%~400%。本实施方式通过接触式热电偶及PID控制系统可实现铝合金型局部温度的自动控制,控制精度可达1~5℃,通过接触式电极可实现铝合金型材局部均匀加热,温度均匀性可达5~10℃,满足下陷成形需要。
具体实施方式四:本实施方式与具体实施方式三不同的是:步骤二中所述的电流为10000~100000A。其它与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式三或四不同的是:步骤二中所述的电流为5000~20000A。其它与具体实施方式三或四相同。
具体实施方式六:本实施方式与具体实施方式三至五之一不同的是:步骤二中所述的电流为5000-80000A。其它与具体实施方式三至五之一相同。
具体实施方式七:本实施方式与具体实施方式三至六之一不同的是:步骤二中所述的电流为10000-60000A。其它与具体实施方式三至六之一相同。
具体实施方式八:本实施方式与具体实施方式三至七之一不同的是:步骤二中所述的电流为20000-40000A。其它与具体实施方式三至七之一相同。
具体实施方式九:本实施方式与具体实施方式三至八之一不同的是:步骤二中所述的电流为30000A。其它与具体实施方式三至八之一相同。
具体实施方式十:本实施方式与具体实施方式三至九之一不同的是:步骤二中所述的温度为100℃~150℃。其它与具体实施方式三至九之一相同。
具体实施方式十一:本实施方式与具体实施方式三至十之一不同的是:步骤二中所述的温度为150℃~250℃。其它与具体实施方式三至十之一相同。
具体实施方式十二:本实施方式与具体实施方式三至十一之一不同的是:步骤二中所述的温度为250℃~350℃。其它与具体实施方式三至十一之一相同。
具体实施方式十三:本实施方式与具体实施方式三至十二之一不同的是:步骤二中所述的接触式电极3为钨铜接触式电极3。其它与具体实施方式三至十二之一相同。
通过以下试验验证本发明的有益效果:
试验1
本试验的铝合金型材快速下陷热成形方法,是按以下步骤进行:
一、将型材坯料7的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域9;二、通过脉冲电源5控制接触式电极3在电流为10000A,电压为4V的条件下,对待型材坯料7的待处理区域加热施压,加热施压过程中,通过PID控制系统6和接触式热电偶4对加工区域9温度进行控制,使加工区域9的温度保持在200℃,进行凹模2与凸模1的合模实现局部变形下陷20mm,即完成铝合金型材快速下陷热成形;其中所述的加工区域9是由凸模1和凹模2共同形成的中空区域。
本试验的铝合金型材成形后,型材零件变形量达到35%,零件与模具完全贴合。脱模后,零件弯曲角度精度达到±0.2度,完全达到零件设计要求。型材成形试验加热和成形工艺时间大幅缩短,相对于传统的炉温加热及成形,工艺时间缩短至原来18%,大幅提高了加工效率,节约了成本。
试验2
本试验的铝合金型材快速下陷热成形方法,是按以下步骤进行:
一、将型材坯料7的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域9;二、通过脉冲电源5控制接触式电极3在电流为15000A,电压为4V的条件下,对待型材坯料7的待处理区域加热施压,加热施压过程中,通过PID控制系统6和接触式热电偶4对加工区域9温度进行控制,使加工区域9的温度保持在230℃,进行凹模2与凸模1的合模实现由直线弯曲达130°,即完成铝合金型材快速下陷热成形;其中所述的加工区域9是由凸模1和凹模2共同形成的中空区域。
本试验的铝合金型材成形后,型材零件变形量达到48%,零件与模具完全贴合。脱模后,零件弯曲角度精度达到±0.2度,完全达到零件设计要求。型材成形试验加热和成形工艺时间大幅缩短,相对于传统的炉温加热及成形,工艺时间缩短19%,大幅提高了加工效率,节约了成本。
试验3
本试验的铝合金型材快速下陷热成形方法,是按以下步骤进行:
一、将型材坯料7的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域9;二、通过脉冲电源5控制接触式电极3在电流为30000A,电压为5V的条件下,对待型材坯料7的待处理区域加热施压,加热施压过程中,通过PID控制系统6和接触式热电偶4对加工区域9温度进行控制,使加工区域9的温度保持在250℃,进行凹模2与凸模1的合模实现局部下陷50mm,即完成铝合金型材快速下陷热成形;其中所述的加工区域9是由凸模1和凹模2共同形成的中空区域。
本试验的铝合金型材成形后,型材零件变形量达到55%,零件与模具完全贴合。脱模后,零件弯曲角度精度达到±0.2度,完全达到零件设计要求。型材成形试验加热和成形工艺时间大幅缩短,相对于传统的炉温加热及成形,工艺时间缩短20%,大幅提高了加工效率,节约了成本。
试验4
本试验的铝合金型材快速下陷热成形方法,是按以下步骤进行:
一、将型材坯料7的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域9;二、通过脉冲电源5控制接触式电极3在电流为18000A,电压为4.5V的条件下,对待型材坯料7的待处理区域加热施压,加热施压过程中,通过PID控制系统6和接触式热电偶4对加工区域9温度进行控制,使加工区域9的温度保持在220℃,进行凹模2与凸模1的合模实现局部下陷30mm,即完成铝合金型材快速下陷热成形;其中所述的加工区域9是由凸模1和凹模2共同形成的中空区域。
本试验的铝合金型材成形后,型材零件变形量高达到68%,零件与模具完全贴合。脱模后,零件弯曲角度精度达到±0.2度,完全达到零件设计要求。型材成形试验加热和成形工艺时间大幅缩短,相对于传统的炉温加热及成形工艺时间可缩短至原来10%,大幅提高了加工效率,节约了成本。

Claims (10)

1.铝合金型材快速下陷热成形模具,其特征在于它包括凸模(1)、凹模(2)、两个接触式电极(3)、接触式热电偶(4)、脉冲电源(5)和PID控制系统(6);所述的凸模(1)中间部位突起,凹模(2)与凸模(1)中间部位突起相对应的部位具有凹陷,一个接触式电极(3)通过绝缘结构(8)固定在凹模(2)上,另一个接触式电极(3)通过绝缘结构(8)固定在凹模(2),两个接触式电极(3)相对于凹陷对称设置,PID控制系统(6)的信号输入端与接触式热电偶(4)的信号输出端连接,输出端连接脉冲电源(5)的受控端以控制其输出的电流值,脉冲电源(5)的正极和负极分别与一个接触式电极(3)相连接,型材坯料(7)设置在两个接触式电极(3)上并且位于凹模(2)与凸模(1)之间。
2.根据权利要求1所述的铝合金型材快速下陷热成形模具,其特征在于所述的凸模(1)、凹模(2)的横截面为T型结构、Z型结构、∟型型结构或工字型型结构。
3.利用权利要求1所述的铝合金型材快速下陷热成形模具,进行铝合金型材快速下陷热成形方法,其特征在于铝合金型材快速下陷热成形按以下步骤进行:
一、将型材坯料(7)的待处理区域放入铝合金型材电流辅助快速下陷热成形模具的加工区域(9);二、通过脉冲电源(5)控制接触式电极(3)在电流为3000~100000A,电压为3~7V的条件下,对待型材坯料(7)的待处理区域加热施压,加热施压过程中,通过PID控制系统(6)和接触式热电偶(4)对加工区域(9)温度进行控制,使加工区域(9)的温度保持在100℃~350℃,进行凹模(2)与凸模(1)的合模实现型材的局部变形,即完成铝合金型材快速下陷热成形;其中所述的加工区域(9)是由凸模(1)和凹模(2)共同形成的中空区域。
4.根据权利要求3所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的电流为10000~100000A。
5.根据权利要求3或4所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的电流为5000~20000A。
6.根据权利要求3所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的电流为5000-80000A。
7.根据权利要求5所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的温度为100℃~150℃。
8.根据权利要求7或5所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的温度为150℃~250℃。
9.根据权利要求8所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的温度为250℃~350℃。
10.根据权利要求3所述的铝合金型材快速下陷热成形方法,其特征在于步骤二中所述的接触式电极(3)为钨铜接触式电极(3)。
CN2013101487621A 2013-04-25 2013-04-25 铝合金型材快速下陷热成形模具及成形方法 Pending CN103191991A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101487621A CN103191991A (zh) 2013-04-25 2013-04-25 铝合金型材快速下陷热成形模具及成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101487621A CN103191991A (zh) 2013-04-25 2013-04-25 铝合金型材快速下陷热成形模具及成形方法

Publications (1)

Publication Number Publication Date
CN103191991A true CN103191991A (zh) 2013-07-10

Family

ID=48714909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101487621A Pending CN103191991A (zh) 2013-04-25 2013-04-25 铝合金型材快速下陷热成形模具及成形方法

Country Status (1)

Country Link
CN (1) CN103191991A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406415A (zh) * 2013-08-23 2013-11-27 哈尔滨工业大学 高强钢细长结构件电流辅助快速热成形装置及方法
CN103639297A (zh) * 2013-11-28 2014-03-19 江西洪都航空工业集团有限责任公司 热压下陷模具
CN104139101A (zh) * 2014-06-24 2014-11-12 西北工业大学 一种可调节下陷成形参数的柔性装置
CN104588521A (zh) * 2014-12-19 2015-05-06 北京卫星制造厂 一种采用柔性夹持的电流辅助热成形设备及方法
CN104694865A (zh) * 2015-03-03 2015-06-10 西北工业大学 一种铝合金的电脉冲回归处理方法
CN105710205A (zh) * 2016-04-06 2016-06-29 北京航空航天大学 板料整体自阻加热渐进成形装置
CN105728529A (zh) * 2014-12-12 2016-07-06 中国航空工业集团公司北京航空材料研究院 一种“z”截面高强铝合金型材的压下陷慢速冷成形方法
CN106282860A (zh) * 2016-08-25 2017-01-04 武汉理工大学 梯度力学性能铝合金车身零件成形装置及方法
CN106475475A (zh) * 2015-08-25 2017-03-08 高雄第科技大学 板件局部加热装置及其加热方法
CN107913930A (zh) * 2017-11-04 2018-04-17 北华航天工业学院 一种针对难变形金属板材的自阻加热冲压成形方法
CN107999639A (zh) * 2017-12-11 2018-05-08 南京航空航天大学 自阻电加热渐进成形加热电路智能通断装置
CN108160824A (zh) * 2018-01-22 2018-06-15 燕山大学 一种电场作用下无凸缘圆筒件拉深模
CN108160795A (zh) * 2017-12-22 2018-06-15 天津职业技术师范大学 用于铝合金成形的液压装置
CN108723137A (zh) * 2017-04-18 2018-11-02 中国商用飞机有限责任公司 一种自阻加热铝锂合金型材的差温拉弯成形方法
CN109940080A (zh) * 2019-04-04 2019-06-28 南京航空航天大学 自阻电加热板材拉深成形装置和方法
CN112122465A (zh) * 2020-09-11 2020-12-25 天津航天长征火箭制造有限公司 一种硬态铝合金型材下陷结构自阻加热成形方法
CN114144268A (zh) * 2019-02-28 2022-03-04 印度理工学院海得拉巴分校 用于片材金属加工的系统及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2021053C1 (ru) * 1992-07-01 1994-10-15 Комсомольский-на-Амуре авиационный завод им.Ю.А.Гагарина Штамп для формовки деталей с электроконтактным нагревом заготовок
CN101222991A (zh) * 2005-05-16 2008-07-16 特齐亚金·梅美特 用于金属工件的热成形系统
WO2008087888A1 (ja) * 2007-01-17 2008-07-24 Nagaoka University Of Technology 深絞り加工装置
CN102500675A (zh) * 2011-10-13 2012-06-20 北京航空航天大学 一种钛合金薄壁零件热成形工装及加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2021053C1 (ru) * 1992-07-01 1994-10-15 Комсомольский-на-Амуре авиационный завод им.Ю.А.Гагарина Штамп для формовки деталей с электроконтактным нагревом заготовок
CN101222991A (zh) * 2005-05-16 2008-07-16 特齐亚金·梅美特 用于金属工件的热成形系统
WO2008087888A1 (ja) * 2007-01-17 2008-07-24 Nagaoka University Of Technology 深絞り加工装置
CN102500675A (zh) * 2011-10-13 2012-06-20 北京航空航天大学 一种钛合金薄壁零件热成形工装及加工方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406415A (zh) * 2013-08-23 2013-11-27 哈尔滨工业大学 高强钢细长结构件电流辅助快速热成形装置及方法
CN103639297A (zh) * 2013-11-28 2014-03-19 江西洪都航空工业集团有限责任公司 热压下陷模具
CN104139101A (zh) * 2014-06-24 2014-11-12 西北工业大学 一种可调节下陷成形参数的柔性装置
CN105728529A (zh) * 2014-12-12 2016-07-06 中国航空工业集团公司北京航空材料研究院 一种“z”截面高强铝合金型材的压下陷慢速冷成形方法
CN104588521A (zh) * 2014-12-19 2015-05-06 北京卫星制造厂 一种采用柔性夹持的电流辅助热成形设备及方法
CN104588521B (zh) * 2014-12-19 2017-04-19 北京卫星制造厂 一种采用柔性夹持的电流辅助热成形设备及方法
CN104694865A (zh) * 2015-03-03 2015-06-10 西北工业大学 一种铝合金的电脉冲回归处理方法
CN106475475A (zh) * 2015-08-25 2017-03-08 高雄第科技大学 板件局部加热装置及其加热方法
CN105710205A (zh) * 2016-04-06 2016-06-29 北京航空航天大学 板料整体自阻加热渐进成形装置
CN106282860A (zh) * 2016-08-25 2017-01-04 武汉理工大学 梯度力学性能铝合金车身零件成形装置及方法
CN108723137A (zh) * 2017-04-18 2018-11-02 中国商用飞机有限责任公司 一种自阻加热铝锂合金型材的差温拉弯成形方法
CN107913930A (zh) * 2017-11-04 2018-04-17 北华航天工业学院 一种针对难变形金属板材的自阻加热冲压成形方法
CN107999639A (zh) * 2017-12-11 2018-05-08 南京航空航天大学 自阻电加热渐进成形加热电路智能通断装置
CN108160795A (zh) * 2017-12-22 2018-06-15 天津职业技术师范大学 用于铝合金成形的液压装置
CN108160824A (zh) * 2018-01-22 2018-06-15 燕山大学 一种电场作用下无凸缘圆筒件拉深模
CN108160824B (zh) * 2018-01-22 2019-06-25 燕山大学 一种电场作用下无凸缘圆筒件拉深模
CN114144268A (zh) * 2019-02-28 2022-03-04 印度理工学院海得拉巴分校 用于片材金属加工的系统及其方法
CN109940080A (zh) * 2019-04-04 2019-06-28 南京航空航天大学 自阻电加热板材拉深成形装置和方法
CN112122465A (zh) * 2020-09-11 2020-12-25 天津航天长征火箭制造有限公司 一种硬态铝合金型材下陷结构自阻加热成形方法

Similar Documents

Publication Publication Date Title
CN103191991A (zh) 铝合金型材快速下陷热成形模具及成形方法
CN102615201B (zh) 铝合金钣金件冷热复合模成形方法
CN102974675A (zh) 一种铝合金钣金件固溶水淬后热成形方法
CN103406415B (zh) 高强钢细长结构件电流辅助快速热成形装置及方法
CN104525746B (zh) 一种快速加热及成形一体化装置及方法
CN103753119A (zh) 一种轻量化壁板超塑成形制造方法
CN104310755A (zh) 一种硫系玻璃非球面透镜成形方法
CN102729364B (zh) 热塑性树脂基编织复合材料热成型模具结构
CN104624769A (zh) 一种内压成形与热处理一体化装置及方法
CN101214609B (zh) 一种机动车尼龙软管成型模具的制备方法
CN103341582A (zh) 高温合金gh4742涡轮盘锻件的模锻成型方法
CN104668892A (zh) 直升机收口拉杆加工工艺方法
CN103111568A (zh) 一种大型隔框类锻件的锻坯的自由锻成形工艺
CN203371715U (zh) 塑料板料高压热风渐进成形装置
CN102814436B (zh) 一种中高频感应加热轴向进给滚轧成形螺纹件的方法
CN104972056A (zh) 一种汽车轮毂法兰盘封闭模锻工艺
CN202438617U (zh) 一种多v型槽折弯机下模具
CN203737742U (zh) 带柄齿轮冷挤压模具装置
CN101456045A (zh) 利用材料热膨胀性能进行板材成形的方法及装置
CN104325052B (zh) 一种无磁稳定器锻造工艺
CN203380310U (zh) 一种法兰轴及其终锻模具
CN104708279A (zh) 欧式链接双环扣扣体锻件成型工艺
CN104841709A (zh) 一种裸铜扁线的热挤压方法
CN103464611A (zh) 一种隔热罩成型模具
CN204135263U (zh) 一种球颈接臂锻件制坯模具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130710