CN103187757B - 用于为电动车辆中的电池充电的装置 - Google Patents

用于为电动车辆中的电池充电的装置 Download PDF

Info

Publication number
CN103187757B
CN103187757B CN201210586949.5A CN201210586949A CN103187757B CN 103187757 B CN103187757 B CN 103187757B CN 201210586949 A CN201210586949 A CN 201210586949A CN 103187757 B CN103187757 B CN 103187757B
Authority
CN
China
Prior art keywords
switch element
unit
output
battery
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210586949.5A
Other languages
English (en)
Other versions
CN103187757A (zh
Inventor
宣锺仁
金佑燮
梁千锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LS Industrial Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Industrial Systems Co Ltd filed Critical LS Industrial Systems Co Ltd
Publication of CN103187757A publication Critical patent/CN103187757A/zh
Application granted granted Critical
Publication of CN103187757B publication Critical patent/CN103187757B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • H02M3/3378Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Abstract

本发明公开了一种用于为电动车辆中的电池充电的装置,包括在两个通道中形成的直流-直流变换单元,用于通过接收来自高压电池的电源而变换电源来为低压电池充电。

Description

用于为电动车辆中的电池充电的装置
技术领域
本公开涉及用于为电动车辆中的电池充电的装置。
背景技术
本部分提供与本公开有关的但未必是现有技术的背景信息。
由于普通车辆使用汽油、燃料气以及类似物,普通车辆因其排放例如一氧化碳、二氧化碳和废气的环境有害物质而蒙受损害。最近,为了解决由车辆的废气引起的环境污染、化石燃料的消耗以及类似问题,对于使用电动机作为动力源或者辅助动力源的环境友好车辆的批量生产和普及度的期望在增加,例如电动车辆和混合动力车辆(在下文中被称作“电动车辆”)。特别地,对于高效率和高性能汽车的汽车用零件的需求正在增加。
因此,需要开发高效变换器作为用于通过从设置在电动车辆内部的高压电池接收150V直流输入电压或者300V直流输入电压来为通常为110V或者220V直流的低压电池充电的装置。
发明内容
本部分提供本公开的大体概要,而不是其全部范围或者所有特征的全面公开。
与本公开一致的系统提供了一种用于为电动车辆中的电池充电的装置,以保证效率和稳定性。
然而,需要强调的是本公开不限于上面解释的特定公开。应当理解此处未提到的其他技术主题可以为本领域技术人员所领会。
在本公开的一个方案中,提供了一种用于通过使用高压电池的电源为低压电池充电的装置,所述装置包括:
直流-直流变换单元,其在两个通道中形成,用于通过接收来自所述高压电池的电源而将所述低压电池的充电变换成电源;以及
输出单元,其通过连接至在两个通道中形成的每个所述直流-直流变换单元而连接至所述低压电池,其中在两个通道中形成的每个直流-直流变换单元包括:
开关单元,其通过接收来自所述高压电池的电源而切换相位差,
变压器单元,其连接至所述开关单元的输出端以降低所述开关单元输出的电压,
整流单元,其在将所述变压器单元的输出整流后将所述变压器单元的输出变换成直流电压,以及
滤波单元,其连接至所述输出单元以对所述整流单元的输出进行滤波。
在一些示例性实施例中,每个双通道的开关单元可以为串联连接。
在一些示例性实施例中,所述整流单元和所述滤波单元可以包括电流倍加器。
在一些示例性实施例中,所述滤波单元可以包括由在一个铁心上的两个线圈形成的耦合电感。
在一些示例性实施例中,所述开关单元可以通过全桥方法或者半桥方法形成。
在一些示例性实施例中,所述整流单元可以包括两个MOSFET或者两个二极管。
在一些示例性实施例中,每个通道的所述直流-直流变换单元的开关单元可以包括多个开关元件,其中第一通道的开关元件和第二通道的开关元件分别具有90°相位差。
根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置具有的有益效果在于,能够降低额定内压以及使构造简单化,以由此获得成本效率效果和空间缩小效果。
另一个有益效果在于,能够降低输出电流的脉动,并且能够通过使用耦合电感减少电感,以降低滤波单元的大小和产品的大小与重量。
附图说明
为了解释本公开的原理,尽管并非旨在详尽的阐述,一些以图解例证以及说明为目的的涉及优选实施例的相关附图被呈献在下文中。附图描述了一个或多个依据本发明的构思的示例性实施方案,其仅作为举例而非限定。在附图中,相似的附图标记用于相同的或类似的部件。
因此,通过下述对特定示例性实施例的详细描述,结合附图,可以容易地理解多种潜在实用且有用的示例性实施例,在附图中:
图1为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的示意框图;
图2为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电路图;
图3a和图3b为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电流的示意图。
具体实施方式
对于本领域的普通技术人员来说,在查阅以下附图和详细描述时,将会理解公开的实施例的特征和优点。其旨在所有这种附加的特征和优点均包含在所公开的实施例的范围内,并通过附图受到保护。此外,示出的附图仅为示例性的并且不旨在主张和暗示对于可实施不同的实施例的环境、结构或过程的任何限制。因此,所描述的方案旨在包含落在本发明的精神和新颖构思内的所有这种替代、改进以及变化。
在下文中,将结合附图详细描述根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置。
图1为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的示意框图;
图2为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电路图;
图3a和图3b为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电流的示意图。
根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置(在下文中被称作“装置”)包括:高压电池110,通过切换直流电源将直流电源变换成交流电源的开关单元120-1、120-2,将从开关单元120-1、120-2输出的交流电源降压的变压器单元130-1、130-2,将电荷减少的或者经电压变换的电源整流成直流电源的整流单元140-1、140-2,对已整流的电源进行滤波的滤波单元150-1、150-2,以及通过接收从滤波单元150-1、150-2输出的电源而充电的低压电池160。
参照图1,开关单元120、变压器单元130、整流单元140和滤波单元150各提供了两个,这意味提供了两个直流-直流变换单元或者在两个通道中配置了直流-直流变换单元,每个直流-直流变换单元包括开关单元120、变压器单元130、整流单元140和滤波单元150。
也就是说,根据本公开的示例性实施例的用于使用高压电池110的电源为低压电池160充电的装置包括:在两个通道中配置的直流-直流变换单元,该直流-直流变换单元连接至高压电池110的输出端,用于通过接受来自高压电池110的电力而变换电源来为低压电池160充电;以及输出单元,其连接至在两个通道中形成的每个直流-直流变换单元并且连接至低压电池160。
每个直流-直流变换单元可以包括:用于通过接收来自高压电池110的电源而被以相位差切换的开关单元120,用于通过连接至开关单元120的输出端而降低开关单元的120输出的电压的变压器单元130,通过对来自变压器单元130的输出进行整流而将来自变压器单元130的输出变换成直流电压的整流单元140,以及连接至输出单元并对整流单元140的输出进行滤波的滤波单元150。
与此同时,如图1所示,能够注意到开关单元120-1、120-2串联连接。串联连接是为了经受住在输入端处的来自高压电池110的电压的措施。在安装了两个开关单元120-1、120-2的情况下,额定电流的一半分别流入每个开关单元。因此,来自高压电池110的电压输入能够在装置的输入端被分配或者分担,由此能够降低内部电压。
此外,如图1所示,整流单元140-1、140-2和滤波单元150-1、150-2可以用电流倍加器方法配置。特别地,考虑到电动车辆的充电系统需要低输出电压但是需要高直流电流的事实,所提出的电流倍加器方法是有益的。
滤波单元150-1、150-2可以降低电感的电感值并且也可以通过使用耦合电感降低体积。耦合电感可以是通过在一个铁心上缠绕多个线圈而形成的电感。
在低压/大电流型直流-直流变换器中对变换效率具有最大影响的重要因素是在变换器的输出端处的传导损耗,在此可以通过使用耦合电感降低传导损耗。此外,耦合电感能够通过分配来使大电流流过,由此能够引起热分散效应并且可以显著地降低输出电流中的脉动。
此外,开关单元120-1、120-2可以配置有全桥型开关组件或者半桥型开关组件,全桥型开关组件由四个开关元件构成,半桥型开关组件配置有两个开关元件。此时,开关元件可以是MOSFET(金属氧化物半导体场效应晶体管)或者二极管。然而,本公开不限于此,并且可以使用任何能够执行开关操作的元件。
与此同时,每个直流-直流变换单元包括两个串联连接的开关单元120-1、120-2,并且可以看作配置有两个通道的直流-直流变换单元。直流-直流变换单元每个通道的开关单元120-1、120-2分别配置有四个开关元件或两个开关元件。分别属于不同通道的开关单元可以配置为具有90°的相位差。
换句话说,第一通道的开关单元和第二通道的开关单元可以以相互不同的相位执行接通/切断操作。此外,整流单元140-1、140-2可以配置有两个MOSFET(金属氧化物半导体场效应晶体管)或两个二极管。
图2为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电路图,在此,图2用实际电路或者实际元件图示出图1中图示出的根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的示意图。
上述装置中的开关单元120-1、120-2为双通道串联连接的具有四个开关元件(S1~S4或者S5~S8)的全桥开关电路,并且是在每个通道中能够通过简单方法调整的开关电路。然而,尽管图2图示出全桥开关电路,该装置也可以配置有半桥型开关电路。
开关单元120-1、120-2配置有由多个有四个开关元件形成的全桥变换器以切换每个高压电池的输入直流电源(Vdc)。
同样如图所示,图2中上端的通道看作是第一通道,并且下端的通道看作是第二通道。开关单元120-1、120-2的每个开关元件可以以相位差切换。也就是说,图2中的第一开关单元120-1的四个开关元件可以以与图2中的第二开关单元120-2的四个开关元件呈90°相位差被操作和转换。可以通过相位差的单独调整来操作开关单元120-1、120-2,以避免由开关元件之间的传导引起的短路现象。
现在,将更详细地描述开关单元120-1、120-2的操作。
图3a为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电流的示意图。更具体地,装置的电流与开关单元120-1、120-2的操作有关。
在开关单元120-1、120-2的所有开关元件S1和S4处于开关接通状态的情况下,输入电流流入开关元件S1以在变压器单元130-1的初级侧处的磁化感应线圈Lm1中储存能量。此外,与开关元件S1移相90°的开关元件S5和S8可以保持开关接通状态。流经磁化感应线圈Lm1的能量经过开关元件S4,并且已经经过开关元件S4的电流以与第一通道中相同的方式流入开关元件S5以在变压器单元130-2的次级侧处的磁化感应线圈Lm2中储存能量,并且经过开关元件S8以在输入侧处放电至接地线。
图3b为图示出根据本公开的示例性实施例的用于为电动车辆中的电池充电的装置的电流的示意图。参照图3b,在所有开关元件S2和S3处于开关接通状态的情况下,90°移相的开关元件S6和S7也接通。也就是说,图3b图示出流向开关元件S6和S7的电流,输入电流流入开关元件S3并且经由变压器单元130-1流经开关元件S2。
第一通道的变压器单元130-1和第二通道的变压器单元130-2在第一开关单元120-1和第二开关单元120-2处接通/切断以在变压器单元130-1的初级侧感应出电压,感应的电压在与变压器的相互作用下使得在变压器单元130-2的次级侧产生电压,并且将通过整流单元140-1、140-2被整流成直流电压。
在低压/大电流型变换器中对变换效率具有最大影响的重要因素是在变换器的输出端处的传导损耗,并且为了降低传导损耗,将耦合至整流单元的输出端的电感器用作滤波单元以降低电感器的电感值并且也降低体积(大小)。此外,插入了耦合至输出端的滤波单元的电感器以允许大输出电流以分流的方式流动,由此可以减轻热分散效应和输出脉动电流。
如图3a所示,在开关单元120-1、120-2的开关元件S1、S4、S5、S8处于接通状态的情况下,整流单元140-1、140-2的开关元件SR1、SR3可以接通以形成如图3a所示的闭环。
此外,在开关单元120-1、120-2的开关元件S2、S3、S6、S7处于接通状态的情况下,整流单元140-1、140-2的开关元件SR2、SR4可以接通以形成如图3b所示的闭环。
然而,上述根据本公开的用于为电动车辆中的电池充电的装置可以用多种形式具体表达,并不应该解释为以其提出的实施例为限定。因此,只要落入权利要求及其等同替换的保护范围之内,本公开的实施例可以覆盖本公开的修正和变化。虽然特定特征或者方案可能已经被个别实施例公开,但是可以想到将这些特征和方案可以选择性地与其他实施例的一个或者多个其他特征和/或方案结合。

Claims (4)

1.一种用于通过使用高压电池的电源为低压电池充电的装置,所述装置包括:
直流-直流变换单元,其在两个通道中形成,用于通过接收来自所述高压电池的电源而变换电源来为所述低压电池充电;以及
输出单元,其通过连接至在两个通道中形成的每个所述直流-直流变换单元而连接至所述低压电池,其中在两个通道中形成的每个直流-直流变换单元包括:
开关单元,其通过接收来自所述高压电池的电源而切换相位差,
变压器单元,其连接至所述开关单元的输出端以降低所述开关单元输出的电压,
整流单元,其在将所述变压器单元的输出整流后将所述变压器单元的输出变换成直流电压,以及
滤波单元,其连接至所述输出单元以对所述整流单元的输出进行滤波,
其中,所述整流单元和所述滤波单元包括电流倍加器,所述滤波单元包括由在一个铁心上的两个线圈形成的耦合电感,并且每个通道的所述直流-直流变换单元的开关单元包括多个开关元件,其中第一通道的开关元件和第二通道的开关元件分别具有90°相位差。
2.根据权利要求1所述的装置,其中,每个双通道的开关单元为串联连接。
3.根据权利要求1所述的装置,其中,所述开关单元通过全桥方法或者半桥方法形成。
4.根据权利要求1所述的装置,其中,所述整流单元包括两个MOSFET或者两个二极管。
CN201210586949.5A 2011-12-30 2012-12-28 用于为电动车辆中的电池充电的装置 Expired - Fee Related CN103187757B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0147302 2011-12-30
KR1020110147302A KR20130078386A (ko) 2011-12-30 2011-12-30 전기자동차 충전기용 dc-dc 컨버터

Publications (2)

Publication Number Publication Date
CN103187757A CN103187757A (zh) 2013-07-03
CN103187757B true CN103187757B (zh) 2016-03-30

Family

ID=47519897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210586949.5A Expired - Fee Related CN103187757B (zh) 2011-12-30 2012-12-28 用于为电动车辆中的电池充电的装置

Country Status (5)

Country Link
US (1) US9214825B2 (zh)
EP (1) EP2618449A3 (zh)
JP (1) JP2013141395A (zh)
KR (1) KR20130078386A (zh)
CN (1) CN103187757B (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790709B2 (ja) * 2013-05-21 2015-10-07 トヨタ自動車株式会社 電力変換装置及び電力変換方法
US9315166B2 (en) * 2013-07-12 2016-04-19 Fca Us Llc Techniques for synchronous rectification control of DC-DC converters in electrified vehicles
DE102013225493A1 (de) * 2013-08-12 2015-02-12 Hyundai Motor Company Umwandlervorrichtung und -verfahren eines Elektrofahrzeugs
KR101459489B1 (ko) * 2013-09-26 2014-11-07 현대자동차 주식회사 친환경 자동차의 제어 방법 및 시스템
KR102199469B1 (ko) 2013-12-09 2021-01-06 한화디펜스 주식회사 전기차량에서 외부 차량과 상호 전력 공급을 수행하는 방법 및 장치
KR101819256B1 (ko) 2013-12-18 2018-01-16 엘에스산전 주식회사 전기 자동차의 저전압단 emi 필터
JP6003932B2 (ja) * 2014-03-11 2016-10-05 トヨタ自動車株式会社 電力変換装置及びその起動方法
CN104092385B (zh) * 2014-06-16 2017-10-13 福建睿能科技股份有限公司 纺织设备的电源系统
CN106664025B (zh) * 2014-07-21 2019-04-05 华为技术有限公司 双向dc-dc转换器
KR102291153B1 (ko) * 2014-10-31 2021-08-19 현대모비스 주식회사 오접속 보호회로를 구비하는 dc-dc 컨버터
US10098278B2 (en) 2015-02-20 2018-10-16 Black & Decker Inc. Mower
TWI608694B (zh) * 2015-05-13 2017-12-11 Fu Tzu Hsu Static magnetoresistive magnetic amplifying device
CN107925356B (zh) * 2015-08-06 2020-11-10 日立汽车系统株式会社 Dcdc转换器一体型充电器
US9882479B2 (en) * 2015-09-17 2018-01-30 Qualcomm Incorporated Switching regulator circuits and methods
KR101849626B1 (ko) 2016-03-03 2018-04-17 계명대학교 산학협력단 고효율 전기자동차 충전기
CN107294145A (zh) * 2016-03-30 2017-10-24 通用电气公司 充电装置、系统和方法
CA3043518A1 (en) * 2016-11-10 2018-05-17 Ocean Power Technologies, Inc. High dc voltage to low dc voltage conversion apparatus including rechargeable batteries
KR20180057272A (ko) * 2016-11-22 2018-05-30 현대자동차주식회사 차량, 차량용 직류-직류 변환기 및 차량용 직류-직류 변환기의 제어 방법
CN106740195B (zh) * 2016-12-12 2021-01-01 深圳市京科凌智技术有限公司 一种电动汽车充电电源及对电动汽车的充电方法
CN106904091B (zh) * 2017-03-24 2019-04-09 深圳腾势新能源汽车有限公司 一种电池充电方法、系统和车身控制器
KR102366319B1 (ko) * 2017-04-03 2022-02-22 엘지이노텍 주식회사 전원 공급 장치
FR3066655B1 (fr) * 2017-05-19 2019-07-19 Valeo Siemens Eautomotive France Sas Systeme de chargeur electrique pour vehicule electrique ou hybride
CN107579656A (zh) * 2017-08-23 2018-01-12 北京新能源汽车股份有限公司 一种直流‑直流变换器及电动汽车
CN107612352A (zh) * 2017-10-23 2018-01-19 安徽栋霖电气有限公司 一种分段高效率的移相电源
CN107839543A (zh) * 2017-10-30 2018-03-27 广东亿鼎新能源汽车有限公司 一种增程式电动车跛行控制方法
US10601333B2 (en) * 2018-08-22 2020-03-24 Infineon Technologies Austria Ag Feedforward enhanced feedback control in isolated switched-mode power converters with secondary-side rectified voltage sensing
US11502595B2 (en) 2018-09-06 2022-11-15 Infineon Technologies Austria Ag Voltage and current protection in isolated switched-mode power converters with secondary-side rectified voltage sensing
DE102018124581B4 (de) * 2018-10-05 2022-07-07 Infineon Technologies Austria Ag Leistungswandlersteuerung, asymmetrischer Leistungswandler und Verfahren zum Betreiben eines Leistungswandlers
US10770983B2 (en) 2018-12-06 2020-09-08 Infineon Technologies Austria Ag Circuits and methods for secondary-side rectified voltage sensing in isolated switched-mode power converters
KR102307484B1 (ko) * 2019-01-08 2021-09-29 명지대학교 산학협력단 전기 차량용 저전압 절연형 dc/dc 컨버터
DE102019122659A1 (de) * 2019-08-22 2021-02-25 Jungheinrich Aktiengesellschaft Flurförderzeug mit einem Einbauladegerät
DE102019213671A1 (de) * 2019-09-09 2021-03-11 Vitesco Technologies GmbH Fahrzeugbordnetz und Verwendung eines Glättungskondensators und einer Schalteinheit eines Gleichspannungswandlers innerhalb des Fahrzeugbordnetzes
CN110995025A (zh) * 2019-12-20 2020-04-10 矽力杰半导体技术(杭州)有限公司 一种开关电源电路
KR102454400B1 (ko) 2020-10-29 2022-10-14 주식회사 엠디엠 열방출 구조물 및 이를 활용한 냉각장치
US20230408595A1 (en) * 2020-11-27 2023-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, vehicle, and electronic device
CN114604095B (zh) * 2020-12-03 2023-07-21 宇通客车股份有限公司 新能源汽车的dc/dc控制方法及装置
US11590850B2 (en) * 2021-02-02 2023-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods with dual function coil providing in-vehicle wireless power
CN113992016B (zh) * 2021-12-24 2022-03-18 深圳市永联科技股份有限公司 低压大电流输出电路及低压大电流充电系统
CN115179789A (zh) * 2022-06-21 2022-10-14 华为数字能源技术有限公司 功率转换装置、充电桩、车载充电器和电动汽车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764036A (zh) * 2004-10-20 2006-04-26 台达电子工业股份有限公司 充电电路及使用该充电电路的不断电电源供应系统
CN201869102U (zh) * 2010-12-06 2011-06-15 山东大学 光伏高频隔离升压软开关dc/dc变换器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121249A (ja) 1991-12-09 1995-05-12 Shindengen Electric Mfg Co Ltd 電気自動車用電源装置
JP3539129B2 (ja) 1997-05-14 2004-07-07 株式会社明電舎 コンデンサの充電装置
JPH118910A (ja) 1997-06-16 1999-01-12 Denso Corp ハイブリッド電気自動車の電源装置
DE19921450C5 (de) * 1999-05-08 2006-08-03 Daimlerchrysler Ag Elektrischer Fahrzeugantrieb
JP2000324829A (ja) 1999-05-14 2000-11-24 Nec Corp 共振型コンバータ回路
JP2002262551A (ja) * 2000-02-07 2002-09-13 Fiderikkusu:Kk ボルテージステップダウンdc−dcコンバータ
CA2369060C (en) * 2001-01-24 2005-10-04 Nissin Electric Co., Ltd. Dc-dc-converter and bi-directional dc-dc converter and method of controlling the same
JP3867842B2 (ja) 2001-11-08 2007-01-17 オリジン電気株式会社 コンデンサ充電方法及びその装置
JP2003164151A (ja) 2001-11-28 2003-06-06 Nissin Electric Co Ltd Dc−dcコンバータ
US6714428B2 (en) * 2002-03-26 2004-03-30 Delta Electronics Inc. Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
JP4385659B2 (ja) * 2003-06-17 2009-12-16 ソニー株式会社 充電回路およびそれを用いた充電装置
US7466116B2 (en) * 2004-04-12 2008-12-16 Renesas Technology America, Inc. Current sensing circuit for a multi-phase DC-DC converter
US6982887B2 (en) * 2004-04-26 2006-01-03 Astec International Limited DC-DC converter with coupled-inductors current-doubler
US7821799B2 (en) * 2006-10-30 2010-10-26 Jacobs Mark E Ripple reduction for switch-mode power conversion
JP5455705B2 (ja) 2010-02-25 2014-03-26 Asti株式会社 充電装置と充電方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764036A (zh) * 2004-10-20 2006-04-26 台达电子工业股份有限公司 充电电路及使用该充电电路的不断电电源供应系统
CN201869102U (zh) * 2010-12-06 2011-06-15 山东大学 光伏高频隔离升压软开关dc/dc变换器

Also Published As

Publication number Publication date
JP2013141395A (ja) 2013-07-18
US9214825B2 (en) 2015-12-15
EP2618449A2 (en) 2013-07-24
KR20130078386A (ko) 2013-07-10
EP2618449A3 (en) 2016-03-09
US20130169212A1 (en) 2013-07-04
CN103187757A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
CN103187757B (zh) 用于为电动车辆中的电池充电的装置
Chen et al. Integrated multiple-output synchronous buck converter for electric vehicle power supply
AU2016318231B2 (en) A controller for an inductive load having one or more inductive windings
KR101971157B1 (ko) 전기자동차 대용량 탑재형 충전기
Krismer Modeling and optimization of bidirectional dual active bridge DC-DC converter topologies
US8009443B2 (en) DC/DC converter and AC/DC converter
Lee et al. Nonisolated ZVT two-inductor boost converter with a single resonant inductor for high step-up applications
CN106329940A (zh) 一种双变压器串并联结构全桥llc谐振变换器
CN105322812A (zh) 脉冲宽度调制谐振转换器及使用其的用于车辆的充电器
CN102714465A (zh) 带有旁路能量转移电抗的消弧开关的功率转移器件、方法和系统
KR20090018705A (ko) 인버터 회로 및 인버터 회로를 동작시키기 위한 방법
CN101997324A (zh) 具有电隔离的双向能量输送的系统和方法
Ramakrishnan et al. Power topology considerations for electric vehicle charging stations
Jeong et al. Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency
Alharbi et al. Comparison of SiC-based DC-DC modular converters for EV fast DC chargers
KR20210152386A (ko) 저압 및 고압 일체용 충전 장치
Rezaii et al. Design and experimental study of a high voltage gain bidirectional DC-DC converter for electrical vehicle application
WO2023005466A1 (zh) 一种车辆直流电压转换电路
Wickramasinghe et al. A review on single-phase, single-stage OBC topologies for EVs with 48 V powertrains
Yu et al. A novel nonisolated GaN-Based bidirectional DC–DC converter with high voltage gain
Park et al. Investigation of zero voltage switching capability for bidirectional series resonant converter using phase-shift modulation
CN208401607U (zh) 基于SiC三相双变换器的电动汽车充电与驱动集成系统
Zhang et al. An isolated DC/DC converter with reduced number of switches and voltage stresses for electric and hybrid electric vehicles
Qayamuddin et al. A novel control strategy for dual active bridge bidirectional converter for electric vehicle application
Loganathan et al. High Gain Power Converters For Electric Vehicles: A Review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20181228

CF01 Termination of patent right due to non-payment of annual fee