KR102307484B1 - 전기 차량용 저전압 절연형 dc/dc 컨버터 - Google Patents

전기 차량용 저전압 절연형 dc/dc 컨버터 Download PDF

Info

Publication number
KR102307484B1
KR102307484B1 KR1020190002076A KR20190002076A KR102307484B1 KR 102307484 B1 KR102307484 B1 KR 102307484B1 KR 1020190002076 A KR1020190002076 A KR 1020190002076A KR 20190002076 A KR20190002076 A KR 20190002076A KR 102307484 B1 KR102307484 B1 KR 102307484B1
Authority
KR
South Korea
Prior art keywords
switching element
transformer
voltage
winding
output
Prior art date
Application number
KR1020190002076A
Other languages
English (en)
Other versions
KR20200086009A (ko
Inventor
이준영
이일운
최승원
최진용
이상혁
오광호
이승준
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020190002076A priority Critical patent/KR102307484B1/ko
Publication of KR20200086009A publication Critical patent/KR20200086009A/ko
Application granted granted Critical
Publication of KR102307484B1 publication Critical patent/KR102307484B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

전기 차량용 저전압 절연형 DC/DC 컨버터가 개시된다. 개시된 DC/DC 컨버터는 전기 차량용 배터리에 충전된 입력 전압에 기초하여 제1 포지티브 전압 및 제1 네거티브 전압을 출력하는 제1 인버터; 상기 입력 전압에 기초하여 제2 포지티브 전압 및 제2 네거티브 전압을 출력하는 제2 인버터; 상기 제1 포지티브 전압 및 상기 제1 네거티브 전압에 기초하여 전압을 변화시키는 제1 변압기; 상기 제2 포지티브 전압 및 상기 제2 네거티브 전압에 기초하여 전압을 변화시키는 제2 변압기; 상기 제1 변압기의 1차측과 상기 제2 변압기의 1차측 사이에 연결되는 전력 균형기; 및 상기 제1 변압기의 2차측 및 상기 제2 변압기의 2차측과 연결되며, 상기 제1 변압기의 2차측 및 제2 변압기의 2차측에서 출력된 전압을 정류하여 출력 전압을 출력하는 출력부;를 포함한다.

Description

전기 차량용 저전압 절연형 DC/DC 컨버터{Low Voltage Isolation DC/DC Converter for Electric Vehicles}
본 발명의 실시예들은 전기 차량용 저전압 절연형 DC/DC 컨버터에 관한 것으로서, 보다 상세하게는 고입력 전압에서 위상 천이 방식으로 고주파 스위칭이 가능하고, 고용량에 대응하기 위해 분산 설계 구조를 가지며, 분산 설계 시 발생하는 전력 균형 문제를 해결할 수 있는 DC/DC 컨버터에 관한 것이다.
전기 차량에는 내부 전장품의 전력을 공급하기 위해 저전압 DC/DC 컨버터를 사용하고 있다. 보통의 승용차의 경우 12V의 출력 전압과 1~2kW의 전력 용량을 가지는 저전압 DC/DC 컨버터가 사용되고, 상용차의 경우 24V의 출력 전압과 2~5kW의 전력 용량을 가지는 저전압 DC/DC 컨버터가 사용된다.
저전압 DC/DC 컨버터는 배터리 전압을 입력 전원으로 사용하고 있다. 일반적인 배터리의 경우, 약 400V 정도의 공칭 전압을 가지며 배터리 상태에 따라 200V~450V의 넓은 전압범위를 가진다. 이러한 넓은 입력 전압 범위, 12V 또는 24V의 낮은 입력 전압 및 큰 출력 전류에 대응하기 위해, 도 1에 도시된 바와 같은 센터 탭 정류기를 사용하는 풀 브리지 컨버터가 널리 사용되고 있다.
전기 차량용 전력 변환기는 일반적으로 고전력 밀도를 요구하고 있으며, 이를 만족하기 위해서, 종래 기술에서는 스위칭 손실을 저감할 수 있고 소프트 스위칭 동작이 가능하며 간단한 펄스 변압기를 사용할 수 있는 위상 천이 구동 방식의 저전압 DC/DC 컨버터가 사용되고 있다.
최근 자동차의 항속 거리의 증가를 위해, 배터리 전압을 증가시키기 위한 연구 개발이 진행되고 있다. 이러한 고입력 전압과 저전압 DC/DC 컨버터의 전력 밀도의 상승을 위해서는 고주파 스위칭이 가능한 저내압 스위치를 사용할 수 있어야 하며, 또한 분산 설계를 통해 전력 밀도를 최적화할 수 있는 기술 개발이 요구된다.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 고입력 전압에서 위상 천이 방식으로 고주파 스위칭이 가능하고, 고용량에 대응하기 위해 분산 설계 구조를 가지며, 분산 설계 시 발생하는 전력 균형 문제를 해결할 수 있는 저전압 DC/DC 컨버터를 제안하고자 한다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 저전압 절연형 DC/DC 컨버터에 있어서, 전기 차량용 배터리에 충전된 입력 전압에 기초하여 제1 포지티브 전압 및 제1 네거티브 전압을 출력하는 제1 인버터; 상기 입력 전압에 기초하여 제2 포지티브 전압 및 제2 네거티브 전압을 출력하는 제2 인버터; 상기 제1 포지티브 전압 및 상기 제1 네거티브 전압에 기초하여 전압을 변화시키는 제1 변압기; 상기 제2 포지티브 전압 및 상기 제2 네거티브 전압에 기초하여 전압을 변화시키는 제2 변압기; 상기 제1 변압기의 1차측과 상기 제2 변압기의 1차측 사이에 연결되는 전력 균형기; 및 상기 제1 변압기의 2차측 및 상기 제2 변압기의 2차측과 연결되며, 상기 제1 변압기의 2차측 및 제2 변압기의 2차측에서 출력된 전압을 정류하여 출력 전압을 출력하는 출력부;를 포함하는 것을 특징으로 하는 DC/DC 컨버터가 제공된다.
상기 전력 균형기는 변압기 구조를 가지는 공통 모드 커플드 인덕터를 포함할 수 있다.
상기 공통 모드 커플드 인덕터의 1차측과 2차측의 권선비는 1:1일 수 있다.
상기 공통 모드 커플드 인덕터는 상기 제1 변압기와 상기 제2 변압기의 누설 인덕턴스의 편차에 따라 상기 제1 변압기와 상기 제2 변압기의 전류 편차가 발생하는 것을 방지할 수 있다.
상기 공통 모드 커플드 인덕터의 1차측은 상기 제1 변압기의 1차측과 직렬로 연결되고, 상기 공통 모드 커플드 인덕터의 2차측은 상기 제2 변압기의 1차측과 직렬로 연결될 수 있다.
상기 제1 포지티브 전압은 상기 제1 변압기의 1차측의 권선의 일단에 인가되고, 상기 제1 네거티브 전압은 상기 공통 모드 커플드 인덕터의 1차측의 권선의 일단에 인가되고, 상기 제1 변압기의 1차측의 권선의 타단과 상기 공통 모드 커플드 인덕터의 1차측의 권선의 타단은 서로 연결되고, 상기 제2 포지티브 전압은 상기 공통 모드 커플드 인덕터의 2차측의 권선의 일단에 인가되고, 상기 제2 네거티브 전압은 상기 제2 변압기의 1차측의 권선의 타단으로 인가되고, 상기 공통 모드 커플드 인덕터의 2차측의 권선의 타단과 상기 제2 변압기의 1차측의 권선의 일단은 서로 연결될 수 있다.
상기 DC/DC 컨버터는 상기 입력 전압을 제1 전압과 제2 전압으로 분배하는 전압 분배부;를 더 포함하고, 상기 제1 인버터부는 직렬 연결되는 스위칭 소자 1A, 스위칭 소자 2A, 스위칭 소자 3A 및 스위칭 소자 4A를 포함하고, 상기 제2 인버터부는 직렬 연결되는 스위칭 소자 1B, 스위칭 소자 2B, 스위칭 소자 3B 및 스위칭 소자 4B를 포함할 수 있다.
상기 전압 분배부는 직렬 연결된 제1 입력 캐패시터 및 제2 입력 캐패시터를 포함하고, 상기 제1 입력 캐패시터의 일단, 상기 스위칭 소자 1A의 일단 및 상기 스위칭 소자 4B의 일단은 전기적으로 연결되고, 상기 제1 입력 캐패시터의 타단, 상기 스위칭 소자 2A의 타단, 상기 스위칭 소자 3B의 타단, 상기 제2 입력 캐패시터의 일단, 상기 스위칭 소자 3A의 일단, 상기 스위칭 소자 2B의 일단은 전기적으로 연결되고, 상기 제2 입력 캐패시터의 타단, 상기 스위칭 소자 4A의 타단 및 상기 스위칭 소자 1B의 타단은 전기적으로 연결될 수 있다.
상기 제1 포지티브 전압은 상기 스위칭 소자 1A의 타단 및 상기 스위칭 소자 2A의 일단이 연결된 노드에서 출력되고, 상기 제1 네거티브 전압은 상기 스위칭 소자 3A의 타단 및 상기 스위칭 소자 4A의 일단이 연결된 노드에서 출력되고, 상기 제2 포지티브 전압은 상기 스위칭 소자 4B의 타단 및 상기 스위칭 소자 3B의 일단이 연결된 노드에서 출력되고, 상기 제2 네거티브 전압은 상기 스위칭 소자 2B의 타단 및 상기 스위칭 소자 1B의 일단이 연결된 노드에서 출력될 수 있다.
상기 DC/DC 컨버터는 제1 모드, 제2 모드, 제3, 모드, 제4 모드, 제5 모드 및 제6 모드가 순차적으로 반복하여 동작하되, 상기 제1 모드 및 상기 제2 모드에서, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 온되고, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 오프되며, 상기 제3 모드에서, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 온되고, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 오프되며, 상기 제4 모드 및 상기 제5 모드에서, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 온되고, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 오프되며, 상기 제6 모드에서, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 온되고, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 오프될 수 있다.
상기 제1 변압기의 2차측의 권선은 직렬 연결된 제1 권선 및 제2 권선을 포함하고, 상기 제2 변압기의 2차측의 권선은 직렬 연결된 제3 권선 및 제4 권선을 포함하며, 상기 출력부는 제1 다이오드 및 제2 다이오드를 포함하는 정류기와, 출력 인덕터 및 출력 캐패시터를 포함하되, 상기 제1 다이오드의 입력단은 상기 제1 권선의 일단 및 상기 제3 권선의 일단과 연결되고, 상기 제2 다이오드의 입력단은 상기 제2 권선의 타단 및 상기 제4 권선의 타단과 연결되고, 상기 출력 인덕터의 일단은 상기 제1 다이오드의 출력단 및 상기 제2 다이오드의 출력단과 연결되고, 상기 출력 캐패시터의 일단은 상기 출력 인덕터의 타단과 연결되고, 상기 출력 캐패시터의 타단은 상기 제1 권선의 타단, 상기 제3 권선의 타단, 상기 제2 권선의 일단 및 상기 제4 권선의 일단과 연결될 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 저전압 절연형 DC/DC 컨버터에 있어서, 전기 차량용 배터리에 충전된 입력 전압에 기초하여, 제1 출력단으로 제1 포지티브 전압 및 제1 네거티브 전압을 출력하고, 제2 출력단으로 제2 포지티브 전압 및 제2 네거티브 전압을 출력하는 고주파 인버터부; 상기 고주파 인버터부의 제1 출력단과 연결된 제1 변압기; 상기 고주파 인버터부의 제2 출력단과 연결된 제2 변압기; 상기 제1 변압기의 1차측과 상기 제2 변압기의 1차측 사이에 연결되며, 변압기 구조를 가지는 공통 모드 커플드 인덕터; 및 상기 제1 변압기의 2차측에서 출력된 전압을 정류하여 제1 출력 전압을 출력하는 제1 출력부; 및 상기 제2 변압기의 2차측에서 출력된 전압을 정류하여 제2 출력 전압을 출력하는 제2 출력부;를 포함하는 것을 특징으로 하는 DC/DC 컨버터가 제공된다.
또한, 본 발명의 또 다른 실시예에 따르면, 저전압 절연형 DC/DC 컨버터에 있어서, 전기 차량용 배터리에 충전된 입력 전압에 기초하여, 제1 출력단으로 제1 포지티브 전압 및 제1 네거티브 전압을 출력하고, 제2 출력단으로 제2 포지티브 전압 및 제2 네거티브 전압을 출력하는 고주파 인버터부; 상기 고주파 인버터부의 제1 출력단 및 제2 출력단과 연결되며, 1차측 및 2차측 각각이 2개의 권선으로 구성된 변압기 - 상기 변압기의 1차측은 제1 권선 및 제2 권선으로 구성되고, 상기 변압기의 2차측은 제3 권선 및 제4 권선으로 구성됨 -; 상기 제1 권선과 상기 제2 권선의 사이에 연결되며, 변압기 구조를 가지는 공통 모드 커플드 인덕터; 및 상기 변압기의 2차측에서 출력된 전압을 정류하여 출력 전압을 출력하는 출력부;를 포함하는 것을 특징으로 하는 DC/DC 컨버터가 제공된다.
본 발명에 따른 저전압 DC/DC 컨버터는 고입력 전압에서 위상 천이 방식으로 고주파 스위칭이 가능하고, 분산 설계 시 발생하는 전력 균형 문제를 해결할 수 있는 장점이 있다.
또한, 본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 종래의 저전압 DC/DC 컨버터에서 사용되는 센터 탭 정류기를 사용하는 풀 브리지 컨버터의 일례를 도시한 도면이다.
도 2는 본 발명의 제1 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다
도 3 내지 도 9는 본 발명의 제1 실시예에 따른 저전압 DC/DC 컨버터의 동작을 설명하기 위한 도면이다.
도 10 내지 도 16은 본 발명의 제1 실시예에 따른 저전압 절연형 DC/DC 컨버터의 모의실험의 결과를 설명하기 위한 도면이다.
도 17은 본 발명의 제2 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다.
도 18은 본 발명의 제3 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술한다.
도 2는 본 발명의 제1 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 저전압 DC-DC 컨버터는, 전압 분배부(210), 인버터부(220), 스위칭 제어부(230), 제1 변압기(240), 제2 변압기(250), 전력 균형기(260) 및 출력부(270)를 포함한다.
전압 분배부(210)는 전기 차량용 배터리에 충전된 입력 전압(VDC)를 제1 전압(Vin1)과 제2 전압(Vin2)으로 분배하며, 이를 위해 직렬로 연결된 제1 입력 캐패시터(Cin1) 및 제2 입력 캐패시터(Cin2)를 포함한다. 이 때, 하기에서 설명하는 변압기들(250, 260)의 파라미터가 동일하다면, 제1 입력 캐패시터(Cin1)에 인가된 제1 전압(Vin1)과 및 제2 입력 캐패시터(Cin2)에 인가된 제2 전압(Vin2)는 부하(Load)에 관계없이 항상 입력 전압의 절반(VDC/2)으로 유지된다.
고주파 인버터부(220)는 제1 인버터(221) 및 제2 인버터(221)를 포함하며, 제1 인버터(221)에서 출력된 신호를 출력하는 제1 출력단(Vpp1, Vpn1)과, 제2 인버터(222)에서 출력된 신호를 출력하는 제2 출력단(Vpp2, Vpn2)를 포함한다. 이 때, 제1 인버터(221) 및 제2 인버터(221)는 하프 브리지 구조일 수 있다. 각각의 인버터(221, 222)의 출력 신호는 제1 변압기(240) 및 제2 변압기(250)로 인가된 후, 출력부(270)에서 정류되어 출력 전압(Vo)를 형성한다.
이 때, 제1 인버터(221)는 입력 전압(VDC)을 인가받아 제1 출력단를 통해 제1 포지티브 전압(Vpp1) 및 제1 네거티브 전압(Vpn1)을 출력하며, 이를 위해 직렬 연결되는 스위칭 소자 1A(2211), 스위칭 소자 2A(2212), 스위칭 소자 3A(2213) 및 스위칭 소자 4A(2214)를 포함한다. 여기서, 제1 포지티브 전압(Vpp1)은 스위칭 소자 1A(2211)의 타단 및 스위칭 소자 2A(2212)의 일단이 연결된 노드에서 출력되고, 제1 네거티브 전압(Vpn1)은 스위칭 소자 3A(2213)의 타단 및 스위칭 소자 4A(2214)의 일단이 연결된 노드에서 출력된다.
또한, 제2 인버터(222)는 입력 전압(VDC)을 인가받아 제2 출력단을 통해 제2 포지티브 전압(Vpp2) 및 제2 네거티브 전압(Vpn2)을 출력하며, 이를 위해 직렬 연결되는 스위칭 소자 1B(2221), 스위칭 소자 2B(2222), 스위칭 소자 3B(2223) 및 스위칭 소자 4B(2224)를 포함한다. 여기서, 제2 포지티브 전압(Vpp2)은 스위칭 소자 4B(2224)의 타단 및 스위칭 소자 3B(233)의 일단이 연결된 노드에서 출력되고, 제2 네거티브 전압(Vpn2)은 스위칭 소자 2B(2222)의 타단 및 스위칭 소자 1B(2221)의 일단이 연결된 노드에서 출력된다.
전압 분배부(210)의 구성 요소와, 제1 인버터(221) 및 제2 인버터(222)의 구성 요소의 연결 관계를 살펴보면 다음과 같다.
먼저, 제1 입력 캐패시터(Cin1)의 일단, 스위칭 소자 1A(2211)의 일단 및 스위칭 소자 4B(2224)의 일단은 전기적으로 연결되고, 스위칭 소자 1A(2211)의 타단과 스위칭 소자 2A(222)(221)의 일단은 전기적으로 연결되고, 스위칭 소자 4B(2224)의 타단과 스위칭 소자 3B(2223)의 일단은 전기적으로 연결된다. 그리고, 제1 입력 캐패시터(Cin1)의 타단, 스위칭 소자 2A(2212)의 타단, 스위칭 소자 3B(2223)의 타단, 제2 입력 캐패시터(Cin2)의 일단, 스위칭 소자 3A(2213)의 일단, 스위칭 소자 2B(2222)의 일단은 전기적으로 연결된다. 또한, 제2 입력 캐패시터(Cin2)의 타단, 스위칭 소자 4A(2214)의 타단 및 스위칭 소자 1B(2221)의 타단은 전기적으로 연결되고, 스위칭 소자 3A(2213)의 타단과 스위칭 소자 4A(2214)의 일단은 전기적으로 연결되고, 스위칭 소자 2B(2222)의 타단과 스위칭 소자 1B(2221)의 일단은 전기적으로 연결된다.
한편, 제1 인버터(221) 및 제2 인버터(222)에 포함된 각 스위칭 소자(2221, 2212, 2213, 2214, 2221, 2222, 2223, 2224)는 트랜지스터, 다이오드 및 캐패시터가 병렬 연결된 구조일 수 있으며, PWM(Pulse Width Modulation) 방식으로 동작하는 스위칭 제어부(230)에서 출력된 제어 신호를 통해 온/오프가 제어된다.
제1 변압기(240)는 고주파 인버터부(220)의 제1 출력단과 연결되며, 제1 포지티브 전압(Vpp1) 및 제1 네거티브 전압(Vpn1)에 기초하여 전압을 변화시킨다. 이 때, 제1 변압기(240)의 2차측은 2개의 탭으로 구성된다. 즉, 제1 변압기(240)의 2차측의 권선은 직렬 연결된 제1 권선(241) 및 제2 권선(242)을 포함한다. 또한, 제1 변압기(240)의 1차측의 권선과 2차측의 권선의 권선비는 N:1로 설정될 수 있다.
그리고, 제2 변압기(250)는 고주파 인버터부(220)의 제2 출력단과 연결되며, 제2 포지티브 전압(Vpp2) 및 제2 네거티브 전압(Vpn2)에 기초하여 전압을 변화시킨다. 이 때, 제2 변압기(250)의 2차측은 2개의 탭으로 구성된다. 즉, 제2 변압기(250)의 2차측의 권선은 직렬 연결된 제3 권선(251) 및 제5 권선(252)을 포함한다. 또한, 제2 변압기(250)의 1차측의 권선과 2차측의 권선의 권선비는 N:1로 설정될 수 있다.
전력 균형기(260)는 제1 변압기(240)의 1차측과 제2 변압기(250)의 1차측 사이에 연결되며, 제1 변압기(240)와 제2 변압기(250)의 누설 인덕턴스의 편차에 따라 제1 변압기(240)와 제2 변압기(250)의 전류 편차가 발생하는 것을 방지한다.
본 발명에 따르면, 전력 균형기(260)는 변압기 구조를 가지는 공통 모드 커플드 인덕터(CMCI: Common Mode Coupled Inductor)일 수 있다. 이 경우, 공통 모드 커플드 인덕터의 1차측(261)은 제1 변압기(240)의 1차측과 직렬로 연결되고, 공통 모드 커플드 인덕터의 2차측(262)은 제2 변압기(250)의 1차측과 직렬로 연결될 수 있으며, 공통 모드 커플드 인덕터의 1차측(261)과 2차측(262)의 권선비는 동일한 전력 부하를 감당하도록 1:1로 설정될 수 있다.
제1 변압기(240), 제2 변압기(250) 및 전력 균형기(260)의 연결 관계에 대해 더 설명하면 다음과 같다.
제1 포지티브 전압(Vpp1)은 직렬 연결된 제1 블록킹 캐패시터(CB1) 및 제1 누설 인덕터(Llk1)를 통해 제1 변압기(240)의 1차측의 권선의 일단에 인가되고, 제1 네거티브 전압(Vpn1)은 공통 모드 커플드 인덕터의 1차측(261)의 권선의 일단에 인가되고, 제1 변압기(240)의 1차측의 권선의 타단과 공통 모드 커플드 인덕터의 1차측(261)의 권선의 타단은 서로 연결된다.
그리고, 제2 포지티브 전압(Vpp2)은 제2 블록킹 캐패시터(CB2)를 통해 공통 모드 커플드 인덕터의 2차측(262)의 권선의 일단에 인가되고, 제2 네거티브 전압(Vpn2)은 제2 변압기(250)의 1차측의 권선의 타단으로 인가되고, 공통 모드 커플드 인덕터의 2차측(262)의 권선의 타단과 제2 변압기(250)의 1차측의 권선의 일단은 제2 누설 인덕터(Llk2)를 통해 서로 연결된다.
또한, 제1 블록킹 캐패시터(CB1)의 양단 전압(VCB1) 및 제2 블록킹 캐패시터(CB2)의 양단 전압(VCB2)은 모두 입력 전압(VDC)의 절반의 전압(VDC/2)로 바이어스될 수 있다.
요컨대, 제1 인덕터(221) 및 제2 인덕터(222)는 동일한 신호로 동작하지만, 변압기 누설 등 파라미터의 편차에 의해 변압기들(240, 250)에 전력이 일정하게 분배되지 않을 수 있으며, 이를 방지하기 위해 제1 변압기(240) 및 제2 변압기(250)의 1차측에는 1:1의 권선비를 갖는 공통 모드 커플드 인덕터가 배치된다.
출력부(270)는 제1 변압기(240)의 2차측 및 제2 변압기(250)의 2차측과 연결되며, 제1 변압기(240)의 2차측 및 제2 변압기(250)의 2차측에서 출력된 전압을 정류하여 출력 전압을 출력한다. 이를 위해, 출력부(270)는 제1 다이오드(D1), 제2 다이오드(D2), 출력 인덕터(LO) 및 출력 캐패시터(CO)를 포함한다.
보다 상세하게, 제1 다이오드(D1)의 입력단은 제1 권선(241)의 일단 및 제3 권선(252)의 일단과 연결되고, 제2 다이오드(D2)의 입력단은 제2 권선(242)의 타단 및 제4 권선(252)의 타단과 연결되고, 출력 인덕터(LO)의 일단은 제1 다이오드(D1)의 출력단 및 제2 다이오드(D2)의 출력단과 연결되고, 출력 캐패시터(CO)의 일단은 출력 인덕터(LO)의 타단과 연결되고, 출력 캐패시터(CO)의 타단은 제1 권선(241)의 타단, 제3 권선(251)의 타단, 제2 권선(242)의 일단 및 제4 권선(252)의 일단과 연결된다.
한편, 본 발명에 따른 DC/DC 컨버터는 제1 모드(mode), 제2 모드, 제3, 모드, 제4 모드, 제5 모드 및 제6 모드가 순차적으로 반복하여 동작한다. 도 3에는 본 발명에 따른 저전압 DC/DC 컨버터의 동작 파형을 도시한 도면이다. 이하, 도 3 및 아래에서 설명하는 도 4 내지 도 9를 참조하여 각 모드 별 동작을 상세하게 설명한다.
1. 모드 1
도 4는 본 발명의 일 실시예에 따라, 모드 1에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 4를 참조하면, 모드 1에서는 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 온되고, 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 오프된다.
이 때, 스위칭 소자 1A(2211) 및 스위칭 소자 1B(2221)가 도통되기 전에는 제1 변압기(240)의 1차측 전류(ip1) 및 제2 변압기(250)의 1차측 전류(ip2)가 음의 방향으로 흐르므로, 스위칭 소자 2A(2212) 및 스위칭 소자 2B(2222)가 차단된다. 그리고, 스위칭 소자 1A(2211) 및 스위칭 소자 1B(2221)가 도통되면, 변압기 누설에 의해 제1 변압기(240)의 1차측 전류(ip1) 및 제2 변압기(250)의 1차측 전류(ip2)의 방향이 기울기를 가지고 전환된다.
따라서, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)의 바디 다이오드를 통해 전류가 흐르면서 상승하고, 전류가 양의 값을 가지면, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224) 각각의 채널을 통해 전류가 흐른다. 그리고, 모드 1 동안에는 제1 다이오드(D1) 및 제2 다이오드(D2)가 모두 도통된다. 제1 변압기(240)의 1차측 전류(ip1)과 제2 변압기(250)의 1차측 전류(ip2)가, 출력 전류(iLo)를 제1 변압기(240) 및 제2 변압기(250)의 1차측에서 바라본 환원 전류와 동일해지면 모드 1이 종료된다.
2. 모드 2
도 5는 본 발명의 일 실시예에 따라, 모드 2에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 5를 참조하면, 모드 2는 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)를 통해 전력이 공급되는 모드로서, 모드 1과 동일하게 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 온되고, 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 오프된다. 따라서, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)의 채널을 통해 전류가 흐르며, 제1 다이오드(D1)가 도통된다.
이 때, 제1 인버터(2211)의 출력 전압(Vpp1-Vpn1)과 제2 인버터(2212)의 출력 전압(Vpp2-Vpn2)는 각각 입력 전압(VDC)이며, 제1 블록킹 캐패시터(CB1)과 제2 블록킹 캐패시터(CB2)는 VDC/2로 바이어스되어 있으므로, 제1 변압기(240) 및 제2 변압기(250) 각각의 1차측은 VDC/2의 전압이 인가된다. 따라서, 출력 인덕터(LO)의 전류는 (VDC/2n-Vo)/Lo의 기울기로 상승한다.
3. 모드 3
도 6은 본 발명의 일 실시예에 따라, 모드 3에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 6을 참조하면, 모드 3에서는 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 온되고, 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 오프된다. 즉, 스위칭 소자 1A(2211) 및 스위칭 소자 1B(2221)가 도통된 상태에서, 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 차단되고, 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 도통된다.
그리고, 제1 인버터(2211)의 출력 전압(Vpp1-Vpn1)과 제2 인버터(2212)의 출력 전압(Vpp2-Vpn2)는 각각 VDC/2가 되며, 제1 블록킹 캐패시터(CB1)과 제2 블록킹 캐패시터(CB2)는 VDC/2로 바이어스되어 있으므로, 제1 변압기(240) 및 제2 변압기(250) 각각의 1차측은 0의 전압이 인가된다.
따라서, 변압기 누설에 흐르던 전류는, 스위칭 소자 1A(2211) 및 스위칭 소자 1B(2221)의 채널과, 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)의 바디 다이오드로 순환되며, 제1 변압기(240) 및 제2 변압기(250) 각각의 1차측 전압의 거의 0이 되므로, 출력 인덕터(LO)의 전류는 -Vo/Lo의 기울기로 하강한다.
4. 모드 4
도 7은 본 발명의 일 실시예에 따라, 모드 4에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 7을 참조하면, 모드 7에서는 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 온되고, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 오프된다. 따라서, 모드 4에서의 동작은 상기에서 설명한 모드 1에서의 동작과 유사하게 수행된다.
5. 모드 5
도 8은 본 발명의 일 실시예에 따라, 모드 5에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 8을 참조하면, 모드 5는 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)를 통해 전력이 공급되는 모드로서, 모드 4와 동일하게 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 온되고, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 오프된다. 따라서, 모드 5에서의 동작은 상기에서 설명한 모드 2에서의 동작과 유사하게 수행된다.
6. 모드 6
도 9는 본 발명의 일 실시예에 따라, 모드 6에서 동작하는 저전압 DC/DC 컨버터를 도시한 도면이다.
도 3 및 도 9를 참조하면, 모드 6에서는 스위칭 소자 2A(2212), 스위칭 소자 2B(2222), 스위칭 소자 4A(2214) 및 스위칭 소자 4B(2224)가 온되고, 스위칭 소자 1A(2211), 스위칭 소자 1B(2221), 스위칭 소자 3A(2213) 및 스위칭 소자 3B(2223)가 오프된다. 따라서, 모드 6에서의 동작은 상기에서 설명한 모드 3에서의 동작과 유사하게 수행된다.
한편, 모드 1 내지 모드 6의 동작을 통한 본 발명의 저전압 DC/DC 컨버터의 전압 균형 및 전류 균형은 다음과 같이 정리된다.
가. 전압 균형
제1 입력 캐패시터(Cin1)의 양단 전압(Vin1)과 제2 입력 캐패시터(Cin2)의 양단 전압(Vin2)이 동일한 전압 VDC/2로 유지하려면, 컨버터의 시비율 변화와 무관하게 제1 입력 캐패시터(Cin1)에 흐르는 전류(iCin1)와 제2 입력 캐패시터(Cin2)에 흐르는 전류(iCin2)가 동일하여야 한다. 이 때, 제1 입력 캐패시터(Cin1)에 흐르는 전류(iCin1)와 제2 입력 캐패시터(Cin2)에 흐르는 전류(iCin2)는 아래의 수학식 1과 같이 표현될 수 있다.
Figure 112019002130853-pat00001
이 때, 도 3을 참조하면, 스위칭 소자 1A(221)의 전류(iM1A(221)) 및 스위칭 소자 1B(2221)의 전류(iM1B(232))와, 스위칭 소자 4A(2214)의 전류(iM4A(224))와 스위칭 소자 4B(2224)의 전류(iM4B(234))는 동일한 전류이므로, 제1 입력 캐패시터(Cin1)에 흐르는 전류(iCin1)와 제2 입력 캐패시터(Cin2)에 흐르는 전류(iCin2)는 컨버터의 동작과 무관하게 동일한 전류가 되며, 제1 입력 캐패시터(Cin1)의 양단 전압(Vin1) 및 제2 입력 캐패시터(Cin2)의 양단 전압(Vin2)는 항상 VDC/2를 유지한다.
나. 전력 균형
제1 인버터(220)의 출력 전압(Vpp1-Vpn1)과 제2 인버터(230)의 출력 전압(Vpp2-Vpn2)에 따른 제1 변압기(240)의 1차측 전류(ip1)와 제2 변압기(250)의 1차측 전류(ip2)가 동일하면 전력 균형을 달성할 수 있다. 그런데, 공통 모드 커플드 인덕터의 연결 구조는 권선비가 1:1변압기와 동일하므로, 공통 모드 커플드 인덕터의 자화 인덕턴스가 충분히 크면 제1 변압기(240)의 1차측 전류(ip1)와 제1 변압기(250)의 1차측 전류(ip2)는 항상 같은 전류가 되고, 따라서 제1 변압기(240) 및 제2 변압기(250)가 전달하는 전력도 항상 동일하게 된다.
요컨대, 본 발명의 제1 실시예에 따른 저전압 DC/DC 컨버터는 고입력 전압을 갖는 대용량 LDC의 설계를 용이하게 하기 위해 저압 스위치를 사용한다. 저압 스위치를 안정적으로 사용하기 위해서는 전압 밸런싱이 중요하며, 본 발명에서는 회로 구조적으로 이를 해결하는 방법을 제시한다. 모듈 설계의 가장 중요한 부분은 모듈 별 전력의 균형이며, 본 발명에서는 제어를 통하지 않고 간단한 공통 모드 커플드 인덕터를 이용하여 구현할 수 있다. 또한, 구동 회로의 구성을 단순화하기 위한 위상 천이 방식을 채용한다.
이하, 도 10 내지 도 16을 참조하여 본 발명의 저전압 절연형 DC/DC 컨버터의 모의실험에 대해 설명한다.
제안된 컨버터의 동작을 확인하기 위해, 입력 전압(VDC)는 800V로, 제1 변압기(240) 및 제2 변압기(250)의 권선비(N)는 6으로, 스위칭 주파수(fs)는 100kHz로 실험하였다.
도 10은 본 발명에 따른 저전압 절연형 DC/DC 컨버터를 검증하기 위한 모의 실험 회로도이다.
그리고, 도 11 및 도 12는 본 발명에 따른 저전압 절연형 DC/DC 컨버터에서 부하에 따른 입력 캐패시터들(Cin1, Cin2)의 전압의 균형 상태를 보여주기 위한 모의실험이다. 도 11 및 도 12를 참조하면, 부하에 따라 제1 입력 캐패시터(Cin1)의 전압(Vin1) 및 제2 입력 캐패시터(Cin2)의 전압(Vin2)은 입력 전압의 1/2로 잘 유지되고 있음을 확인할 수 있다.
또한, 도 13 및 도 14는 누설 편차에 따라 변압기들(240, 250)의 1차측에 흐르는 전력 균형 여부를 확인하기 위한 모의실험이다. 여기서, 누설 편차는 50%로 가정하였으며, 누설 편차에서 전력 균형을 위한 공통 모드 커플드 인덕터의 유무에 따라 모의실험을 진행하였다.
도 13 및 도 14를 참조하면, 공통 모드 커플드 인덕터가 존재하는 경우에는 변압기들(240, 250)의 1차측 전류는 동일하게 유지되고 있으며, 입력 전압의 편차도 6%로 제한된다. 이 경우, 제1 변압기(240)의 피상 전력은 4.49kVA, 제2 변압기(250)의 피상 전력은 4.48kVA로서, 전력 균형이 잘 이루어지고 있음을 확인할 수 있다.
하지만, 공통 모드 커플드 인덕터가 존재하지 않는 경우, 누설이 작은 변압기로 전력 편향이 발생하며, 입력 전압 편차도 8.5%로 상승한다. 이 경우, 제1 변압기(240)의 피상 전력은 5.60kVA, 제2 변압기(250)의 피상 전력은 3.75kVA로서, 입력 전압의 편차는 크지 않으나 입력전류의 편차로 인해 변압기의 피상전력의 차이가 크다.
또한, 도 16을 참조하면, 공통 모드 커플드 인덕터가 없는 경우 변압기들(240, 250)의 1차측 전류의 왜곡으로 인해, leading-leg의 스위치 전압이 완전히 0로 감소하지 못한 상태에서 스위칭을 하므로, leading-leg 스위치가 영전압 스위칭(ZVS: Zero-Voltage-Switching)으로 동작하지 않아 스위칭 손실과 스위칭 노이즈를 발생시킨다. 하지만, 도 15에서와 같이 공통 모드 커플드 인덕터가 존재하는 경우에는 변압기들(240, 250)의 1차측 전류의 왜곡이 없어 ZVS가 가능하다.
도 17은 본 발명의 제2 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다.
도 17을 참조하면, 본 발명의 제2 실시예에 따른 저전압 DC-DC 컨버터는, 출력부(1700)의 구조가 상이한 것을 제외하고는 도 2에 도시된 본 발명의 제1 실시예에 따른 저전압 DC-DC 컨버터와 동일하다. 따라서, 출력부(1700)의 구조에 대해서만 설명하기로 한다.
출력부(1700)는 제1 출력부(1710) 및 제2 출력부(1720)을 포함한다. 이 때, 제1 출력부(1710)는 제1 변압기(T1)의 2차측에서 출력된 전압을 정류하여 제1 출력 전압(Vo1P, Vo1N)을 출력하고, 제2 출력부(1720)는 제2 변압기(T2)의 2차측에서 출력된 전압을 정류하여 제2 출력 전압(Vo2P, Vo2N)을 출력한다.
보다 상세하게, 제1 변압기(T1)의 2차측의 권선은 직렬 연결된 제1 권선(1731) 및 제2 권선(1732)을 포함하고, 제2 변압기(T2)의 2차측의 권선은 직렬 연결된 제3 권선(1741) 및 제4 권선(1742)을 포함한다. 그리고, 제1 출력부(1710)는 제1 다이오드(D1), 제2 다이오드(D2), 제1 출력 인덕터(LO1) 및 제1 출력 캐패시터(CO1)를 포함하고, 제2 출력부(1720)는 제3 다이오드(D3), 제4 다이오드(D4), 제2 출력 인덕터(LO2) 및 제2 출력 캐패시터(CO2)를 포함한다.
여기서, 제1 다이오드(D1)의 입력단은 제1 권선(1731)의 일단과 연결되고, 제2 다이오드(D2)의 입력단은 제2 권선(1732)의 타단과 연결되고, 제1 출력 인덕터(LO1)의 일단은 제1 다이오드(D1)의 출력단 및 제2 다이오드(D2)의 출력단과 연결되고, 제1 출력 캐패시터(CO1)의 일단은 제1 출력 인덕터(LO1)의 타단과 연결되고, 제1 출력 캐패시터(CO1)의 타단은 제1 권선(1731)의 타단 및 제2 권선(1732)의 타단과 연결된다.
그리고, 제3 다이오드(D3)의 입력단은 제3 권선(1741)의 일단과 연결되고, 제4 다이오드(D4)의 입력단은 제4 권선(1742)의 타단과 연결되고, 제2 출력 인덕터(LO2)의 일단은 제3 다이오드(D3)의 출력단 및 제4 다이오드(D4)의 출력단과 연결되고, 제2 출력 캐패시터(CO2)의 일단은 제2 출력 인덕터(LO2)의 타단과 연결되고, 제2 출력 캐패시터(CO2)의 타단은 제3 권선(1741)의 타단 및 제4 권선(1742)의 타단과 연결된다.
요컨대, 본 발명의 제2 실시예에 따른 저전압 DC-DC 컨버터는, 2개의 출력부(1710, 1720), 즉 2개의 정류기를 사용한다. 이 경우, 2개의 전압 VO1 및 VO2가 형성되고, 상기한 전압들은 동일한 전압이므로, 12V와 같은 저전압인 경우 병렬화하여 회로를 구성할 수 있으며, 24V인 경우 직렬화하여 회로를 구성할 수 있다. 따라서, 동일한 회로를 설계하여 2개의 출력 전압에 대응할 수 있다.
도 18은 본 발명의 제3 실시예에 따른 저전압 DC-DC 컨버터의 개략적인 구성을 도시한 도면이다.
도 18을 참조하면, 본 발명의 제3 실시예에 따른 저전압 DC-DC 컨버터는, 변압기(1810) 및 출력부(1820)의 구조가 상이한 것을 제외하고는 도 2에 도시된 본 발명의 제1 실시예에 따른 저전압 DC-DC 컨버터와 동일하다. 따라서, 변압기(1810) 및 출력부(1820)의 구조에 대해서만 설명하기로 한다.
본 발명의 제3 실시예에 따른 저전압 DC-DC 컨버터는 하나의 변압기(1810)만을 사용한다. 이 때, 변압기(1810)의 1차측 및 2차측은 2개의 탭으로 구성된다. 즉, 변압기(1810)의 1차측은 제1 권선(1811) 및 제2 권선(1812)으로 구성되고, 변압기(1810)의 2차측은 제3 권선(1813) 및 제4 권선(1814)로 구성된다.
이 때, 제1 포지티브 전압(Vpp1)은 직렬 연결된 제1 블록킹 캐패시터(CB1) 및 제1 누설 인덕터(Llk1)를 통해 제1 권선(1811)의 일단에 인가되고, 제1 네거티브 전압(Vpn1)은 공통 모드 커플드 인덕터의 1차측(1831)의 권선의 일단에 인가되고, 제1 권선(1811)의 타단과 공통 모드 커플드 인덕터의 1차측(1831)의 권선의 타단은 서로 연결된다.
또한, 제2 포지티브 전압(Vpp2)은 제2 블록킹 캐패시터(CB2)를 통해 공통 모드 커플드 인덕터의 2차측(1832)의 권선의 일단에 인가되고, 제2 네거티브 전압(Vpn2)은 제2 권선(1812)의 타단으로 인가되고, 공통 모드 커플드 인덕터의 2차측(1832)의 권선의 타단과 제2 권선(1812)의 일단은 제2 누설 인덕터(Llk2)를 통해 서로 연결된다.
그리고, 출력부(1820)는 제1 다이오드(D1), 제2 다이오드(D2), 출력 인덕터(LO) 및 출력 캐패시터(CO)를 포함한다. 이 때, 제1 다이오드(D1)의 입력단은 제3 권선(1813)의 일단과 연결되고, 제2 다이오드(D2)의 입력단은 제4 권선(1814)의 타단과 연결되고, 출력 인덕터(LO)의 일단은 제1 다이오드(D1)의 출력단 및 제2 다이오드(D2)의 출력단과 연결되고, 출력 캐패시터(CO)의 일단은 출력 인덕터(LO)의 타단과 연결되고, 출력 캐패시터(CO)의 타단은 제3 권선(1813)의 타단 및 제4 권선(1814)의 일단과 연결된다.
요컨대, 본 발명의 제3 실시예에 따른 저전압 DC-DC 컨버터는 하나의 변압기(1820)를 사용하며, 이에 따라 고압 저용량 설계에 적용할 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (16)

  1. 저전압 절연형 DC/DC 컨버터에 있어서,
    전기 차량용 배터리에 충전된 입력 전압에 기초하여 제1 포지티브 전압 및 제1 네거티브 전압을 출력하는 제1 인버터;
    상기 입력 전압에 기초하여 제2 포지티브 전압 및 제2 네거티브 전압을 출력하는 제2 인버터;
    상기 제1 포지티브 전압 및 상기 제1 네거티브 전압에 기초하여 전압을 변화시키는 제1 변압기;
    상기 제2 포지티브 전압 및 상기 제2 네거티브 전압에 기초하여 전압을 변화시키는 제2 변압기;
    상기 제1 변압기의 1차측과 상기 제2 변압기의 1차측 사이에 연결되어 상기 제1 변압기의 1차측 전류와 상기 제2 변압기의 1차측 전류를 동일하게 하는 전력 균형기;
    상기 제1 변압기의 2차측 및 상기 제2 변압기의 2차측과 연결되며, 상기 제1 변압기의 2차측 및 제2 변압기의 2차측에서 출력된 전압을 정류하여 출력 전압을 출력하는 출력부; 및
    상기 입력 전압을 제1 전압과 제2 전압으로 분배하며, 직렬 연결된 제1 입력 캐패시터 및 제2 입력 캐패시터를 가지는 전압 분배부를 포함하되,
    상기 제1 인버터는 직렬 연결되는 스위칭 소자 1A, 스위칭 소자 2A, 스위칭 소자 3A 및 스위칭 소자 4A를 포함하고, 상기 제2 인버터는 직렬 연결되는 스위칭 소자 1B, 스위칭 소자 2B, 스위칭 소자 3B 및 스위칭 소자 4B를 포함하고,
    상기 제1 입력 캐패시터의 일단, 상기 스위칭 소자 1A의 일단 및 상기 스위칭 소자 4B의 일단은 전기적으로 연결되고, 상기 제1 입력 캐패시터의 타단, 상기 스위칭 소자 2A의 타단, 상기 스위칭 소자 3B의 타단, 상기 제2 입력 캐패시터의 일단, 상기 스위칭 소자 3A의 일단, 상기 스위칭 소자 2B의 일단은 전기적으로 연결되고, 상기 제2 입력 캐패시터의 타단, 상기 스위칭 소자 4A의 타단 및 상기 스위칭 소자 1B의 타단은 전기적으로 연결되며,
    상기 제1 포지티브 전압은 상기 스위칭 소자 1A의 타단 및 상기 스위칭 소자 2A의 일단이 연결된 노드에서 출력되고, 상기 제1 네거티브 전압은 상기 스위칭 소자 3A의 타단 및 상기 스위칭 소자 4A의 일단이 연결된 노드에서 출력되고, 상기 제2 포지티브 전압은 상기 스위칭 소자 4B의 타단 및 상기 스위칭 소자 3B의 일단이 연결된 노드에서 출력되고, 상기 제2 네거티브 전압은 상기 스위칭 소자 2B의 타단 및 상기 스위칭 소자 1B의 일단이 연결된 노드에서 출력되며,
    상기 DC/DC 컨버터는 제1 모드, 제2 모드, 제3, 모드, 제4 모드, 제5 모드 및 제6 모드가 순차적으로 반복하여 동작하되,
    상기 제1 모드 및 상기 제2 모드에서, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 온되고, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 오프되며,
    상기 제3 모드에서, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 온되고, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 오프되며,
    상기 제4 모드 및 상기 제5 모드에서, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 온되고, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 오프되며,
    상기 제6 모드에서, 상기 스위칭 소자 2A, 상기 스위칭 소자 2B, 상기 스위칭 소자 4A 및 상기 스위칭 소자 4B가 온되고, 상기 스위칭 소자 1A, 상기 스위칭 소자 1B, 상기 스위칭 소자 3A 및 상기 스위칭 소자 3B가 오프되는 것을 특징으로 하는 DC/DC 컨버터.
  2. 제1항에 있어서,
    상기 전력 균형기는 변압기 구조를 가지는 공통 모드 커플드 인덕터를 포함하는 것을 특징으로 하는 DC/DC 컨버터.
  3. 제2항에 있어서,
    상기 공통 모드 커플드 인덕터의 1차측과 2차측의 권선비는 1:1인 것을 특징으로 하는 DC/DC 컨버터.
  4. 제2항에 있어서,
    상기 공통 모드 커플드 인덕터는 상기 제1 변압기와 상기 제2 변압기의 누설 인덕턴스의 편차에 따라 상기 제1 변압기와 상기 제2 변압기의 전류 편차가 발생하는 것을 방지하는 것을 특징으로 하는 DC/DC 컨버터.
  5. 제2항에 있어서,
    상기 공통 모드 커플드 인덕터의 1차측은 상기 제1 변압기의 1차측과 직렬로 연결되고, 상기 공통 모드 커플드 인덕터의 2차측은 상기 제2 변압기의 1차측과 직렬로 연결되는 것을 특징으로 하는 DC/DC 컨버터.
  6. 제5항에 있어서,
    상기 제1 포지티브 전압은 상기 제1 변압기의 1차측의 권선의 일단에 인가되고, 상기 제1 네거티브 전압은 상기 공통 모드 커플드 인덕터의 1차측의 권선의 일단에 인가되고, 상기 제1 변압기의 1차측의 권선의 타단과 상기 공통 모드 커플드 인덕터의 1차측의 권선의 타단은 서로 연결되고,
    상기 제2 포지티브 전압은 상기 공통 모드 커플드 인덕터의 2차측의 권선의 일단에 인가되고, 상기 제2 네거티브 전압은 상기 제2 변압기의 1차측의 권선의 타단으로 인가되고, 상기 공통 모드 커플드 인덕터의 2차측의 권선의 타단과 상기 제2 변압기의 1차측의 권선의 일단은 서로 연결되는 것을 특징으로 하는 DC/DC 컨버터.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제1항에 있어서,
    상기 제1 변압기의 2차측의 권선은 직렬 연결된 제1 권선 및 제2 권선을 포함하고, 상기 제2 변압기의 2차측의 권선은 직렬 연결된 제3 권선 및 제4 권선을 포함하며,
    상기 출력부는 제1 다이오드 및 제2 다이오드를 포함하는 정류기와, 출력 인덕터 및 출력 캐패시터를 포함하되,
    상기 제1 다이오드의 입력단은 상기 제1 권선의 일단 및 상기 제3 권선의 일단과 연결되고, 상기 제2 다이오드의 입력단은 상기 제2 권선의 타단 및 상기 제4 권선의 타단과 연결되고, 상기 출력 인덕터의 일단은 상기 제1 다이오드의 출력단 및 상기 제2 다이오드의 출력단과 연결되고, 상기 출력 캐패시터의 일단은 상기 출력 인덕터의 타단과 연결되고, 상기 출력 캐패시터의 타단은 상기 제1 권선의 타단, 상기 제3 권선의 타단, 상기 제2 권선의 일단 및 상기 제4 권선의 일단과 연결되는 것을 특징으로 하는 DC/DC 컨버터.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020190002076A 2019-01-08 2019-01-08 전기 차량용 저전압 절연형 dc/dc 컨버터 KR102307484B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190002076A KR102307484B1 (ko) 2019-01-08 2019-01-08 전기 차량용 저전압 절연형 dc/dc 컨버터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190002076A KR102307484B1 (ko) 2019-01-08 2019-01-08 전기 차량용 저전압 절연형 dc/dc 컨버터

Publications (2)

Publication Number Publication Date
KR20200086009A KR20200086009A (ko) 2020-07-16
KR102307484B1 true KR102307484B1 (ko) 2021-09-29

Family

ID=71839568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190002076A KR102307484B1 (ko) 2019-01-08 2019-01-08 전기 차량용 저전압 절연형 dc/dc 컨버터

Country Status (1)

Country Link
KR (1) KR102307484B1 (ko)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966335B1 (ko) * 2008-03-14 2010-06-28 삼성전기주식회사 전류 분배 변압기를 이용한 스위칭 전원 장치
KR20130078386A (ko) * 2011-12-30 2013-07-10 엘에스산전 주식회사 전기자동차 충전기용 dc-dc 컨버터

Also Published As

Publication number Publication date
KR20200086009A (ko) 2020-07-16

Similar Documents

Publication Publication Date Title
KR102022705B1 (ko) 전기자동차용 충전 및 저전압 변환 복합회로
US10833594B2 (en) System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding
US6356462B1 (en) Soft-switched full-bridge converters
US7034647B2 (en) Integrated magnetics for a DC-DC converter with flexible output inductor
US10177671B2 (en) Modified dual active half bridge DC/DC converter with transformer DC bias
Lee et al. A two-stage isolated/bidirectional DC/DC converter with current ripple reduction technique
KR101907119B1 (ko) 하이브리드 풀브릿지 llc 컨버터 및 그 구동방법
US20130235626A1 (en) Three-phase three-level soft-switched pfc rectifiers
US11296607B2 (en) DC-DC converter
KR20200080385A (ko) 비절연형 충전기와 직류 컨버터의 통합 장치
US20220224236A1 (en) Magnetic integration of three-phase resonant converter and accessory power supply
US20200076317A1 (en) Dc to dc converter
JP4151014B2 (ja) 絶縁型スイッチングdc/dcコンバータ
Okutani et al. Analysis and comparison of series resonant converter with embedded filters for high power density DCX of solid-state transformer
KR102307484B1 (ko) 전기 차량용 저전압 절연형 dc/dc 컨버터
KR102479366B1 (ko) 배터리 충전 장치 및 제어 방법
KR102329733B1 (ko) 소프트 스위칭 컨버터
KR102273763B1 (ko) Llc 공진 컨버터
KR102030918B1 (ko) 작은 출력전류 리플을 갖는 고효율 충전기
US11973429B2 (en) Resonant tank circuit and method for configuring resonant tank circuit
US20240039399A1 (en) Series resonant power converter
Teixeira et al. Precise identification of the zero voltage switching boundaries of CLC-resonant dual active bridge converters
US8107265B2 (en) Current balanced push-pull inverter circuit with regeneration snubber circuit and voltage boost section
US20230207188A1 (en) Differential transformer based voltage converter and method thereof
US20240048058A1 (en) Switchable bidirectional power converter with single power factor correction circuit and on board charger therewith

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant