附图简述
图1显示使用多层不连续梯度技术(A-左图)或单层混合梯度技术(B-右图)从新鲜分离的肾组织富集红细胞生成素生成细胞级分。两种方法都导致非红细胞生成素生成细胞组分(主要地肾小管细胞)从红细胞生成素带的部分消耗,其表现为1.025g/mL至1.035g/mL。
图2显示了单独地收获和并行地用于相同的不连续梯度的“含氧量正常的”(21%的氧)和“缺氧”(2%的氧)啮齿类动物培养物的不连续梯度。
图3显示单独收获并且并行地用于相同的不连续梯度的“含氧量正常的”(21%的氧)和“缺氧”(2%的氧)犬培养物的不连续梯度。
图4显示HK17和HK19样品的组织病理学特征。
图5显示人NKA细胞中确定目标区域(ROI)的白蛋白转运的高含量分析(HCA)。
图6显示来源于非CKD和CKD肾的NKA细胞的白蛋白转运的定量比较。
图7描述了富集了肾小管细胞的B2亚级分与消耗了肾小管细胞的B4亚级分之间的标志物表达的比较分析。
图8描述了富集了肾小管细胞的B2亚级分与消耗了肾小管细胞的B4亚级分之间的比较功能分析。
图9显示在5/6NX大鼠的处理后SOX2mRNA在宿主组织中的表达。
图10为显示CD24、CD133、UTF1、SOX2、NODAL和LEFTY的表达的时间过程的蛋白质印迹。
图11描述了再生响应指数(RRI)的时间过程。
图12提供了UNFX-条件培养基的制备和分析的示意图。
图13A-C显示来自UNFX培养物的条件培养基体外影响多个细胞过程,所述细胞过程潜在地与再生结果相关。图13A显示UNFX-条件培养基减弱TNF-a介导的NF-kB的激活。图13B显示UNFX-条件培养基增强HUVEC细胞培养物的促血管生成行为。图13C显示UNFX-条件培养基减弱上皮细胞的纤维化途径。图13D描述了由TGFβ1和纤溶酶原激活物抑制剂-1(PAI-1)建立的正反馈环。
图14A-B显示证明系膜细胞的纤维化途径的减弱的蛋白质印迹分析。
图15A-C显示来自UNFX的条件培养基包含分泌的囊泡。图15A描述了分泌的囊泡,其为包括细胞质来源的内部组分(绿色)的双脂质(bilipid)结构(红色)。图15B-C显示FACS分选。
图16A显示了其中制备总蛋白质并且测定其PAI-1和b肌动蛋白的蛋白质印迹。图16B描述了微小RNA、miR-30b-5p。
图17A-C显示在经历肾切除术后递送生物活性肾细胞后路易斯大鼠肾中的PAI-1的代表性免疫组织化学图像。图17D显示未处理的肾切除大鼠(红色正方形)、处理的肾切除大鼠(蓝色荾形)和对照动物(绿色三角形)的PAI-1表达的比较。图17E显示关于在处理后3和6个月采集的肾样品的代表性蛋白质印迹分析。图17F显示在NKA条件培养基的2小时暴露减少NFκB p65的核定位。图17G描述了TNFα对NFkB途径的经典激活。
图18A-B显示具有(A)由5/6肾切除术引起的进行性CKD和(B)由单侧肾切除术引起的非进行性肾功能不全的动物的NFkB p65亚单位的核定位。图18C-D显示(C)已经历5/6肾切除术的路易斯大鼠肾组织的提取物中NFkB p65的蛋白质印迹分析;和(D)关于提取物的电泳迁移位移测定(EMSA)。图18E显示从接受NKA(图A)或非生物活性肾细胞(图B)的肾内注射的具有确定的CKD的路易斯大鼠获得的组织的NFκB p65亚单位的免疫组织化学检测。
图19A-C显示在植入后第1周和第4周生物材料的体内评估。
图20A-D显示NKA构建体的活细胞/死细胞染色。图20E-G显示NKA构建体的转录组学图谱表征。
图21A-B显示NKA构建体的分泌蛋白质组学图谱表征(secretomicprofiling)。
图22A-B显示NKA构建体的蛋白质组学图谱表征。
图23A-C显示NKA构建体的共聚焦显微镜检查。
图24A-B显示在植入后1周和4周NKA构建体的体内评估。
图25A-D显示在植入后8周NKA构建体的体内评估。
图26显示来自NKA构建体的条件培养基在体外减弱HK2细胞的TGF-β诱导的EMT。
图27描述了在处理过程中用于将细胞暴露于低氧的方法。
图28显示在暴露于2%的氧后,观察到下列现象:改变细胞在整个密度梯度上的分布,提高总梯度后产率(overall post-gradient yield)。
图29A描述了经开发用以观察肾小管单层的体外修复的测定。图29B显示定量图像分析(BD Pathway855BioImager)的结果。图29C显示利用2%的氧诱导的细胞更精于肾小管上皮单层的修复。
图30A描述了经开发用以观察肾小管单层体的体外修复的测定。图30B显示利用2%的氧诱导的细胞与未诱导的(21%的氧)细胞相比较增强迁移和伤口修复。图30C将迁移细胞的百分比对迁移时间作图。
图31A显示骨桥蛋白由肾小管细胞分泌并且响应损害而被上调(骨桥蛋白免疫细胞化学:赫斯特核染色(蓝色)、骨桥蛋白(红色),10x)。骨桥蛋白在建立的肾小管细胞单层中因损害而被上调,如通过免疫荧光(图31A)和ELISA(图31B)显示的。
图32A显示细胞的迁移响应由骨桥蛋白部分介导(绿色=迁移细胞(5x))。图32B显示针对骨桥蛋白的中和抗体(NAb)减小肾细胞迁移响应50%。
图33显示细胞的低氧诱导调节组织重构基因的表达。
图34描述了导致肾脏再生的细胞生物活性的低氧增强的假定机制。
图35显示通过蛋白质印迹进行的微囊泡的检测。
发明详述
本发明涉及生物活性肾细胞(BRC)的异源混合物或级分,和分离和培养所述细胞的方法,以及利用BRC和/或从本文中描述的利用BRC接种的支架形成的含BRC的构建体治疗有此需要的受试者的方法。生物活性肾细胞可以为分离的肾细胞,包括肾小管细胞和红细胞生成素(EPO)生成肾细胞。BRC细胞群体可包括富集的肾小管和EPO生成细胞群体。BRC可来源于健康个体的肾细胞部分或它们本身为健康个体的肾细胞级分。此外,本发明提供了从不健康个体获得的肾细胞级分,所述不健康个体,当与健康个体的相应肾细胞级分相比较时可以缺少某些细胞组分,但仍然保持治疗性质。本发明还提供了与健康个体相比较缺少细胞组分的治疗活性细胞群体,在一个实施方案中,可从处于各种疾病状态的自体来源分离和扩增所述细胞群体。
本发明还涉及通过将自体肾与由肾细胞分泌产物体内接触给自体肾提供再生作用的方法,以及制备所述分泌产物的方法。本发明还涉及标志物在利用本文中描述的方法进行治疗后测定肾再生的存在的用途。
定义
除非另外定义,否则本文中使用的技术和科学术语具有与由本发明所属领域内的技术人员通常理解的含义相同的含义。Principles of Tissue Engineering,第3版(由R Lanza,R Langer,&J Vacanti编著),2007为本领域技术人员提供了本申请中使用的许多术语的一般指导。本领域技术人员将意识到与本文中描述的方法和材料类似或等同的许多方法和材料,所述方法和材料可用于本发明的实施。事实上,本发明绝不限定于所述方法和材料。
如本文中所用,术语“细胞群体”指通过从适当的组织来源,通常从哺乳动物直接分离获得的许多细胞。随后可在体外培养分离的细胞群体。本领域技术人将理解用于分离和培养用于本发明的细胞群体的各种方法和适用于本发明的细胞群体中的不同数目的细胞。细胞群体可以为来源于肾的未分级的异源细胞群体。例如,可从肾活检组织或从完整肾组织分离异源细胞群体。可选择地,异源细胞群体可来源于从肾活检组织或完整肾组织建立的哺乳动物细胞的体外培养物。未分级的异源细胞群体还可称为非富集的细胞群体。
术语“自体肾”意指活受试者的肾。受试者可以是健康的或不健康的。不健康的受试者可具有肾病。
术语“再生作用”意指给自体肾提供益处的作用。所述作用可包括但不限于对自体肾的损害程度的减轻或自体肾功能的恢复或稳定化的提高。肾损害可以为纤维化、炎症、肾小球肥大(glomerular hypertrophy)等形式,并且与受试者的肾病相关。
如本文中所用,术语“混合物”是指两种或更多种来源于未分级的异源细胞群体的分离的富级的细胞群体的组合。根据某些实施方案,本发明的细胞群体为肾细胞群体。
“富集的”细胞群体或制剂是指来源于起始肾细胞群体(例如,未分级的异源细胞群体)的细胞群体,其包含比起始群体中特定细胞类型的百分比更大的百分比的该细胞类型。例如,可富集起始肾细胞群体的第一、第二、第三、第四、第五等目标细胞群体。如本文中所用,术语“细胞群体”、“细胞制剂”和“细胞原型”可互换使用。
在一个方面,如本文中所用,术语“富集的”细胞群体是指来源于起始肾细胞群体的细胞群体(例如,来自肾活检组织或培养的哺乳动物肾细胞的细胞悬浮物),其可包含比起始群体中能够生成EPO的细胞的百分比更大的百分比的能够生成EPO的细胞。例如,术语“B4”为来源于起始肾细胞群体的细胞群体,其包含与起始群体相比较更大百分比的EPO生成细胞、肾小球细胞和血管细胞。本发明的细胞群体可富集一种或多种细胞类型以及消耗其中的一种或多种其它细胞类型。例如,富集的EPO生成细胞群体可富集间质成纤维细胞,以及消耗肾小管细胞和集合管上皮细胞,相对于非富集的细胞群体即所述富集的细胞群体所源自的起始细胞群体中的间质成纤维细胞和肾小管细胞。在所有引用富集EPO或“B4”群体的实施方案中,富集的细胞群体为包含可以以氧调节的方式生成EPO(如通过来自内源自体EPO基因的氧可调节的EPO表达所显示的)的细胞的异源细胞群体。
在另一个方面,包含比起始群体中特定细胞类型例如血管细胞、肾小球细胞或内分泌细胞的百分比更大的百分比的该细胞类型的富集的细胞群体,与来源于健康个体或受试者的起始肾细胞群体相比较,也可缺少或缺乏一种或多种特定细胞类型,例如血管细胞、肾小球细胞或内分泌细胞。例如,术语“B4’”或B4prime”,在一个方面,与健康个体相比较,为来源于起始肾细胞群体的缺少或缺乏一种或多种细胞类型例如血管细胞、肾小球细胞或内分泌细胞(取决于起始样品的疾病状态)的细胞群体。在一个实施方案中,B4’细胞群体来源于患有慢性肾病的受试者。在一个实施方案中,B4’细胞群体来源于患有局灶性节段性肾小球硬化症(focal segmentalglomerulosclerosis)(FSGS)的受试者。在另一个实施方案中,B4’细胞群体来源于患有自身免疫肾小球肾炎的受试者。在另一个方面,B4’为来源于包括所有细胞类型例如血管细胞、肾小球细胞或内分泌细胞的起始细胞群体(所述起始细胞群体后来被消耗一种或多种细胞类型例如血管细胞、肾小球细胞或内分泌细胞或使得缺乏所述细胞类型)的细胞群体。在另一个方面,B4’为来源于包括所有细胞类型例如血管细胞、肾小球细胞或内分泌细胞的起始细胞群体(其中后来富集一种或多种特定细胞类型例如血管细胞、肾小管细胞或内分泌细胞)的细胞群体。例如,在一个实施方案中,B4’细胞群体可富集血管细胞,但消耗肾小球细胞和/或内分泌细胞。在另一个实施方案中,B4’细胞群体可富集肾小球细胞但消耗血管细胞和/或内分泌细胞。在另一个实施方案中,B4’细胞群体可富集内分泌细胞但消耗血管和/或肾小球细胞。在另一个实施方案中,B4’细胞群体可富集血管细胞和内分泌细胞但消耗肾小球细胞。在优选实施方案中,单独的或与另一种富集的细胞群体(例如B2和/或B3)混合的B4’细胞群体保留治疗性质。例如在本文实施例例如实施例7-9中描述了B4’细胞群体。
在另一个方面,富集的细胞群体还可指来源于上文论述的起始肾细胞群体的细胞群体,所述细胞群体包含大于起始群体中表达一种或多种肾小管细胞标志物的细胞的百分比的百分比的表达一种或多种肾小管细胞标志物的细胞。例如,术语“B2”是指来源于起始肾细胞群体的细胞群体,所述细胞群体包含与起始细胞群体相比较更大百分比的肾小管细胞。此外,针对表达一种或多种肾小管细胞标志物富集的细胞群体(或“B2”)可包含一些来自集合管系统的上皮细胞。虽然使针对表达一种或多种肾小管细胞标志物(或“B2”)的细胞富集的细胞群体相对消耗了EPO生成细胞、肾小球细胞和血管细胞,但富集的群体可包含与起始群体相比较更小百分比的此类细胞(EPO生成细胞、肾小球细胞和血管细胞)。一般地,使异源细胞群体消耗一种或多种细胞类型,以便消耗的细胞群体包含相对于消耗前的异源细胞群体中包含的细胞类型的比例更小比例的细胞类型。可被消耗的细胞类型是任何类型的肾细胞。例如,在某些实施方案中,可消耗的细胞类型包括具有<约1.045g/ml的密度的集合管(collecting duct)和肾小管系统的具有大粒度的细胞(称为“B1”)。在某些其它实施方案中,可被消耗的细胞类型包括具有>约1.095g/ml的密度的具有低粒度和活力的碎片和小细胞(称为“B5”)。在一些实施方案中,消耗相对地富集肾小管细胞的细胞群体的所有下列细胞:“B1”、“B5”、氧可调节的EPO表达细胞、肾小球细胞和血管细胞。
如本文中所用,术语“缺氧”培养条件是指其中将细胞在培养系统中经历相对于其中将细胞在大气氧水平(约21%)下培养的标准培养条件有效氧水平降低的培养条件。非缺氧条件在本文中是指正常或含氧量正常的培养条件。
如本文中所用,术语“氧可调节的”的是指细胞基于细胞有效氧的量调节基因表达(上调或下调)的能力。“缺氧诱导型(Hypoxia-inducible)”是指响应于氧张力减小的基因表达的上调(无论是预诱导还是起始氧张力)。
如本文中所用,术语“生物材料”是指适用于引入活组织的天然或合成的生物相容性材料。天然生物材料为由活系统产生的材料。合成生物材料为不由活系统产生的材料。本文中公开的生物材料可以为天然与合成生物相容性材料的组合。例如本文中所用,生物材料包括例如多聚体基质和支架。本领域技术人员将理解,生物材料可以构造为多种形式,例如液体水凝胶悬浮物、多孔泡沫,并且可包括一种或多种天然或合成的生物相容性材料。
如本文中所用,术语“贫血”是指因受试者的EPO生成细胞不能生成充足的功能性EPO蛋白,和/或EPO蛋白至全身性循环的不充足释放,和/或骨髓中的幼红细胞不能响应EPO蛋白而引起的红细胞数目的不足和/或血红蛋白水平的降低。患有贫血的受试者不能维持红细胞的动态平衡(erythroid homeostasis)。一般地,贫血可因肾功能的下降或丧失(例如慢性肾衰竭)、与相对EPO缺乏相关的贫血、与充血性心力衰竭相关的贫血、与骨髓抑制疗法例如化学疗法或抗病毒疗法(例如,AZT)相关的贫血、与非骨髓性癌相关的贫血、与病毒感染例如HIV相关的贫血以及慢性疾病例如自身免疫疾病(例如,类风湿性关节炎)、肝病和多器官系统衰竭的贫血而发生。
术语“EPO缺乏”是指可利用红细胞生成素受体激动剂(例如,重组EPO或EPO类似物)治疗的任何病况或病症,包括贫血。
如本文中所用,术语“肾病”是指与急性或慢性肾衰竭的任何分期或程度相关的病症,其可导致肾进行血液过滤和从血液除去过量液体、电解质和废物的功能的能力丧失。肾病还包括内分泌功能异常例如贫血(红细胞生成素缺乏)和矿物质不平衡(维生素D缺乏)。肾病可始于肾或可继发于多种病况包括(但不限于)心力衰竭、高血压、糖尿病、自身免疫性疾病或肝病。肾病可以为在对肾的急性损害后发展的慢性肾衰竭的病况。例如,通过贫血和/或对毒物的暴露而产生的肾损害可引起急性肾衰竭;急性肾损害的不完全恢复可导致慢性肾衰竭的发展。
术语“治疗”是指对肾病、贫血、EPO缺乏、肾小管转运缺陷或肾小球滤过缺陷的治疗性治疗和预防性或防止措施,其中目的是逆转、预防或减缓(减轻)靶向的病症。需要治疗的人包括已患有肾病、贫血、EPO缺乏、肾小管转运缺陷或肾小球滤过缺陷的人以及易于患有肾病、贫血、EPO缺乏、肾小管转运缺陷或肾小球滤过缺陷的人,或将预防其肾病、贫血、EPO缺乏、肾小管转运缺陷或肾小球滤过缺陷的人。如本文中所用,术语“治疗”包括肾功能的稳定和/或提高。
如本文中所用,术语“体内接触”是指由富集的肾细胞群体(或包含肾细胞/肾细胞级分的混合物或构建体)分泌产物与自体肾之间的直接体内接触。直接体内接触可以为天然的旁分泌、内分泌或邻分泌。分泌产物可以为本文中描述的不同产物的异源群体。
如本文中所用,术语“核糖核酸”或“RNA”是指其中每一个单元由含氮碱基、核糖和磷酸组成的核苷酸单元的链。RNA可为单链或双链形式。RNA可以为囊泡内的部分或与囊泡结合。囊泡可以为外来体。RNA包括但不限于mRNA、rRNA、小RNA、snRNA、snoRNA、微小RNA(miRNA)、小干扰RNA(siRNA)和非编码RNA。RNA优选为人RNA。
术语“构建体”是指沉积在由一种或多种合成或天然存在的生物相容性材料组成的支架或基质的表面上或其内的一种或多种细胞群体。可用由一种或多种合成或天然存在的生物相容性聚合物、蛋白质或肽组成的生物材料包被一种或多种细胞群体,或可将所述细胞群体沉积在所述生物材料上,包埋在其中,粘着于其上,接种于其中,或捕获于其中。可在体外或体内将一种或多种细胞群体与生物材料或支架或基质组合。一般地,选择用于形成支架/生物材料的一种或多种生物相容性材料来指导、促进或允许沉积在其上的细胞群体的至少一种形成多细胞三维组织。用于生成构建体的一种或多种生物材料也可被选择用以指导、促进或允许构建体或构建体的细胞组分至内源宿主组织的分散和/或整合,或指导、促进或允许构建体或构建体的细胞组分存活、移植、耐受或功能性操作。
术语“标志物”或“生物标志物”通常指DNA、RNA、蛋白质、糖类或基于糖脂的分子标志物,其在培养的细胞群体中的表达或存在可通过标准方法(或本文中公开的方法)来检测,并且与一种或多种在培养的细胞群体中作为特定类型的细胞的细胞一致。标志物可以为由细胞表达的多肽或染色体上可辨认的物理位置例如基因、限制性核酸内切酶识别位点或由自体细胞表达的编码多肽的核酸(例如,mRNA)。标志物可以为称为“基因表达标志物”的基因的表达区域,或不具有已知编码功能的DNA的一些区段。生物标志物可为细胞来源的,例如分泌产物。
可互换使用的术语“差异表达的基因”、“差异基因表达”及它们的同义词是指其表达在第一细胞或细胞群体中相对于其在第二细胞或细胞群体中的表达被激活至更高或更低的水平的基因。术语还包括其表达在第一或第二细胞培养传代过程中在随时间过去在不同阶段被激活至更高或更低水平的基因。还应理解,可在核酸水平或蛋白质水平上激活或抑制差异表达的基因,或可将所述基因经历选择性剪接以导致不同的多肽产物。此类差异可通过例如多肽的mRNA水平、表面表达、分泌或其它分布的改变来证实。差异基因表达可包括两个或更多个基因或它们的基因产物之间的表达的比较,或两个或更多个基因或它们的基因产物之间的表达的比率的比较,或甚至相同基因的两种差异加工的产物的比较,这在第一与第二细胞之间是不同的。差异表达包括例如第一细胞与第二细胞之间的基因或其表达产物的时间或细胞表达模式的定量及定性差异。为了本发明的目的,当给定的基因在第一细胞与第二细胞中的表达之间存在差异时,认为存在“差异基因表达”。在来自细胞群体、混合物或构建体的施用之前的患者的细胞(第一细胞)中相对于来自施用之后的患者的细胞(第二细胞)中的表达可存在标志物的差异表达。
术语“抑制”、“下调”、“表达不足”和“减少”可互换使用并且意指编码一种或多种蛋白质或蛋白质亚单位的基因的表达或其RNA分子或等同RNA分子的水平或一种或多种蛋白质或蛋白质亚单位的活性相对于一个或多个对照,例如,一个或多个阳性和/或阴性对照降低。在来自施用细胞群体、混合物或构建体之前的患者的细胞中相对于来自施用后的患者的细胞可存在表达不足。
术语“上调”或“过表达”用于指编码一种或多种蛋白质或蛋白质亚单位的基因的表达或其RNA分子或等同RNA分子的水平,或一种或多种蛋白质或蛋白质亚单位的活性相对于一个或多个对照例如一个或多个阳性和/或阴性对照升高。在来自施用细胞群体、混合物或构建体后的患者的细胞中相对于来自施用前的患者的细胞存在过表达。
术语“受试者”应当指任何单个人受试者,包括合适于进行治疗的患者,其正在经历或已经历肾病、贫血或EPO缺乏的一个或多个体征、症状或其它指标(indicator)。此类受试者包括但不限于新近诊断的或先前诊断的以及现在正在经历肾病、贫血或EPO缺乏的再现或复发或处于发生所述疾病的风险中的受试者,不论病因如何。受试者先前可以已进行了肾病、贫血或EPO缺乏的治疗,或未进行这样的治疗。
术语“患者”是指任何期望对其进行治疗的任何单个动物,更优选哺乳动物(包括这样的非人动物例如狗、猫、马、兔、动物园动物、牛、猪、绵羊和非人灵长类动物)。最优选地,本文中的患者为人。
术语“样品”或“患者样品”或“生物样品”通常意指获自受试者或患者、体液、身体组织、细胞系、组织培养物或其它来源的任何生物样品。术语包括活检组织例如肾活检组织。术语包括培养的细胞,例如培养的哺乳动物肾细胞。用于从哺乳动物获得活检组织和培养的细胞的方法在本领域是公知的。如果单独使用术语“样品”,其仍然表示“样品”为“生物样品”或“患者样品”,即,术语可互换使用。
术语“测试样品”是指来自已通过本发明的方法治疗的受试者的样品。测试样品可源于哺乳动物受试者的各种来源,包括但不限于血液、精液、血清、尿、骨髓、粘液、组织等。
术语“对照”或“对照样品”是指其中预期阴性或阳性结果帮助与测试样品的结果关联的阴性或阳性对照。适用于本发明的对照包括但不限于已知显示特征在于正常红细胞系统动态平衡的指标的样品、已知显示特征在于贫血的样品、获自已知不为贫血的受试者的样品以及获自已知为贫血的受试者的样品。适用于本发明的方法的其它对照包括但不限于来源于已利用已知调节红细胞生成的药物试剂(例如,重组EPO或EPO类似物)治疗的受试者的样品。此外,对照可以为获自利用本发明的方法治疗之前的受试者的样品。其它适当的对照可以为获自已知患有任何类型或分期的肾病的受试者的测试样品和已知未患有任何类型或分期的肾病的受试者的样品。对照可以为正常健康匹配的对照。本领域技术人员将理解适用于本发明的其它对照。
“再生预后”、“再生性预后”或“再生的预后”通常是指本文中描述的细胞群体、混合物或构建体的施用或植入的可能再生过程或结果的预测或预计。对于再生预后,预测或预计可通过下列方面的一个或多个方面告知:植入或施用后有功能的肾的增强、植入或施用后有功能的肾的发育、植入或施用后增强的肾功能或能力的发展以及在植入或施用后由自体肾进行的某些标志物的表达。
“再生的肾”是指在植入或施用本文中描述的细胞群体、混合物或构建体后的自体肾。再生的肾的特征在于各种指标,包括但不限于自体肾的功能或能力的发展、自体肾的功能或能力的增强以及某些标志物在自体肾中的表达。本领域技术人员将理解,其它指标可适用于表征再生的肾。
细胞群体
先前已在2009年11月12日提交的美国申请No.12/617,721(将其公开内容通过引用整体并入本文)中描述了用于治疗肾病即提供肾功能的稳定化和/或增强和/或再生的肾细胞及其混合物的分离的异源群体(对于该群体已富集了特定的生物活性组分或细胞类型和/或消耗了特定的无活性或不期望的组分或细胞类型)。本发明提供了与健康个体相比较缺少细胞组分但仍然保持治疗性质即提供肾功能的稳定化和/或增强和/或再生的分离的肾细胞级分。本文中描述的细胞群体、细胞级分和/或细胞的混合物可来源于本文中描述的健康个体、患有肾病的个体或受试者。
生物活性细胞群体
在一个方面,本发明基于令人惊讶的发现:富集了其生物活性组分和消耗了无活性或不期望的组分的肾细胞的异源群体的某些亚级分提供了比起始群体更优的治疗和再生结果。例如,本发明的生物活性组分,例如消耗了无活性或不期望的组分(例如B1和B5)的B2、B4和B3,单独地或混合地提供了肾功能的预期之外的稳定化和/或增强和/或再生。
在另一个方面,本发明基于令人惊讶的发现:消耗了或缺乏一种或多种细胞类型例如血管细胞、内分泌细胞或内皮细胞的特定亚级分B4,即B4’,单独地或当与其它生物活性亚级分例如B2和/或B3混合时保持治疗性质,例如肾功能的稳定化和/或增强和/或再生。在优选实施方案中,生物活性细胞群体为B2。在某些实施方案中,将B2细胞群体与B4或B4’混合。在其它实施方案中,将B2细胞群体与B3混合。在其它实施方案中,将B2细胞群体与B3和B4或B3和/或B4的特定细胞组分混合。
B2细胞群体的特征在于肾小管细胞标志物的表达,所述标志物选自如下标志物的一个或多个:兆蛋白、立方蛋白(cubilin)、透明质酸合酶2(HAS2)、维生素D325-羟化酶(CYP2D25)、N-钙粘蛋白(Ncad)、E-钙粘蛋白(Ecad)、水通道蛋白(Aquaporin)-1(Aqp1)、水通道蛋白-2(Aqp2)、RAB17、成员RAS癌基因家族(Rab17)、GATA结合蛋白3(Gata3)、含FXYD结构域的离子转运调节剂4(Fxyd4)、溶质载体家族9(钠/氢交换器)、成员4(Slc9a4)、醛脱氢酶3家族、成员B1(Aldh3b1)、醛脱氢酶1家族成员、成员A3(Aldh1a3)和钙蛋白酶-8(Capn8)以及集合管标志物水通道蛋白-4(Aqp4)。B2为比B3和/或B4更大和更加颗粒化,从而具有约1.045g/ml至约1.063g/ml(啮齿类动物)、约1.045g/ml至1.052g/ml(人)和约1.045g/ml至约1.058g/ml(犬)的浮力密度。
B3细胞群体的特征在于血管、肾小球和近端管标志物在一些EPO生成细胞中表达,与B2和B4相比较具有中等尺寸和粒度,从而具有约1.063g/ml至约1.073g/ml(啮齿类动物)、约1.052g/ml至约1.063g/ml(人)以及约1.058g/ml至约1.063g/ml(犬)的浮力密度。B3的特征在于标志物的表达,所述标志物选自如下标志物的一个或多个:水通道蛋白7(Aqp7)、含FXYD结构域的离子转运调节剂2(Fxyd2)、溶质载体家族17(磷酸钠)、成员3(Slc17a3)、溶质载体家族3、成员1(Slc3a1)、claudin2(Cldn2)、napsin A天冬氨酸肽酶(Napsa)、溶质载体家族2(促进葡萄糖转运蛋白)、成员2(Slc2a2)、丙氨酰(膜)氨基肽酶(Anpep)、跨膜蛋白27(Tmem27)、酰基-CoA合酶中间链家族成员2(Acsm2)、谷胱甘肽过氧化酶3(Gpx3)、果糖-1,6-二磷酸酶1(Fbp1)和丙氨酸-乙醛酸氨基转移酶2(Agxt2)。B3的特征也在于血管表达标志物血小板内皮细胞粘附分子(Pecam)和肾小球表达标志物podocin(Podn)。
B4细胞群体的特征在于含有如下标志的一个或多个的血管标志物组的表达:PECAM、VEGF、KDR、HIF1a、CD31、CD146;含有如下标志的一个或多个的肾小球标志物组的表达:Podocin(Podn)和去氧肾上腺素(Nephrin)(Neph);和与未分级的(UNFX)B2和B3相比较富集了氧可调节的EPO富集的群体。B4的特征还在于如下标志的一个或多个的表达:趋化因子(C-X-C基序)受体4(Cxcr4)、内皮素受体B型(Ednrb)、V型胶原、α2(Col5a2)、钙粘蛋白5(Cdh5)、纤溶酶原激活物、组织(Plat)、血管生成素2(Angpt2)、激酶插入物结构域蛋白受体(Kdr)、分泌型蛋白质、富含酸性半胱氨酸的骨结合素(osteonectin)(Sparc)、丝甘蛋白聚糖(Srgn)、TIMP金属肽酶抑制剂3(Timp3)、维尔姆斯瘤1(Wt1)、无翅类型MMTV整合位点家族、成员4(Wnt4)、G蛋白信转导的调节剂4(Rgs4)、血小板内皮细胞粘附分子(Pecam)和红细胞生成素(Epo)。B4的特征还在于与B2或B3相比较更小、颗粒化程度更低的细胞,具有约1.073g/ml至约1.091g/ml(啮齿类动物)、约1.063g/ml至约1.091g/mL(人和犬)的浮力密度。
B4’细胞群体被定义为具有1.063g/mL至1.091g/mL的浮力密度,和表达如下标志物的一个或多个:PECAM、vEGF、KDR、HIF1a、podocin、去氧肾上腺素、EPO、CK7、CK8/18/19。在一个实施方案中,B4’细胞群体的特征在于包含如下标志的一个或多个的血管标志物组的表达:PECAM、vEGF、KDR、HIF1a、CD31、CD146。在另一个实施方案中,B4’细胞群体的特征在于内分泌标志物EPO的表达。在一个实施方案中,B4’细胞群体的特征在于包含如下标志的一个或多个的肾小球标志物组的表达:Podocin(Podn)和氧肾上腺素(Neph)。在某些实施方案中,B4’细胞群体的特征在于包含如下标志的一个或多个的血管标志物组的表达:PECAM、vEGF、KDR、HIF1a以及在于内分泌标志物EPO的表达。在另一个实施方案中,B4’的特征还在于与B2或B3相比较更小、颗粒化程度更低的细胞,具有约1.073g/ml至约1.091g/ml(啮齿类动物)、约1.063g/ml至约1.091g/mL(人和犬)的浮力密度。
在一个方面,本发明提供了具有1.063g/mL至1.091g/mL的密度的人肾细胞的分离的富集的B4’群体,其包含包含红细胞生成素(EPO)生成细胞、血管细胞和肾小球细胞的至少一种。在一个实施方案中,B4’细胞群体的特征在于血管标志物的表达。在某些实施方案中,B4’细胞群体的特征不在于肾小球标志物的表达。在一些实施方案中,B4’细胞群体能够氧调节红细胞生成素(EPO)表达。
在一个实施方案中,B4’细胞群体不包括具有1.045g/mL至1.052g/mL的密度的包含肾小管细胞的B2细胞群体。在另一个实施方案中,B4’细胞群体不包括具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体。在另一个实施方案中,B4’细胞群体不包括具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。
在一个实施方案中,B4’细胞群体不包括具有1.045g/mL至1.052g/mL的密度的包含肾小管细胞的B2细胞群体;具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体;和具有>1.091g/ml的密度的包含具有低粒度和活力的碎片及小细胞的B5细胞群体。在一些实施方案中,B4’细胞群体可来源于患有肾病的受试者。
在一个方面,本发明提供了包含具有1.045g/mL至1.052g/mL的密度的第一细胞群体B2(其包含分离的富集的肾小管细胞群体)和具有约1.063g/mL至1.091g/mL的密度的第二细胞群体B4’(其包含红细胞生成素(EPO)生成细胞和血管细胞但消耗了肾小球细胞)的人肾细胞的混合物,其中混合物不包括具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体,或具有>1.091g/ml的密度的包含具有低粒度和活力的碎片及小细胞的B5细胞群体。在某些实施方案中,B4’细胞群体的特征在于血管标志物的表达。在一个实施方案中,B4’细胞群体的特征不在于肾小球标志物的表达。在某些实施方案中,B2还包括集合管上皮细胞。在一个实施方案中,细胞的混合物能够进行受体介导的白蛋白吸收。在另一个实施方案中,细胞的混合物能够进行氧调节的红细胞生成素(EPO)表达。在一个实施方案中,混合物包含能够在体外和体内生成和/或刺激透明质酸(HA)的高分子量种类的生成的表达HAS-2的细胞。在所有实施方案中,第一和第二细胞群体可来源于肾组织或培养的肾细胞。
在一个实施方案中,混合物能够在体内递送后提供再生刺激物。在其它实施方案中,混合物能够在体内递送后减少肾小管滤过、肾小管吸收、尿生成和/或内分泌功能的衰退,稳定或增强所述功能。在一个实施方案中,B4’细胞群体来源于具有肾病的受试者。
在一个方面,本发明提供了包含具有1.063g/mL至1.091g/mL的密度的包含红细胞生成素(EPO)生成细胞、血管细胞和肾小球细胞的至少一种的人肾细胞的分离的富集的B4’群体。在一个实施方案中,B4’细胞群体的特征在于血管标志物的表达。在某些实施方案中,B4’细胞群体的特征不在于肾小球标志物的表达。不表达的肾小球标志物可以为podocin(参见实施例7)。在一些实施方案中,B4’细胞群体能够进行氧可调节的红细胞生成素(EPO)表达。
在一个实施方案中,B4’细胞群体不包括具有1.045g/mL至1.052g/mL的密度的包含肾小管细胞的B2细胞群体。在另一个实施方案中,B4’细胞群体不包括具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体。在另一个实施方案中,B4’细胞群体不包括具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。
在一个实施方案中,B4’细胞群体不包括具有1.045g/mL至1.052g/mL的密度的包含肾小管细胞的B2细胞群体;具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体;以及具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。
在一些实施方案中,B4’细胞群体可来源于患有肾病的受试者。在一个方面,本发明提供了包含具有1.045g/mL至1.052g/mL的密度的第一细胞群体B2(其包含分离的富集的肾小管细胞群体)和具有1.063g/mL至1.091g/mL的密度的第二细胞群体B4’(其包含红细胞生成素(EPO)生成细胞和血管细胞但消耗肾小球细胞)的人肾细胞的混合物,其中混合物不包括具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体,或具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。在某些实施方案中,B4’细胞群体的特征在于血管标志物的表达。在一个实施方案中,B4’细胞群体的特征不在于肾小球标志物的表达。在某些实施方案中,B2还包括集合管上皮细胞。在一个实施方案中,细胞的混合物能够进行受体介导的白蛋白吸收。在另一个实施方案中,细胞的混合物能够进行氧可调节的红细胞生成素(EPO)的表达。在一个实施方案中,混合物包含能够在体外和体内生成和/或刺激透明质酸(HA)的高分子量种类的表达HAS-2的细胞。在所有实施方案中,第一和第二细胞群体可来源于肾组织或培养的肾细胞。
在一个实施方案中,混合物能够在体内递送后提供再生刺激物。在其它实施方案中,混合物能够在体内递送后减小肾小球滤过、肾小管吸收、尿生成和/或内分泌功能的衰退、稳定或增强所述功能。在一个实施方案中,B4’细胞群体来源于患有肾病的受试者。
在优选实施方案中,混合物包含与B3和/或B4组合的B2。在另一个优选实施方案中,混合物包含与B3和/或B4’组合的B2。在其它优选实施方案中,混合物由(i)与B3和/或B4组合的B2;或(ii)与B3和/或B4’组合的B2组成或基本上由所述组分组成。
包含B4’细胞群体的混合物可包含也从非健康受试者获得的B2和/或B3细胞群体。非健康受试者可以为从其获得B4’级分的相同受试者。与B4’细胞群体相反,从非健康受试者获得的B2和B3细胞群体与来源于健康个体的起始肾细胞群体相比较通常不缺乏一个或多个特定的细胞类型。
通过B2和B4生成透明质酸
透明质烷(Hyaluronan)(也称为透明质酸或透明质酸盐)为糖胺聚糖(GAG),其由非硫酸化的二糖单位,特别地N-乙酰葡糖胺和葡糖醛酸的规则重复序列组成。其分子量的范围可为400道尔顿(二糖)至超过百万道尔顿。其在所有组织例如皮肤、软骨和眼中以及在大多数(如果不是全部的话)成年动物的体液中被发现以可变的量存在。其在早期胚胎中特别丰富。由透明质酸,事实上一般GAG产生的空间允许其在细胞迁移、细胞附着、在伤口修复过程中、器官发生、免疫细胞粘附、细胞内信号转导的激活以及肿瘤转移中起作用。这些作用由结合透明质烷的特定蛋白质和蛋白聚糖介导。细胞运动性和免疫细胞粘附由细胞表面受体RHAMM(ReceptorforHyaluronan-Mediated Motility;Hardwick等人,1992)和CD44(Jalkenan等人,1987;Miyake等人,1990)介导。透明质烷直接在细胞表面的内膜上合成,随着其合成,不断生长的聚合物挤出通过膜至细胞的外面。合成由单个蛋白质酶透明质烷合成酶(HAS)介导,其基因家族由至少3个成员组成。
最近已显示透明质酸与CD44相互作用,并且此类相互作用可以,除其它作用以外,将非居留细胞(non-resident cell)(例如间质干细胞(MSC))募集至受损害的肾组织并且增强肾再生(Kidney International(2007)72,430–441)。
预料之外地,已发现B2和B4细胞制剂能够通过透明质酸合酶-2(HAS-2)-在B2细胞群体中更特别地富含的标志物的作用在体外和体内表达更高分子量的透明质酸(HA)的种类。经显示在5/6Nx模型中利用B2的处理减少纤维化,伴随HAS-2的体内强表达以及处理的组织内预期的高分子量HA的生成。值得注意地,留下未处理的5/6Nx模型导致纤维化,有限的HAS-2被检测到并且几乎无高分子量的HA生成。不希望受理论束缚,假设主要由B2(以及一定程度上由B4)生成的HA的该抗炎高分子量种类与细胞制剂在肾脏纤维化的减少和在肾再生的帮助中协同作用。因此,本发明包括在包含透明质酸的生物材料中递送本发明的细胞原型。本发明还涉及通过直接生成或通过植入的细胞刺激生成来提供再生刺激物的生物材料组分。
在一个方面,本发明提供了用于治疗有此需要的受试者的肾病、贫血和/或EPO缺乏的EPO生成肾细胞的分离的异源群体。在一个实施方案中,细胞群体来源于肾活检组织。在另一个实施方案中,细胞群体来源于完整肾组织。在一个其它实施方案中,细胞群体来源于从肾活检组织或完整肾组织建立的哺乳动物肾细胞的体外培养物。在所有实施方案中,这些群体是未分级分离的细胞群体,在本文中也称为非富集的细胞群体。
在另一个方面,本发明提供了分离的红细胞生成素(EPO)生成肾细胞群体,将其进一步富集以便富集的群体中EPO生成细胞的比例大于原始或初始细胞群体中EPO生成细胞的比例。在一个实施方案中,富集的EPO生成细胞级分包含相对于未富集的初始群体中包含的间质成纤维细胞和肾小管细胞更大比例的间质成纤维细胞和更小比例的肾小管细胞。在某些实施方案中,富集的EPO生成细胞级分包含相对于未富集的初始群体中包含的肾小球细胞、血管细胞和集合管细胞更大比例的肾小球细胞和血管细胞以及更小比例的集合管细胞。在这样的实施方案中,这些群体在本文中被称为“B4”细胞群体。
在另一个方面,本发明提供了与一种或多种另外的肾细胞群体混合的EPO生成肾细胞群体。在一个实施方案中,EPO生成细胞群体为富集了EPO生成细胞的第一细胞群体例如B4。在另一个实施方案中,EPO生成细胞群体为未富集EPO生成细胞的第一细胞群体例如B2。在另一个实施方案中,将第一细胞群体与第二肾细胞群体混合。在一些实施方案中,第二细胞群体富集肾小管细胞,这可通过肾小管细胞的表型的存在来证明。在另一个实施方案中,肾小管细胞的表型可通过一个肾小管细胞标志物的存在来显示。在另一个实施方案中,肾小管细胞的表型可通过一个或多个肾小管细胞标志物的存在来显示。肾小管细胞标志物包括但不限于兆蛋白、立方蛋白、透明质酸合酶2(HAS2)、维生素D325-羟化酶(CYP2D25)、N-钙粘蛋白(Ncad)、E-钙粘蛋白(Ecad)、水通道蛋白-1(Aqp1)、水通道蛋白-2(Aqp2)、RAB17、成员RAS癌基因家族(Rab17)、GATA结合蛋白3(Gata3)、含FXYD结构域的离子转运调节剂4(Fxyd4)、溶质载体家族9(钠/氢交换器)、成员4(Slc9a4)、醛脱氢酶3家族、成员B1(Aldh3b1)、醛脱氢酶1家族,成员A3(Aldh1a3)和钙蛋白酶-8(Capn8)。在另一个实施方案中,将第一细胞群体与几种类型的肾细胞(包括但不限于间质来源的(interstitium-derived)细胞、肾小管细胞、集合管来源的细胞、肾小球来源的细胞和/或来源于血液或脉管系统的细胞)的至少一种混合。EPO生成肾细胞群体可包含以与B2和/或B3的混合物的形式存在,或以富集的细胞群体的形式存在的B4或B4’,例如B2+B3+B4/B4’。
在一个方面,本发明的EPO生成肾细胞群体的特征在于EPO表达和对氧的生物响应,以便培养系统的氧张力的减小导致EPO表达的诱导。在一个实施方案中,EPO生成细胞群体富集EPO生成细胞。在一个实施方案中,当在其中使细胞在培养系统中经历有效氧水平的降低(与在有效氧的正常大气(~21%)水平下培养的细胞相比较)的条件下培养细胞群体时,EPO表达被诱导。在一个实施方案中,在更低的氧条件下培养的EPO生成细胞相对于在正常氧条件下培养的EPO生成细胞表达更高水平的EPO。一般地,在降低的有效氧的水平(也称为缺氧培养条件)下培养细胞意指相对于在有效氧的正常大气水平(也称为正常或含氧量正常的培养条件)下培养细胞降低减少的氧的水平。在一个实施方案中,缺氧细胞培养条件包括在约低于1%的氧、约低于2%的氧、约低于3%的氧、约低于4%的氧或约低于5%的氧下培养细胞。在另一个实施方案中,正常或含氧量正常的培养条件包括在约10%的氧、约12%的氧、约13%的氧、约14%的氧、约15%的氧、约16%的氧、约17%的氧、约18%的氧、约19%的氧、约20%的氧或约21%的氧下培养细胞。
在一个其它实施方案中,获得EPO的诱导或增加的表达并且可通过在约低于5%的有效氧下培养细胞和将EPO表达水平与在大气(约21%)氧下培养的细胞相比较来观察EPO的诱导或增加的表达。在另一个实施方案中,通过方法在能够表达EPO的细胞的培养物中获得EPO的诱导,所述方法包括其中在大气氧(约21%)下培养细胞一段时间的第一培养期和其中降低有效氧水平并且在约低于5%的有效氧下培养相同细胞的第二培养期。在另一个实施方案中,通过HIF1α调节响应缺氧条件的EPO表达。本领域技术人员将理解可将本领域已知的其它氧操作培养条件用于本文中描述的细胞。
在一个方面,富集的EPO生成哺乳动物细胞群体的特征在于对灌注条件的生物响应(例如,EPO表达)。在一个实施方案中,灌注条件包括短暂的、间歇性或连续流体流动(灌注)。在一个实施方案中,当以通过流动将动力转移至细胞的方式间歇或连续地循环或搅动其中培养细胞的培养基时,EPO表达被机械地诱导。在一个实施方案中,以它们作为三维结构存在于给此类三维结构的形成提供构架和/或空间的材料中或其上的方式培养经历短暂、间歇性或连续性流体流动的细胞。在一个实施方案中,将细胞培养在多孔珠粒上并且利用摇摆平台、沿轨道运行的平台或旋转烧瓶将其经历间歇或连续流体流动。在另一个实施方案中,将细胞培养在三维支架上并且置于籍以固定支架的装置中,流体定向流过或穿过支架。本领域技术人员将理解,可将本领域已知的其它灌注培养条件用于本文中描述的细胞。
无活性的细胞群体
如本文中所述,本发明部分基于令人惊讶的发现:富集了生物活性组分并且消耗了无活性或不期望的组分的肾细胞的异源群体的某些级分提供了优于起始群体的治疗和再生结果。在优选实施方案中,消耗了本发明的细胞群体的B1和/或B5细胞群体。例如,可消耗下列细胞群体的B1和/或B5:B2、B3和B4’的两种或更多种的混合物;B2、B3和B4’的富集的细胞群体。
B1细胞群体包含集合管和肾小管系统的大颗粒细胞,所述细胞群体具有小于约1.045g/m的浮力密度。B5细胞群体由具有低粒度和活力的碎片和小细胞组成并且具有大于约1.091g/ml的浮力密度。
分离和培养细胞群体的方法
本发明,在一个方面,提供了用于分开和分离肾细胞组分例如富集的细胞群体以用于治疗用途(包括肾病、贫血、EPO缺乏、肾小管转运缺陷(tubular transport deficiency)和肾小球滤过缺陷(glomerular filtrationdeficiency)的治疗)的方法。在一个实施方案中,从新消化的,即机械或酶促消化的肾组织或从哺乳动物肾细胞的异源体外培养物分离细胞群体。
已意外地发现,在于密度梯度上分开之前于缺氧培养条件中培养肾细胞的异源混合物在B4(包括B4’)以及B2和/或B3级分中提供了细胞的增加的分布和组成。对于从患病和非患病的肾分离的肾细胞观察到依赖于氧的细胞在B4和B2中的富集。不希望受理论束缚,这可归因于下列现象的一个或多个现象:1)在缺氧培养期过程中特定细胞组分的选择性存活、死亡或增殖;2)响应缺氧培养的细胞的粒度和/或尺寸的改变,从而影响浮力密度的改变和随后在密度梯度分离过程中的定位;和3)响应缺氧培养期的细胞基因/蛋白质表达的改变,从而导致任何给定的梯度级分内的细胞的差异特征。从而,在一个实施方案中,富集了小管细胞的细胞群体例如B2是抗低氧的。
用于分开和分离本发明的细胞群体的示例性技术包括基于目标群体内包含的不同细胞类型的差异比重在密度梯度进行的分离。任何给定的细胞类型的比重可受细胞内粒度的程度、细胞内水的体积及其它因素影响。在一个方面,本发明提供了用于分离跨多个物种包括但不限人、犬和啮齿类动物的本发明的细胞制剂例如B2和B4(包括B4’)的最佳梯度条件。在优选实施方案中,将密度梯度用于获得来源于肾细胞的异源群体的新型富集的肾小管细胞级分的群体即B2细胞群体。在一个实施方案中,将密度梯度用于获得来源于肾细胞的异源群体的新型富集的EPO生成细胞级分的群体即B4细胞群体。在其它实施方案中,将密度梯度用于获得富集的肾的肾小管细胞、肾小球细胞和内皮细胞的亚群。在一个实施方案中,将EPO生成细胞和肾小管细胞与红细胞和细胞碎片分开。在一个实施方案中,将EPO生成肾小球和血管细胞与其它细胞类型和与红细胞及细胞碎分开,同时伴随地将肾小管细胞和集合管细胞的亚群与其它细胞类型和与红细胞及细胞碎片分开。在一个其它实施方案中,将内分泌细胞、肾小球细胞和/或血管细胞与其它细胞类型和与红细胞及细胞碎片分开,同时伴随地将肾小管细胞和集合管细胞的亚群与其它细胞类型和与红细胞及细胞碎片分开。
本发明基于下文中描述的某些关键特征,通过部分使用包含60%的水中的非离子碘化化合物碘克沙醇的
(Axis-Shield)密度梯度培养基生成新型细胞群体。然而,本领域技术人员将承认,可根据本发明使用任何密度梯度或其它方法,例如使用本领域已知的细胞表面标志(包括用于分离本发明的细胞群体的必需特征)的免疫分离(immunological separation)。本领域技术人员还应当承认,通过密度梯度(尺寸和粒度)促成细胞亚群的分离的相同细胞特征可被开发利用来通过流式细胞术(前向散射=通过流式细胞仪的尺寸的反映,和侧向散射=粒度的反映)分离细胞亚群。重要地,密度梯度培养基应当对特定的目标细胞具有低毒性。虽然密度梯度培养基应当对特定的目标细胞具有低毒性,但本发明涉及在目标细胞的选择过程中起作用的梯度培养基的用途。不期望受理论束缚,利用包括碘克沙醇的梯度回收的本发明的细胞群体似乎是抗碘克沙醇的,因为在装载与回收步骤之间存在细胞的相当损失,这表明在梯度条件下对碘克沙醇的暴露导致某些细胞的消除。在碘克沙醇梯度后在特定条带上出现的细胞抗碘克沙醇和/或密度梯度暴露的任何不利作用。因此,本发明还涉及为轻度至中度肾毒素(nephrotoxin)的其它造影剂(contrast media)在本发明的细胞群体的分离和/或选择中的作用。此外,密度梯度培养基还不应当结合人血浆中的蛋白质或不利地影响目标细胞的关键功能。
在另一个方面,本发明提供了使用荧光激活细胞分选术(FACS)富集和/或消耗肾细胞类型的方法。在一个实施方案中,可使用BD FACSAriaTM或等同技术富集和/或消耗肾细胞类型。
在另一个方面,本发明提供了使用磁性细胞分选术富集和/或消耗肾细胞类型的方法。在一个实施方案中,可使用
系统或等同技术富集和/或消耗肾细胞类型。
在另一个方面,本发明提供了肾细胞群体的三维培养的方法。在一个方面,本发明提供了通过连续灌注培养细胞群体的方法。在一个实施方案中,通过三维培养和连续灌注培养的细胞群体当与静态培养的细胞群体相比较显示更强的细胞结构(cellularity)和相互连接性(interconnectivity)。在另一个实施方案中,通过三维培养和连续灌注培养的细胞群体当与这样的细胞群体的静态培养物相比较时显示更多的EPO表达以及增多的肾小管相关基因例如e-钙粘蛋白的表达。
在另一个实施方案中,通过连续灌注培养的细胞群体显示当与静态培养的细胞群体相比较时更高的葡萄糖和谷氨酰胺消耗水平。
如本文(包括实施例3)中所描述的,可将低氧或缺氧状况用于制备本发明的细胞群体的方法。然而,可使用本发明的方法而无需低氧条件化步骤。在一个实施方案中,可使用含氧量正常的条件。
本领域技术人员将理解可将本领域已知的其它分离和培养方法用于本文中描述的细胞。
生物材料(聚合物基质或支架)
如Bertram等人,美国公布的申请20070276507(通过引用整体并入本文)中所述,可将聚合物基质或支架塑造成许多期望的构型以满足许多完整系统、几何或空间限制。在一个实施方案中,本发明的基质或支架可以是三维的并且可被塑造来使适合器官或组织结构的尺寸和形状。例如,在使用聚合物支架治疗肾病、贫血、EPO缺乏、肾小管转运缺陷或肾小球滤过缺陷中,可使用三维(3-D)基质。可使用多种差异塑形的3-D支架。自然地,可以以不同尺寸和形状塑造聚合物基质以使适合不同大小的患者。可以以其它方式塑造聚合物基质来适应患者的特殊需要。在另一个实施方案中,聚合物基质或支架可以是生物相容性的多聚聚合物支架。可从多种合成或天然存在的材料形成支架,所述材料包括但不限于开孔聚乳酸
纤维素醚、纤维素、纤维质酯(cellulosic ester)、氟化聚乙烯、酚、聚-4-甲基戊烯、聚丙烯腈、聚酰胺、聚酰胺酰亚胺、聚丙烯酸酯、聚苯并恶唑、聚碳酸酯、聚芳醚腈、聚酯、聚酯碳酸酯、聚醚、聚醚醚酮、聚醚酰亚胺、聚醚酮、聚乙烯砜、聚乙烯、聚氟烯烃、聚酰亚胺、聚烯烃、聚噁二唑、聚苯撑氧(polyphenylene oxide)、聚苯硫醚(polyphenylene sulde)了、聚丙烯、聚苯乙烯、聚硫化物、聚砜、聚四氟乙烯、聚硫醚、聚三唑、聚氨酯、聚乙烯、聚偏二氟乙烯、再生纤维素、硅酮、尿素甲醛、胶原蛋白、层粘连蛋白、纤连蛋白、蚕丝、弹性蛋白、藻酸盐、透明质酸、琼脂糖或其共聚物或物理混合物。支架构型可从液体水凝胶悬浮物变化至软多孔支架至坚硬的保持形状的多孔支架。
可从多种聚合物材料形成水凝胶,将所述水凝胶用于多种生物医学应用。可将水凝胶在物理上描述为亲水聚合物的三维网络。取决于水凝胶的类型,它们包含不同百分比的水,但完全不溶解于水。尽管它们含水量高,但水凝胶因亲水残基的存在能够另外结合大体积的液体。水凝胶可充分膨胀而不改变它们的凝胶状结构。根据使用的聚合物的性质和产品的其它专用设备,可特异性修改水凝胶的基本物理特征。
优选,水凝胶由聚合物、生物来源的材料、合成产生的材料或其组合构成,所述材料在生物学上是惰性的并且在生理上与哺乳动物组织相容。水凝胶材料优选不诱导炎症响应。可用于形成水凝胶的其它材料的实例包括(a)经修饰的藻酸盐,(b)通过暴露于单价阳离子可胶化的多糖(例如结冷胶和角叉菜胶),(c)为非常粘的液体或具有触变性并且通过结构的缓慢演变随时间过去形成凝胶的多糖(例如,透明质酸)和(d)聚合物水凝胶前体(例如,聚环氧乙烷-聚丙二醇嵌段共聚物和蛋白质)。美国专利No.6,224,893B1提供了适用于制备根据本发明的水凝胶的各种聚合物以及此类聚合物的化学性质的详细描述。
支架或生物材料特征可使细胞能够附着支架或生物材料和与其相互作用,和/或提供可将细胞捕获入其中的多孔空间。在一个实施方案中,本发明的多孔支架或生物材料允许将细胞的一个或多个群体或混合物添加或沉积在构造为多孔支架的生物材料上(例如,通过细胞的附着)和/或支架的孔内(例如,通过细胞的捕获)。在另一个实施方案中,支架或生物材料允许或促进支架内细胞与细胞之间和/或细胞与生物材料之间的相互作用以形成本文中描述的构建体。
在一个实施方案中,根据本发明使用的生物材料由以水凝胶形式存在的透明质酸(HA)组成,其包含大小从5.1kDA至>2x106kDa范围的HA分子。在另一个实施方案中,根据本发明使用的生物材料由以多孔泡沫形式存在的透明质酸组成,其也包含大小从5.1kDA至>2x106kDa范围的HA分子。在另一个实施方案中,根据本发明使用的生物材料由基于聚乳酸(PLA)的泡沫组成,其具有开孔结构和约50微米至约300微米的孔径。在另一个实施方案中,特定的细胞群体,优选B2但也可以是B4,直接提供和/或刺激通过透明质酸合酶-2(HAS-2)的高分子量透明质酸的合成,特别地在肾内植入后。
本领域技术人员将理解本领域已知的其它类型的合成或天然存在的材料可用于形成本文中描述的支架。
在一个方面,本发明提供了由上文提及的支架或生物材料制造的本文中描述的构建体。
构建体
在一个方面,本发明提供了具有一种或多种用于治疗有此需要的受试者的肾病、贫血或EPO缺乏的本文中描述的细胞群体的可植入构建体。在一个实施方案中,构建体由生物相容性材料或生物材料、由一种或多种合成或天然存在的生物相容性材料构成的支架或基质和一种或多种通过附着和/或捕获沉积在支架的表面上或包埋在其中的本文中描述的细胞群体或细胞混合物组成。在某些实施方案中,构建体由生物材料和一种或多种用生物材料组分包被的、沉积在生物材料上、沉积在其中、附着于其上、被捕获在其中、包埋在其中或与其组合的本文中描述的细胞群体或细胞混合物。可将本文中描述的任何细胞群体,包括富集的细胞群体或其混合物,与基质组合使用以形成构建体。
在另一个实施方案中,沉积的细胞群体或构建体的细胞组分为富集了氧可调节的EPO生成细胞的第一肾细胞群体。在另一个实施方案中,第一肾细胞群体除氧可调节的EPO生成细胞外还包含肾小球和血管细胞。在一个实施方案中,第一肾细胞群体为B4’细胞群体。在一个其它实施方案中,沉积的细胞群体或构建体的细胞组分包括第一富集的肾细胞群体和第二肾细胞群体。在一些实施方案中,未富集第二细胞群体的氧可调节的EPO生成细胞。在另一个实施方案中,第二细胞群体富集肾小管细胞。在另一个实施方案中,第二细胞群体富集肾小管细胞,所述第二细胞群体包含集合管上皮细胞。在其它实施方案中,肾小管细胞的特征在于一种或多种肾小管细胞标志物的表达,所述标志物可包括但不限于兆蛋白、立方蛋白、透明质酸合酶2(HAS2)、维生素D325-羟化酶(CYP2D25)、N-钙粘蛋白(Ncad)、E-钙粘蛋白(Ecad)、水通道蛋白-1(Aqp1)、水通道蛋白-2(Aqp2)、RAB17、成员RAS癌基因家族(Rab17)、GATA结合蛋白3(Gata3)、含FXYD结构域的离子转运调节剂4(Fxyd4)、溶质载体家族9(钠/氢交换器)、成员4(Slc9a4)、醛脱氢酶3家族、成员B1(Aldh3b1)、醛脱氢酶1家族,成员A3(Aldh1a3)和钙蛋白酶-8(Capn8)。
在一个实施方案中,沉积在生物材料或支架上或与其组合以形成本发明的构建体的细胞群体来源于多种来源,例如自体来源。非自体来源也适合使用,包括但不限于异基因或同基因(自体或等基因(isogeneic))来源。
本领域技术人员将理解,存在几种用于将细胞群体沉积在生物材料上或另外地将细胞群体与生物材料组合以形成构建的适当方法。
在一个方面,本发明的构建体适用于本文中描述的使用的方法。在一个实施方案中,构建体适合于给需要任何病因学的肾病、贫血或任何病因学的EPO缺乏的治疗的受试者施用。在其它实施方案中,构建体适合于给需要红细胞的动态平衡的增强或恢复的受试者施用。在另一个实施方案中,构建体适合于给需要增强的肾功能的受试者施用。
在另一个方面,本发明提供了用于植入需要增强的肾功能的受试者的构建体,其包括:a)包含一种或多种生物相容性合成聚合物或天然存在的蛋白质或肽的生物材料;和
b)来源于患有肾病的受试者的哺乳动物肾细胞的混合物,其包含具有1.045g/mL至1.052g/mL的密度的包含分离的富集的肾小管细胞群体的第一细胞群体B2和具有1.063g/mL至1.091g/mL的密度的包含红细胞生成素(EPO)生成细胞和血管细胞但消耗了肾小球细胞的第二细胞群体B4’,所述细胞混合物用生物材料包被,或将其沉积在生物材料上或其中,捕获于其中,悬浮于其中,包埋在其中和/或另外地与其组合。在某些实施方案中,混合物不包括具有<1.045g/ml的密度的包含集合管和肾小管系统的大颗粒细胞的B1细胞群体,或具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。
在一个实施方案中,构建体包括特征在于血管标志物的表达的B4’细胞群体。在一些实施方案中,B4’细胞群体的特征不在于肾小球标志物的表达。在某些实施方案中,混合物能够进行氧可调节的红细胞生成素(EPO)表达。在所有实施方案中,混合物可来源于哺乳动物肾组织或培养的肾细胞。
在一个实施方案中,构建体包括被构造为适用于混合物捕获和/或附着的三维(3-D)多孔生物材料。在另一个实施方案中,构建体包括被构建为适用于包埋、附着、悬浮或包被哺乳动物细胞的液体或半液体凝胶的生物材料。在另一个实施方案中,构建体包括由主要地高分子量种类的透明质酸(HA)组成的经构造以水凝胶形式存在的生物材料。在另一个实施方案中,构建体包括由主要地高分子量种类的透明质酸组成的经构造以多孔形式存在的生物材料。在另一个实施方案中,构建体包括由具有约50微米至约300微米的孔的基于聚乳酸的泡沫组成的生物材料。在另一个实施方案中,构建体包括可来源于对于需要增强的肾功能的受试者是自体的肾样品的一种或多种细胞群体。在某些实施方案中,样品为肾活检组织。在一些实施方案中,受试者患有肾病。在其它实施方案中,细胞群体来源于非自体肾样品。在一个实施方案中,构建体提供红细胞的动态平衡。
分泌产物
在一个其它方面,本发明涉及从富集的肾细胞群体或富集的肾细胞群体的混合物分泌产物,如本文中所描述的。在一个实施方案中,产物包括下列物质的一种或多种:旁分泌因子、内分泌因子、邻分泌因子和囊泡。囊泡可包括下列物质的一种或多种:旁分泌因子、内分泌因子、邻分泌因子、微囊泡、外来体和RNA。分泌产物还可包括不在微囊泡内的产物,包括但不限于旁分泌因子、内分泌因子、邻分泌因子和RNA。例如,已在囊泡的外部分检测到细胞外miRNA(Wang等人,Nuc Acids Res2010,1-12doi:10.1093/nar/gkq601,2010年7月7日)。分泌产物还可称为细胞来源的产物,例如细胞来源的囊泡。
在一个其它实施方案中,分泌产物可以为来源于肾细胞的囊泡的部分。囊泡可以能够递送因子至其它目的地。在一个实施方案中,囊泡为分泌的囊泡。涉及几种类型的分泌的囊泡,包括但不限于外来体、微囊泡、外来体、膜颗粒、外来体-样囊泡和细胞凋亡囊泡(Thery等人2010.Nat.Rev.Immunol.9:581-593)。在一个实施方案中,分泌的囊泡为外来体。在一个其它实施方案中,分泌的囊泡为微囊泡。在一个其它实施方案中,分泌的囊泡包含或包括一种或多种细胞组分。组分可以为下列组分的一种或多种:膜脂质、RNA、蛋白质、代谢产物、细胞质组分及其任意组合。在优选实施方案中,分泌的囊泡包括微小RNA,由或基本上由微小RNA组成。优选,miRNA为人miRNA。在一个实施方案中,一种或多种miRNA选自miR-30b-5p、miR-449a、miR-146a、miR-130a、miR-23b、miR-21、miR-124和miR-151。在一个其它实施方案中,一种或多种miRNA可选自let-7a-1、let-7a-2、let-7a-3、let-7b、let-7c、let-7d、let-7e、let-7f-1、let-7f-2、let-7g、let-7i、mir-1-1、mir-1-2、mir-7-1、mir-7-2、mir-7-3、mir-9-1、mir-9-2、mir-9-3、mir-10a、mir-10b、mir-15a、mir-15b、mir-16-1、mir-16-2、mir-17、mir-18a、mir-18b、mir-19a、mir-19b-1、mir-19b-2、mir-20a、mir-20b、mir-21、mir-22、mir-23a、mir-23b、mir-23c、mir-24-1、mir-24-2、mir-25、mir-26a-1、mir-26a-2、mir-26b、mir-27a、mir-27b、mir-28、mir-29a、mir-29b-1、mir-29b-2、mir-29c、mir-30a、mir-30b、mir-30c-1、mir-30c-2、mir-30d、mir-30e、mir-31、mir-32、mir-33a、mir-33b、mir-34a、mir-34b、mir-34c、mir-92a-1、mir-92a-2、mir-92b、mir-93、mir-95、mir-96、mir-98、mir-99a mir-99b、mir-100、mir-101-1、mir-101-2、mir-103-1、mir-103-1-as、mir-103-2、mir-103-2-as、mir-105-1、mir-105-2、mir-106a、mir-106b、mir-107、mir-122、mir-124-1、mir-124-2、mir-124-3、mir-125a、mir-125b-1、mir-125b-2、mir-126、mir-127、mir-128-1、mir-128-2、mir-129-1、mir-129-2、mir-130a、mir-130b、mir-132、mir-132、mir-133a-1、mir-133a-2、mir-133b、mir-134、mir-135a-1、mir-135a-2、mir-135b、mir-136MI101351120、mir-137、mir-138-1、mir-138-2、mir-139、mir-140、mir-141、mir-142、mir-143、mir-144、mir-145、mir-146a、mir-146b、mir-147、mir-147b、mir-148a、mir-148b、mir-149、mir-150、mir-151、mir-152、mir-153-1、mir-153-2、mir-154、mir-155、mir-181a-1、mir-181a-2、mir-181b-1、mir-181b-2、mir-181c、mir-181d、mir-182、mir-183、mir-184、mir-185、mir-186、mir-187、mir-188、mir-190、mir-190b、mir-191、mir-192、mir-193a、mir-193b、mir-194-1、mir-194-2、mir-195、mir-196a-1、mir-196a-2、mir-196b、mir-197、mir-198、mir-199a-1、mir-199a-2、mir-199b、mir-200a、mir-200b、mir-200c、mir-202、mir-203、mir-204、mir-205、mir-206、mir-208a、mir-208b、mir-210、mir-211、mir-212、mir-214、mir-215、mir-216a、mir-216b、mir-217、mir-218-1、mir-218-2、mir-219-1、mir-219-2、mir-221、mir-222、mir-223、mir-224、mir-296、mir-297、mir-298、mir-299、mir-300、mir-301a、mir-301b、mir-302a、mir-302b、mir-302c、mir-302d、mir-302e、mir-302f、mir-320a、mir-320b-1、mir-320b-2、mir-320c-1、mir-320c-2、mir-320d-1、mir-320d-2、mir-320e、mir-323、mir-323b、mir-324、mir-325、mir-326、mir-328、mir-329-1、mir-329-2、mir-330、mir-331、mir-335、mir-337、mir-338、mir-339、mir-340、mir-342、mir-345、mir-346、mir-361、mir-362、mir-363、mir-365-1、mir-365-2、mir-367、mir-369、mir-370、mir-37、mir-372、mir-373、mir-374a、mir-374b、mir-374c、mir-375、mir-376a-1、mir-376a-2、mir-376b、mir-376c、mir-377、mir-378、mir-378b、mir-378c、mir-379、mir-380、mir-381、mir-382、mir-383、mir-384、mir-409、mir-410、mir-411、mir-412、mir-421、mir-422a、mir-423、mir-424、mir-425、mir-429、mir-431、mir-432、mir-433、mir-448、mir-449a、mir-449b、mir-449c、mir-450a-1、mir-450a-2、mir-450b、mir-451、mir-452、mir-454、mir-455、mir-466、mir-483、mir-484、mir-485、mir-486、mir-487a、mir-487b、mir-488、mir-489、mir-490、mir-491、mir-492、mir-493、mir-494、mir-495、mir-496、mir-497、mir-498、mir-499、mir-500a、mir-500b、mir-501、mir-502、mir-503、mir-504、mir-505、mir-506、mir-507、mir-508、mir-509-1、mir-509-2、mir-509-3、mir-510、mir-511-1、mir-511-2、mir-512-1、mir-512-2、mir-513a-1、mir-513a-2、mir-513b、mir-513c、mir-514-1、mir-514-2、mir-514-3、mir-514b、mir-515-1、mir-515-2、mir-516a-1、mir-516a-2、mir-516b-1、mir-516b-2、mir-517a、mir-517b、mir-517c、mir-518a-1、mir-518a-2、mir-518b、mir-518c、mir-518d、mir-518e、mir-518f、mir-519a-1、mir-519a-2、mir-519b、mir-519c、mir-519d、mir-519e、mir-520a、mir-520b、mir-520c、mir-520d、mir-520e、mir-520f、mir-520g、mir-520h、mir-521-1、mir-521-2、mir-522、mir-523、mir-524、mir-525、mir-526a-1、mir-526a-2、mir-526b、mir-527、mir-532、mir-539、mir-541、mir-542、mir-543、mir-544、mir-544b、mir-545、mir-548a-1、mir-548a-2、mir-548a-3、mir-548aa-1、mir-548aa-2、mir-548b、mir-548c、mir-548d-1、mir-548d-2、mir-548e、mir-548f-1、mir-548f-2、mir-548f-3、mir-548f-4、mir-548f-5、mir-548g、mir-548h-1、mir-548h-2、mir-548h-3、mir-548h-4、mir-548i-1、mir-548i-2、mir-548i-3、mir-548i-4、mir-548j、mir-548k、mir-548l、mir-548m、mir-548n、mir-548o、mir-548p、mir-548s、mir-548t、mir-548u、mir-548v、mir-548w、mir-548x、mir-548y、mir-548z、mir-549、mir-550a-1、mir-550a-2、mir-550b-1、mir-550b-2、mir-551a、mir-551b、mir-552、mir-553、mir-554、mir-555、mir-556、mir-557、mir-558、mir-559、mir-561、mir-562、mir-563、mir-564、mir-566、mir-567、mir-568、mir-569、mir-570、mir-571、mir-572、mir-573、mir-574、mir-575、mir-576、mir-577、mir-578、mir-579、mir-580、mir-581、mir-582、mir-583、mir-584、mir-585、mir-586、mir-587、mir-588、mir-589、mir-590、mir-591、mir-592、mir-593、mir-595、mir-596、mir-597、mir-598、mir-599、mir-600、mir-601、mir-602、mir-603、mir-604、mir-605、mir-606、mir-607、mir-608、mir-609、mir-610、mir-611、mir-612、mir-613、mir-614、mir-615、mir-616、mir-617、mir-618、mir-619、mir-620、mir-621、mir-622、mir-623、mir-624、mir-625、mir-626、mir-627、mir-628、mir-629、mir-630、mir-631、mir-632、mir-633、mir-634、mir-635、mir-636、mir-637、mir-638、mir-639、mir-640、mir-641、mir-642a、mir-642b、mir-643、mir-644、mir-645、mir-646、mir-647、mir-648、mir-649、mir-650、mir-651、mir-652、mir-653、mir-654、mir-655、mir-656、mir-657、mir-658、mir-659、mir-660、mir-661、mir-662、mir-663、mir-663b、mir-664、mir-665、mir-668、mir-670、mir-671、mir-675、mir-676、mir-708、mir-711、mir-718、mir-720、mir-744、mir-758、mir-759、mir-760、mir-761、mir-762、mir-764、mir-765、mir-766、mir-767、mir-769、mir-770、mir-802、mir-873、mir-874、mir-875、mir-876、mir-877、mir-885、mir-887、mir-888、mir-889、mir-890、mir-891a、mir-891b、mir-892a、mir-892b、mir-920、mir-921、mir-922、mir-924、mir-933、mir-934、mir-935、mir-936、mir-937、mir-938、mir-939、mir-940、mir-941-1、mir-941-2、mir-941-3、mir-941-4、mir-942、mir-942、mir-943、mir-944、mir-1178、mir-1179、mir-1180、mir-1181、mir-1182、mir-1183、mir-1184-1、mir-1184-2、mir-1184-3、mir-1185-1、mir-1185-2、mir-1193、mir-1197、mir-1200、mir-1202、mir-1203、mir-1204、mir-1205、mir-1206、mir-1207、mir-1208、mir-1224、mir-1225、mir-1226、mir-1227、mir-1228、mir-1229、mir-1231、mir-1233-1、mir-1233-2、mir-1234、mir-1236、mir-1237、mir-1238、mir-1243、mir-1244-1、mir-1244-2、mir-1244-3、mir-1245、mir-1246、mir-1247、mir-1248、mir-1249、mir-1250、mir-1251、mir-1252、mir-1253、mir-1254、mir-1255a、mir-1255b-1、mir-1255b-2、mir-1256、mir-1257、mir-1258、mir-1260、mir-1260b、mir-1261、mir-1262、mir-1263、mir-1264、mir-1265、mir-1266、mir-1267、mir-1268、mir-1269、mir-1270-1、mir-1270-2、mir-1271、mir-1272、mir-1273、mir-1273c、mir-1273d、mir-1273e、mir-1274a、mir-1274b、mir-1275、mir-1276、mir-1277、mir-1278、mir-1279、mir-1280、mir-1281、mir-1282、mir-1283-1、mir-1283-2、mir-1284、mir-1285-1、mir-1285-2、mir-1286、mir-1287、mir-1288、mir-1289-1、mir-1289-2、mir-1290、mir-1291、mir-1292、mir-1293、mir-1294、mir-1295、mir-1296、mir-1297、mir-1298、mir-1299、mir-1301、mir-1302-1、mir-1302-10、mir-1302-11、mir-1302-2、mir-1302-3、mir-1302-4、mir-1302-5、mir-1302-6、mir-1302-7、mir-1302-8、mir-1302-9、mir-1303、mir-1304、mir-1305、mir-1306、mir-1307、mir-1321、mir-1322、mir-1323、mir-1324、mir-1468、mir-1469、mir-1470、mir-1471、mir-1537、mir-1538、mir-1539、mir-1825、mir-1827、mir-1908、mir-1909、mir-1910、mir-1911、mir-1912、mir-1913、mir-1914、mir-1915、mir-1972-1、mir-1972-2、mir-1973、mir-1976、mir-2052、mir-2053、mir-2054、mir-2110、mir-2113、mir-2114、mir-2115、mir-2116、mir-2117、mir-2276、mir-2277、mir-2278、mir-2355、mir-2861、mir-2909、mir-3065、mir-3074、mir-3115、mir-3116-1、mir-3116-2、mir-3117、mir-3118-1、mir-3118-2、mir-3118-3、mir-3118-4、mir-3118-5、mir-3118-6、mir-3119-1;mir-3119-2、mir-3120、mir-3121、mir-3122、mir-3123、mir-3124、mir-3125、mir-3126、mir-3127、mir-3128、mir-3129、mir-3130-1、mir-3130-2、mir-3131、mir-3132、mir-3133、mir-3134、mir-3135、mir-3136、mir-3137、mir-3138、mir-3139、mir-3140、mir-3141、mir-3142、mir-3143、mir-3144、mir-3145、mir-3146、mir-3147、mir-3148、mir-3149、mir-3150、mir-3151、mir-3152、mir-3153、mir-3154、mir-3155、mir-3156-1、mir-3156-2、mir-3156-3、mir-3157、mir-3158-1、mir-3158-2、mir-3159、mir-3160-1、mir-3160-2、mir-3161、mir-3162、mir-3163、mir-3164、mir-3165、mir-3166、mir-3167、mir-3168、mir-3169、mir-3170、mir-3171、mir-3173、mir-3174、mir-3175、mir-3176、mir-3177、mir-3178、mir-3179-1、mir-3179-2、mir-3179-3、mir-3180-1、mir-3180-2、mir-3180-3、mir-3180-4、mir-3180-5、mir-3181、mir-3182、mir-3183、mir-3184、mir-3185、mir-3186、mir-3187、mir-3188、mir-3189、mir-3190、mir-3191、mir-3192、mir-3193、mir-3194、mir-3195、mir-3196、mir-3197、mir-3198、mir-3199-1、mir-3199-2、mir-3200、mir-3201、mir-3202-1、mir-3202-2、mir-3605、mir-3606、mir-3607、mir-3609、mir-3610、mir-3611、mir-3612、mir-3613、mir-3614、mir-3615、mir-3616、mir-3617、mir-3618、mir-3619、mir-3620、mir-3621、mir-3622a、mir-3622b、mir-3646、mir-3647、mir-3648、mir-3649、mir-3650、mir-3651、mir-3652、mir-3653、mir-3654、mir-3655、mir-3656mir-3657、mir-3658、mir-3659、mir-3660、mir-3661、mir-3662、mir-3663、mir-3664、mir-3665、mir-3666、mir-3667、mir-3668、mir-3669、mir-3670、mir-3670、mir-3671、mir-3671、mir-3673、mir-3673、mir-3675、mir-3675、mir-3676、mir-3663、mir-3677、mir-3678、mir-3679、mir-3680、mir-3681、mir-3682、mir-3683、mir-3684、mir-3685、mir-3686、mir-3687、mir-3688、mir-3689a、mir-3689b、mir-3690、mir-3691、mir-3692、mir-3713、mir-3714、mir-3907、mir-3908、mir-3909、mir-3910-1、mir-3910-2、mir-3911、mir-3912、mir-3913-1、mir-3913-2、mir-3914-1、mir-3914-2、mir-3915、mir-3916、mir-3917、mir-3918、mir-3919、mir-3920、mir-3921、mir-3922、mir-3923、mir-3924、mir-3925、mir-3926-1、mir-3926-2、mir-3927、mir-3928、mir-3929、mir-3934、mir-3935、mir-3936、mir-3937、mir-3938、mir-3939、mir-3940、mir-3941、mir-3942、mir-3943、mir-3944、mir-3945、mir-4251、mir-4252、mir-4253、mir-4254、mir-4255、mir-4256、mir-4257、mir-4258、mir-4259、mir-4260、mir-4261、mir-4262、mir-4263、mir-4264、mir-4265、mir-4266、mir-4267、mir-4268、mir-4269、mir-4270、mir-4271、mir-4272、mir-4273、mir-4274、mir-4275、mir-4276、mir-4277、mir-4278、mir-4279、mir-4280、mir-4281、mir-4282、mir-4283-1、mir-4283-2、mir-4284、mir-4285、mir-4286、mir-4287、mir-4288、mir-4289、mir-4290、mir-4291、mir-4292、mir-4293、mir-4294、mir-4295、mir-4296、mir-4297、mir-4298、mir-4299、mir-4300、mir-4301、mir-4302、mir-4303、mir-4304、mir-4305、mir-4306、mir-4307、mir-4308、mir-4309、mir-4310、mir-4311、mir-4312、mir-4313、mir-4314、mir-4315-1、mir-4315-2、mir-4316、mir-4317、mir-4318、mir-4319、mir-4320、mir-4321、mir-4322、mir-4323、mir-4324、mir-4325、mir-4326、mir-4327、mir-4328;mir-4329、mir-4329和mir-4330。
本发明涉及可从本文中描述的细胞群体或构建体获得的细胞来源的或分泌的miRNA。在一个实施方案中,可将一种或多种个别miRNA用于给自体肾提供再生作用。个别miRNA的组合可适用于提供这样的作用。示例性组合包括下列的两种或更多种:miR-21、miR-23a、miR-30c、miR-1224、miR-23b、miR-92a、miR-100、miR-125b-5p、miR-195、miR-10a-5p及其任意组合。另一个示例性组合包括下列的两种或更多种:miR-30b-5p、miR-449a、miR-146a、miR-130a、miR-23b、miR-21、miR-124、miR-151及其任意组合。在一个实施方案中,miRNA的组合可包括2、3、4、5、6、7、8、9、10或更多种个别miRNA。本领域技术人员将理解,其它miRNA和mirRNA的组合可适用于本发明。另外的miRNA的来源包括http://mirbase.org上的miRBase,其由曼彻斯特大学生命科学学院托管和维护。
在一个实施方案中,分泌产物包括旁分泌因子。一般地,旁分泌因子为由可在短距离范围内扩散以诱导或实现邻近细胞的改变即旁分泌相互作用的细胞合成的分子。可扩散的分子称为旁分泌因子。
在另一个实施方案中,本发明涉及一种或更多种分离的肾细胞来源的分泌囊泡的组合物,如本文中所描述的。本领域技术人员将理解包含分泌的囊泡的各种类型的组合物将是适合的。
在另一个方面,本发明提供了制备肾细胞分泌产物例如囊泡的方法。在一个实施方案中,方法包括提供肾细胞群体(包括一种或多种富集的肾细胞群体的混合物)的步骤。在另一个实施方案中,方法还包括在适当的条件下培养群体的步骤。条件可为低氧条件。在另一个实施方案中,方法还包括从肾细胞群体分离分泌产物的步骤。可从细胞群体的细胞培养基获得分泌的囊泡。在一个其它实施方案中,肾细胞的特征在于对氧水平作出生物响应(以便培养系统的氧张力的减小导致囊泡生成和/或分泌的诱导)的囊泡生成和/或分泌。在一个实施方案中,当在其中将细胞与在正常大气(~21%)水平的有效氧下培养的细胞群体相比较在培养系统中经历有效氧水平的下降的条件下培养细胞群体时,诱导囊泡产和和/或分泌。在一个实施方案中,在更低的氧条件下培养的细胞群体生成和/或分泌相对于在正常氧条件下培养的细胞群体更高水平的囊泡。通常,在降低的水平的有效氧(也称为缺氧培养条件)下培养细胞意指减少的氧的水平相对于在正常大气水平的有效氧(也称为正常或含氧量正常的培养条件)下培养细胞被降低。在一个实施方案中,缺氧细胞培养条件包括在约低于1%的氧,约低于2%的氧,约低于3%的氧,约低于4%的氧或约低于5%的氧下培养细胞。在另一个实施方案中,正常或含氧量正常的培养条件包括在约10%的氧,约12%的氧,约13%的氧,约14%的氧,约15%的氧,约16%的氧,约17%的氧,约18%的氧,约19%的氧,约20%的氧或约21%的氧下培养细胞。在优选实施方案中,方法包括提供从肾细胞分离外来体和/或微囊泡。
在一个实施方案中,从肾细胞分泌产物。产物可由不在支架上的肾细胞(例如细胞不为本文中描述的构建体的部分)分泌。
在另一个实施方案中,产物由已接种在支架例如构建体上的肾细胞分泌。构建体包括一种或多种富集的肾细胞群体或其混合物,所述细胞群体或其混合物被直接接种在支架上或其中。
在另一个方面,本发明提供了用于筛选/最优化/监测一种或多种富集的肾细胞群体和包含所述细胞群体的混合物或构建体的治疗功效的体外方法。在一个实施方案中,方法包括提供一种或多种测试群体、测试混合物或测试构建体(“检品(test article)”)的步骤。在另一个实施方案中,方法包括在适当的条件下培养检品的步骤,如本文中所描述的。在一个其它实施方案中,方法包括从培养的检品收集细胞培养基的步骤。该培养基称为“条件培养基”并且预期其包含由检品的肾细胞分泌的产物。
在其它方面,可将条件培养基用于进行一个或多个体外测定以测试检品的生物治疗功效。在一个实施方案中,可对条件培养基进行上皮细胞-间质细胞转化(EMT)测定。测定可测试由TGFβ1诱导的EMT。实施例15提供了该测定的示例性方案。
在另一个实施方案中,对条件培养基进行RNA(例如通过基于PCR的测定)和/或囊泡或外来体(例如通过FACS)的检测。在一个其它实施方案中,对条件培养基进行信号转导途径测定,例如免疫响应(例如,NFκB)、纤维变性响应(PAI-1)和血管生成。实施例12-14提供了此类测定的示例性方案。
使用方法
在一个方面,本发明提供了利用本文中描述的肾细胞群体和肾细胞的混合物治疗有此需要的受试者的肾病、贫血或EPO缺乏的方法。在一个实施方案中,方法包括给受试者施用包括富集EPO生成细胞的第一肾细胞群体的组合物。在另一个实施方案中,第一细胞群体富集EPO生成细胞、肾小球细胞和血管细胞。在一个实施方案中,第一细胞群体为B4’细胞群体。在另一个实施方案中,组合物还可包括一种或多种另外的肾细胞群体。在一个实施方案中,另外的细胞群体为未富集EPO生成细胞的第二细胞群体。在另一个实施方案中,另外的细胞群体为未富集EPO生成细胞、肾小球细胞或血管细胞的第二细胞群体。在另一个实施方案中,组合物还包括肾细胞群体或肾细胞的混合物,所述细胞群体或混合物被沉积在生物材料中,沉积在其上,包埋于其中,被其包被或捕获于其中以形成如本文中所述的可植入的构建体(以用于治疗本文中描述的疾病或病症)。在一个实施方案中,将细胞群体单独或与其它细胞或生物材料(例如,水凝胶、多孔支架或天然或合成肽或蛋白质)组合使用,以刺激急性或慢性疾病状态中的再生。
在另一个方面,可通过红细胞生成和/或肾功能的各种指标观察本发明的方法对受试者的肾病、贫血或EPO缺乏的有效治疗。在一个实施方案中,红细胞的动态平衡的指标包括但不限于血细胞比容(HCT)、血红蛋白(HB)、平均红细胞血红蛋白量(MCH)、红细胞计数(RBC)、网织红细胞计数(reticulocyte number)、网织红细胞%、平均细胞容积(MCV)和红细胞分布宽度(RDW)。在一个其它实施方案中,肾功能的指标包括但不限于血清白蛋白、白蛋白球蛋白比(A/G比)、血清磷、血清钠、肾尺寸(可通过超声测量的)、血清钙、磷钙比、血清钾、蛋白尿、尿肌酐、血清肌酸酐、血尿素氮(BUN)、胆固醇水平、甘油三酯水平和肾小球滤过率(GFR)。此外,一般健康和康乐的几个指标包括但不限于体重增加或减轻、存活、血压(平均全身血压、舒张压或收缩压)和身体耐力表现。
在另一个实施方案中,有效治疗通过肾功能的一个或多个指标的稳定化来证明。肾功能的稳定化通过利用本发明的方法治疗的受试者的指标与未曾用本发明的方法治疗的受试者的相同指标相比较的改变来证明。或者,肾功能的稳定化可通过利用本发明的方法治疗的受试者的指标与治疗前相同受试者的相同指标相比较的改变来证明。第一指标的改变可以是值的增加或减小。在一个实施方案中,由本发明提供的治疗可包括受试者的血尿素氮(BUN)水平的稳定化,其中在受试者中观察到的BUN水平比未曾利用本发明的方法治疗的具有类似疾病状态的受试者低。在一个其它实施方案中,治疗可包括受试者的血清肌酸酐水平的稳定化,其中在受试者中观察到的血清肌酸酐水平比未曾利用本发明的方法治疗的具有类似疾病状态的受试者低。在另一个实施方案中,治疗包括受试者的血细胞比容(HCT)水平的稳定化,其中在受试者中观察到的HCT水平比未曾利用本发明的方法治疗的具有类似疾病状态的受试者低。在另一个实施方案中,治疗包括受试者的红细胞(RBC)水平的稳定化,其中在受试者中观察到的RBC水平比未曾利用本发明的方法治疗的具有类似疾病状态的受试者高。本领域技术人员将理解,可测量本文中描述的或本领域已知的一个或多个另外的指标以测定受试者的肾病的有效治疗。
在另一个方面,本发明涉及在有此需要的受试者中提供红细胞的动态平衡的方法。在一个实施方案中,方法包括以下步骤:(a)给受试者施用肾细胞群体例如B2或B4’,或肾细胞的混合物例如B2/B4’和/或B2/B3,如本文中所描述的;和(b)在来自受试者的生物样品中测定红细胞生成指标的水平相对于对照中的指标水平不同,其中指标水平的差异(i)表示受试者响应施用步骤(a),或(ii)表示受试者的红细胞的动态平衡。在另一个实施方案中,方法包括以下步骤:(a)给受试者施用包含本文中描述的肾细胞群体或肾细胞的混合物的组合物;和(b)在受试者的生物样品中测定红细胞生成指标的水平相对于对照的指标水平不同,其中指标水平的差异(i)表示受试者响应施用步骤(a),或(ii)表示受试者的红细胞的动态平衡。在另一个实施方案中,方法包括以下步骤:(a)提供生物材料或生物相容性聚合物支架;(b)将本发明的肾细胞群体或肾细胞混合物以本文中描述的方式沉积在生物材料或支架上或其内以形成可植入的构建体;(c)将构建体植入受试者;和(d)在受试者的生物样品中测定红细胞生成指标的水平相对于对照的指标水平不同,其中指标水平的差异(i)表示受试者响应施用步骤(a),或(ii)表示受试者的红细胞的动态平衡。
在另一个方面,本发明提涉及给有此需要的受试者提供肾功能的稳定化和红细胞的动态平衡的恢复的方法,所述受试者具有肾功能缺陷以及贫血和/或EPO缺乏。在一个实施方案中,方法包括施用本文中描述的肾细胞群体或肾细胞混合物的步骤,所述细胞群体或混合物包含下列细胞类型的至少一种:肾小管来源的细胞、肾小球来源的细胞、间质来源的细胞(insterstitium-derived cell)、集合管来源的细胞、间质组织来源的细胞或来源于脉管系统的细胞。在另一个实施方案中,群体或混合物包含EPO生成细胞和肾小管上皮细胞、已通过下列标志物的至少一个标志物鉴定的肾小管细胞:兆蛋白、立方蛋白、透明质酸合酶2(HAS2)、维生素D325-羟化酶(CYP2D25)、N-钙粘蛋白(Ncad)、E-钙粘蛋白(Ecad)、水通道蛋白-1(Aqp1)、水通道蛋白-2(Aqp2)、RAB17、成员RAS癌基因家族(Rab17)、GATA结合蛋白3(Gata3)、含FXYD结构域的离子转运调节剂4(Fxyd4)、溶质载体家族9(钠/氢交换器)、成员4(Slc9a4)、醛脱氢酶3家族、成员B1(Aldh3b1)、醛脱氢酶1家族、成员A3(Aldh1a3)和钙蛋白酶-8(Capn8)。在该实施方案中,受试者的治疗可通过与未治疗的受试者或受试者的治疗前指标相比较红细胞生成的至少一个指标的增强伴随着肾功能的至少一个指标的改善来证明。
在一个方面,本发明提供了通过施用富集EPO生成细胞的肾细胞群体或包含富集了本文中所述的EPO生成细胞的细胞群体的肾细胞的混合物来(i)治疗肾病、贫血或EPO缺乏;(ii)稳定肾功能,(iii)恢复红细胞的动态平衡或(iv)其任意组合的方法,其中施用的有益作用大于施用未富集EPO生成细胞的细胞群体的作用。在另一个实施方案中,富集的细胞群体提供了升高水平的血清血尿素氮(BUN)。在另一个实施方案中,富集的细胞群体提高蛋白质在血清中的保留。在另一个实施方案中,富集的细胞群体提供了升高水平的血清胆固醇和/或甘油三酯。在另一个实施方案中,富集的细胞群体提供了升高水平的维生素D。在一个实施方案中,富集的细胞群体提供了与非富集的细胞群体相比较提高的磷钙比。在另一个实施方案中,富集的细胞群体提供了与非富集的细胞群体相比较升高水平的血红蛋白。在其它实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了升高水平的血清肌酸酐。在另一个实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了升高水平的血细胞比容。在其它实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了升高水平的红细胞数(RBC#)。在一个实施方案中,升高水平的血细胞比容恢复至95%的正常健康水平。在其它实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了增加的网织红细胞数。在其它实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了增加的网织红细胞百分比。在其它实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了升高水平的红细胞容积分布宽度(RDW)。在另一个实施方案中,富集的细胞群体与非富集的细胞群体相比较提供了升高水平的血红蛋白。在另一个实施方案中,富集的细胞群体在骨髓中提供红细胞生成响应(erythroietic response),以便骨髓细胞性接近正常并且骨髓:红细胞系统比接近正常。
在另一个方面,本发明提供了通过施用富集的细胞群体(i)治疗肾病、贫血或EPO缺乏;(ii)稳定肾功能,(iii)恢复红细胞的动态平衡或(iv)其任意组合的方法,其中施用本文中描述的肾细胞群体或肾细胞群体的混合物的有益作用的特征在于改善的红细胞的动态平衡(当与通过施用重组EPO(rEPO)提供的有益作用相比较时)。在一个实施方案中,所述群体或混合物,当给有此需要的受试者施用时,提供改善的红细胞的动态平衡(如通过血细胞比容、血红蛋白或RBC#测定的)(当与施用重组EPO蛋白相比较时)。在一个实施方案中,所述群体或混合物,当施用时,提供升高水平的血细胞比容、RBC或血红蛋白(当与重组EPO相比较时),与对照的血细胞比容相比降低或升高不超过约10%。在其它实施方案中,群体或混合物的单次剂量或递送,当施用时,在被治疗的受试者中提供红细胞的动态平衡的改善(如通过血细胞比容、血红蛋白或RBC#的增加测定的)持续一段时间,所述持续时间显著超过重组EPO蛋白的单次剂量或递送提供红细胞的动态平衡的改善所持续的时间。在另一个实施方案中,所述群体或混合物,当施用时,在本文中描述的剂量上不导致大于匹配的健康对照的正常水平的约110%的血细胞比容、血红蛋白或RBC#。在其它实施方案中,所述群体或混合物,当以本文中描述的剂量施用时,提供了与以本文中描述的剂量递送的重组EPO蛋白相比较更优的红细胞的动态平衡(如通过血细胞比容、血红蛋白或RBC#测定的)。在另一个实施方案中,以约100IU/kg、约200IU/kg、约300IU/kg、约400IU/kg或约500IU/kg的剂量递送重组EPO。本领域技术人员将理解,其它剂量的本领域已知的重组EPO可以是适当的。
本发明的另一个实施方案涉及本文中描述的至少一个细胞群体(包括富集的细胞群体和其混合物)、或本文中描述的可植入构建体、或本文中描述的分泌产物用于制备药剂的用途,所述药剂用于治疗有此需要的受试者的肾病、贫血或EPO缺乏、提供有此需要的受试者的红细胞的动态平衡、增强有此需要的受试者的肾功能或给自体肾提供再生作用。
本发明的另一个实施方案涉及特定的富集的细胞群体(本文中描述的),基于特定细胞亚群的选择(基于具体验证治疗属性),用于治疗具有特定病因学的肾病的用途。
在另一个方面,本发明提供了治疗有此需要的受试者的肾病的方法,包括给受试者施用包含哺乳动物肾细胞的混合物的组合物,所述细胞混合物包含具有1.045g/mL至1.052g/mL的密度的包含分离的富集的肾小管细胞群体的第一细胞群体B2,和具有1.063g/mL至1.091g/mL的密度的包含红细胞生成素(EPO)生成细胞和血管细胞但消耗了肾小球细胞的第二细胞群体B4’,其中混合物不包括具有<1.045g/ml的密度的集合管和肾小管系统的大颗粒细胞的B1细胞群体,或具有>1.091g/ml的密度的包含具有低粒度和活力的碎片和小细胞的B5细胞群体。在某些实施方案中,方法包括在受试者的测试样品中测定肾功能指标的水平相对于对照的指标水平不同,其中指标水平的差异表示受试者的一种或多种肾功能的衰退的减轻、所述功能的稳定化或所述功能的增强。在一个实施方案中,用于方法的B4’细胞群体的特征在于血管标志物的表达。在某些实施方案中,用于方法的B4’细胞群体的特征不在于肾小球标志物的表达。在一个实施方案中,用于方法的细胞的混合物能够进行氧可调节的红细胞生成素(EPO)表达。在某些实施方案中,待通过本发明的方法治疗的肾病伴随红细胞生成素(EPO)缺乏。在某些实施方案中,EPO缺乏为贫血。在一些实施方案中,EPO缺乏或贫血继发于受试者的肾衰竭。在一些其它实施方案中,EPO缺乏或贫血继发于选自慢性肾衰竭、原发性EPO缺乏(primary EPO deficiency)、化学疗法或抗病毒疗法、非骨髓性癌、HIV感染、肝病、心力衰竭、类风湿性关节炎或多器官系统衰竭的病症。在某些实施方案中,用于方法的组合物还包含含有一种或多种生物相容性合成聚合物和/或天然存在的蛋白质或肽的生物材料,其中利用生物材料包被混合物,将所述混合物沉积在生物材料上或其中,捕获于其中,悬浮于其中,包埋在其中和/或另外地与其组合。在某些实施方案中,本发明的方法中使用的混合物来源于哺乳动物肾组织或培养的哺乳动物肾细胞。在其它实施方案中,混合物来源于对于有此需要的受试者是自体的肾样品。在一个实施方案中,样品为肾活检组织。在其它实施方案中,用于本发明的方法的混合物来源于非自体肾样品。
在另一个方面,本发明提供了本发明的细胞群体及其混合物或可植入构建体用于制备药剂的用途,所述药剂用于治疗有此需要的受试者的肾病、贫血或EPO缺乏。
在另一个方面,本发明提供了用于再生此有需要的受试者的自体肾的方法。在一个实施方案中,方法包括给受试者施用或植入本文中描述的细胞群体、混合物或构建体的步骤。再生的自体肾的特征可在于许多指标,包括但不限于自体肾的功能或能力的发展、自体肾的功能或能力的增强以及某些标志物在自体肾中的表达。在一个实施方案中,可基于上述红细胞的动态平衡和肾功能的各种指标观察发展或增强的功能或能力。在另一个实施方案中,再生肾的特征在于一个或多个干细胞标志物的差异表达。干细胞标志物可以为下列标志物的一种或多种:SRY(性别决定区Y)-盒2(Sox2);未分化的胚胎细胞转录因子(UTF1);来自小鼠的Nodal同源物(NODAL);凸素(Prominin)1(PROM1)或CD133(CD133);CD24及其任意组合。在另一个实施方案中,干细胞标志物的表达与对照相比较被上调。
本文中描述的细胞群体(包括富集的细胞群体及其混合物以及包含所述细胞群体的构建体)可被用于给自体肾提供再生作用。所述作用可由细胞本身和/或由从细胞的分泌产物提供。再生作用的特征可在于下列的一个或多个方面:上皮细胞-间质细胞转化(其可通过TGF-β信号转导的减弱来进行)的减少;肾脏纤维化的减少;肾炎的减轻;干细胞标志物在自体肾中的差异表达;植入的细胞和/或自体细胞至肾损害例如肾小管损害的迁移、植入的细胞在肾损害例如肾小管损害的位置上的移植;肾功能的一个或多个指标(如本文中所描述的)的稳定化;红细胞的动态平衡(如本文中所描述的)的恢复;及其任意组合。
监测再生的方法
在另一个方面,本发明提供了用于在将本文中描述的细胞群体、混合物或构建体施用或植入至受试者后监测自体肾的再生的预后方法。在一个实施方案中,方法包括检测从受试者获得的测试样品和对照样品中标志物表达的水平的步骤,其中与对照样品相比较,测试样品中标志物的更高表达水平预示受试者的自体肾的再生。在另一个实施方案中,方法包括检测样品中一个或多个干细胞标志物的表达。干细胞标志物可选自Sox2、UTF1、NODAL、CD133、CD24及其任意组合。检测步骤可包括测定干细胞标志物的表达在测试样品中相对于对照样品被上调或更高,其中更高的表达水平预示受试者的自体肾的再生。在一个其它实施方案中,检测干细胞标志的mRNA表达。在其它实施方案中,可通过基于PCR的方法,例如qRT-PCR来检测mRNA表达。原位杂交还可用于检测mRNA表达。
在一个其它实施方案中,检测干细胞标志物的多肽表达。在另一个实施方案中,使用抗干细胞标志物试剂检测多肽表达。在一个其它实施方案中,试剂为抗标志物抗体。在另一个实施方案中,使用免疫组织化学或蛋白质印迹检测干细胞标志物多肽的表达。
本领域技术人员将理解用于检测标志物的mRNA和/或多肽表达的其它方法。
在一个实施方案中,检测步骤在从受试者获得测试样品的步骤之后进行。在另一个实施方案中,测试样品为肾组织。
在一个其它方面,本发明提供了标志物例如干细胞标志物作为自体肾的再生的替代标志物的用途。可将这样的标志物独立地使用或与基于功能或能力是否已被开发或增强的再生的评估(例如,红细胞的动态平衡和肾功能的指标)组合使用。在再生的时间过程中监测替代标志物还可用作再生的预后指标。
在另一个方面,本发明提供了在植入或施用本文中描述的细胞群体、混合物或构建体后对患者进行预后评估的方法。在一个实施方案中,方法包括以下步骤:检测获自所述受试者的测试样品中标志物表达的水平;(b)测定相对于对照样品的标志物表达水平(或对照参考值)测试样品中标志物的表达水平;和(c)基于标志物表达水平的测定预测患者的再生预后,其中与对照样品(或对照参考值)相比较测试样品中更高水平的标志物表达预示受试者中的再生。
在另一个方面,本发明提供了用于在植入或施用本文中描述的细胞群体、混合物或构建体后对患者进行预后评估的方法。在一个实施方案中,方法包括以下步骤:(a)获得患者的生物样品;和(b)检测生物样品中干细胞标志物的表达,其中干细胞标志物的表达预示患者的自体肾的再生。在一些实施方案中,相对于对照样品(或对照参考值)患者生物样品中增加的干细胞标志物的表达预示受试者中的再生。在一些实施方案中,相对于对照样品(或对照参考值)患者样品中减少的干细胞标志物的表达预示受试者中的再生。患者样品可以为测试样品,包括活检组织。患者样品可以为体液,例如血液或尿。
在一个其它方面,本发明提供了用于将本文中描述的细胞群体、混合物或构建体施用至或植入受试者后监测自体肾的再生的预后方法,其中使用非侵袭性方法。作为活检组织的替代物,可从体液例如尿的检查评估接受治疗的受试者中的再生结果。已发现,获自受试者来源的尿来源的微囊泡包含某些组分,包括但不限于最终来源于受利用本发明的细胞群体的治疗影响的肾细胞群体的特定蛋白质和miRNA。此类组分可包括参与干细胞复制和分化、细胞凋亡、炎症和免疫调节的因子。微囊泡结合的miRNA/蛋白质的表达模式的时间分析允许连续监测接受本发明的细胞群体、混合物或构建体的受试者的肾内的再生结果。实施例17描述了用于受试者的尿的分析的示例性方案。
可分析此类肾来源的囊泡和/或排入受试者的尿的肾来源的囊泡的腔内容物的表示再生结果的生物标志物。
在一个实施方案中,本发明提供了评估肾病(KD)患者是否响应于利用治疗剂的治疗的方法。方法可包括测定或检测与对照样品中的囊泡的量相比较或相对于其,获自用治疗剂治疗的KD患者的测试样品中囊泡或其腔内容物的量的步骤,其中与对照样品中囊泡或其腔内容物的量相比较测试样品中囊泡或其腔内容物的更高或更低的量表示被治疗的患者对利用治疗剂的治疗的响应。
本发明还提供了监测利用治疗剂治疗KD患者的功效的方法。在一个实施方案中,方法包括测定或检测与对照样品中囊泡或其腔内容物的量相比较或相对于其,获自用治疗剂治疗的KD患者的测试样品中囊泡的量的步骤,其中与对照样品中囊泡或其腔内容物的量相比较测试样品中囊泡或其腔内容物的更高或更低的量表示利用治疗剂治疗KD患者的功效。
本发明还提供了将试剂鉴定为对治疗患者亚群的肾病(KD)是有效的治疗剂的方法。在一个实施方案中,方法包括测定试剂的功效与患者亚群的样品中许多囊泡的存在(与获自对照样品的样品中囊泡或其腔内容物的量相比较)之间的相互关系的步骤,其中与对照样品中囊泡或其腔内容物的量相比较患者亚群的样品中更高或更低量的囊泡或其内容物表示试剂对于治疗患者亚群的KD是有效的。
本发明提供了鉴定试剂对于治疗其的肾病(KD)是有效的患者亚群的方法。在一个实施方案中,方法包括测定试剂的功效与患者亚群的样品中许多囊泡或其腔内容物的存在(与获自对照样品的样品中囊泡或其腔内容物的量相比较)之间的相互关系的步骤,其中与对照样品中囊泡或其腔内容物的量相比较患者亚群的样品中更高或更低量的囊泡表示试剂对于治疗患者亚群的KD是有效的。
测定或检测步骤可包括分析可存在于测试样品中的miRNA或其它分泌产物的量(参见实施例17)。
非侵袭性预后法可包括在施用或植入本文中描述的细胞群体、混合物或构建体之前和/或之后从受试者获得尿样品的步骤。可使用标准技术,包括但不限于除去不想要的碎片的离心(Zhou等人2008.Kidney Int.74(5):613-621;Skog等人,美国公布的专利申请No.20110053157,将所述每一篇文献或专利通过引用整体并入本文)从尿样品分离囊泡和其它分泌产物。
本发明涉及在治疗后检测受试者的再生结果的非侵袭性方法。方法包括检测被治疗的受试者的尿中的囊泡或其腔内容物。腔内容物可以为一种或多种miRNA。个别miRNA的组合或小组的检测可适用于此类预后方法。示例性组合包括如下的两种或更多种:miR-24、miR-195、miR-871、miR-30b-5p、miR-19b、miR-99a、miR-429、let-7f、miR-200a、miR-324-5p、miR-10a-5p及其任意组合。在一个实施方案中,miRNA的组合可包括2、3、4、5、6、7、8、9、10、11或更多种个别miRNA。本领域技术人员将理解,其它miRNA和miRNA的组合可适用于此类预后方法。其它miRNA的来源包括http://mirbase.org上的miRBase,其由曼彻斯特大学的生命科学学院托管和维持。
本领域技术人员将理解,除了本文中描述的细胞群体和构建体外,用于检测再生的预后方法还可适用于利用本领域已知的其它治疗剂治疗的受试者。
在一些实施方案中,测定步骤包括使用通过适当的处理器执行的软件程序以(i)测量测试样品和对照中标志物表达(或囊泡/囊泡内容物)的差异水平;和/或(ii)分析获自测量测试样品和对照中标志物表达的差异水平的数据。适当的软件和处理器在本领域是公知的并且可商购获得。程序可包含在存储在可触摸介质例如CD-ROM、软盘、硬驱、DVD或与处理器结合的内存上的软件中,但本领域技术人员将理解,完整程序或其部分可选择地可通过除处理器外的设备来执行,和/或以公知的方式包含在固件和/或专用硬件中。
在测定步骤后,通常记录测量结果、发现、诊断、预测和/或治疗建议,并且例如将其传达给技术人员、医生和/或患者。在某些实施方案中,可使用计算机将这样的信息传达给当事人例如患者和/或主治医生。在一些实施方案中,可进行测定或在与结果或诊断被传达至的国家或管辖地区不同的国家庭或管辖地区分析测定结果。
在优选实施方案中,在完成测定后和生成预后和/或预测后,尽可能快地将基于在具有差异水平的标志物表达的测试者中测量的标志物表达的水平的预后、预测和/或治疗建议传达给受试者。可由受试者的治疗医生将结果和/或相关信息传达给受试者。或者,可通过任何传达方式,包括写信、电子传达形式例如电子邮件或电话将结果直接传达给测试者。可使用计算机,例如在电子邮件传达的情况下,帮助传达。在某些实施方案中,可生成包含预后测试的结果和/或从测试得出的结论和/或基于测试的治疗建议的通信(communication),使用对于电信领域的技术人员来说熟悉的计算机硬件与软件的组合将其自动地递送给受试者。保健型通信系统的一个实例描述于美国专利No.6,283,761中;然而,本发明不限于利用该特定通信系统的方法。在本发明的方法的某些实施方案中,可在不同(例如外国)管辖地区进行全部或一些方法步骤,包括样品的测定、再生的预后和/或预测以及测定结果或预后的传达。
在另一个方面,本文中描述的预后方法给当事方提供关于植入或施用的再生成功的信息。
在所有实施方案中,给需要本文中描述的此类治疗的受试者提供再生肾的方法可包括预后评估再生的植入后步骤,如上文中所描述的。
施用的方法和途径
可单独地施用或与其它生物活性组分组合施用本发明的细胞制剂和/或构建体。
本文中描述的肾细胞群体或肾细胞群体的混合物的治疗有效量可从被受试者安全接受的细胞的量大量变化至治疗肾病例如一个或多个肾功能的稳定化、减小的衰退率(rate-of-decline)或增强所必需的细胞的最少量。在某些实施方案中,本发明的方法提供了以如下剂量进行的本文中描述的肾细胞群体或肾细胞群体的混合物的施用:约10,000个细胞/kg、约20,000个细胞/kg、约30,000个细胞/kg、约40,000个细胞/kg、约50,000个细胞/kg、约100,000个细胞/kg、约200,000个细胞/kg、约300,000个细胞/kg、约400,000个细胞/kg、约500,000个细胞/kg、约600,000个细胞/kg、约700,000个细胞/kg、约800,000个细胞/kg、约900,000个细胞/kg、约1.1x106个细胞/kg、约1.2x106个细胞/kg、约1.3x106个细胞/kg、约1.4x106个细胞/kg、约1.5x106个细胞/kg、约1.6x106个细胞/kg、约1.7x106个细胞/kg、约1.8x106个细胞/kg、约1.9x106个细胞/kg、约2.1x106个细胞/kg、约2.1x106个细胞/kg、约1.2x106个细胞/kg、约2.3x106个细胞/kg、约2.4x106个细胞/kg、约2.5x106个细胞/kg、约2.6x106个细胞/kg、约2.7x106个细胞/kg、约2.8x106个细胞/kg、约2.9x106个细胞/kg、约3x106个细胞/kg、约3.1x106个细胞/kg、约3.2x106个细胞/kg、约3.3x106个细胞/kg、约3.4x106个细胞/kg、约3.5x106个细胞/kg、约3.6x106个细胞/kg、约3.7x106个细胞/kg、约3.8x106个细胞/kg、约3.9x106个细胞/kg、约4x106个细胞/kg、约4.1x106个细胞/kg、约4.2x106个细胞/kg、约4.3x106个细胞/kg、约4.4x106个细胞/kg、约4.5x106个细胞/kg、约4.6x106个细胞/kg、约4.7x106个细胞/kg、约4.8x106个细胞/kg、约4.9x106个细胞/kg或约5x106个细胞/kg。在另一个实施方案中,给予受试者的细胞的剂量可以为单次剂量或单次剂量加额外剂量。在其它实施方案中,可通过本文中描述的构建体的方式提供剂量。在其它实施方案中,给予受试者的细胞的剂量可基于估计的肾质量或功能性肾质量来计算。
可将治疗有效量的本文中描述的肾细胞群体或其混合物悬浮于药学上可接受的载体或赋形剂中。这样的载体包括但不限于基础培养基加1%血清白蛋白、盐水、缓冲盐水、葡萄糖、水、胶原、藻酸盐、透明质酸、纤维蛋白胶、聚乙二醇、聚乙烯醇、羧甲基纤维素及其组合。制剂应当适合于施用模式。因此,本发明提供了肾细胞群体或其混合物例如B2细胞群体单独地或与B3和/或B4或B4’细胞群体混合地用于制造用于治疗受试者的肾病的药剂的用途。在一些实施方案中,药剂还包含重组多肽例如生长因子、趋化因子或细胞因子。在其它实施方案中,药剂包含人肾来源的细胞群体。可使用提供的本文中描述的方法的任何变型分离、衍生或富集用于制造药剂的细胞。
根据常规方法将肾细胞制剂或其混合物或组合物配制为适合于给人类施用的药物组合物。通常,用于静脉内施用、动脉内施用或肾被膜内施用的组合物例如为无菌等渗缓冲水溶液中的溶液。必要时,组合物还可包括局部麻醉剂以缓和注射位置上的任何疼痛。一般地,可分开地或混合在一起以单位剂量形式(例如,作为密封于容器例如标示活性剂的量的安瓿中的冷冻保藏的浓缩物)提供成分。当将要通过输注施用组合物时,可利用含有无菌药物级水或盐水的输液瓶将其分散。当通过注射施用组合物时,可提供一安瓿的无菌注射用水或盐水,以便在施用之前混合成分。
药学上可接受的载体部分通过待施用的具体组合物以及通过用于施用组合物的具体方法来确定。因此,存在许多适当的药物组合物的制剂(参见,例如,Alfonso R Gennaro(编),Remington:The Science and Practice ofPharmacy,先前为Remington's Pharmaceutical Sciences,第20版,Lippincott,Williams&Wilkins,2003,通过引用整体并入本文)。通常将药物组合物配制为无菌的,大体上等渗的并且完全遵从美国食品和药物管理局的所有优质生产规范(Good Manufacturing Practice)(GMP)条例。
本发明的一个方面还提供了药物制剂,其包含本发明的肾细胞群体,例如单独的或与B3和/或B4或B4’细胞制剂组合的B2细胞群体,以及药学上可接受的载体。在一些实施方案中,制剂包含104至109个哺乳动物肾来源的细胞。
在一个方面,本发明提供了给有此需要的受试者提供一种或多种本文中描述的细胞群体的方法。在一个实施方案中,细胞群体的来源可以是自体的或同种异体的、同基因的(自体的或等基因的)及其任意组合。在其中来源不是自体的情况下,方法可包括施用免疫抑制剂。适当的免疫抑制药包括但不限于硫唑嘌呤、环磷酰胺、咪唑立宾、环孢素、他克莫司水合物、苯丁酸氮芥(chlorambucil)、氯苯扎利二钠、金诺芬、前列地尔、盐酸胍立莫司、biosynsorb、muromonab、阿来法塞、喷司他丁、达珠单抗、西罗莫司、麦考酚酸吗乙酯(mycophenolate mofetil)、eflonomide、巴利昔单抗(basiliximab)、链道酶α、bindarid、克拉屈滨、吡美莫司、伊洛白介素、西利珠单抗、依法珠单抗、依维莫司、阿尼莫司、加维莫单抗、法拉莫单抗、氯法拉滨、纳巴霉素、西利珠单抗、saireito、LDP-03、CD4、SR-43551、SK&F-106615、IDEC-114、IDEC-131、FTY-720、TSK-204、LF-080299、A-86281、A-802715、GVH-313、HMR-1279、ZD-7349、IPL-423323、CBP-1011、MT-1345、CNI-1493、CBP-2011、J-695、LJP-920、L-732531、ABX-RB2、AP-1903、IDPS、BMS-205820、BMS-224818、CTLA4-1g、ER-49890、ER-38925、ISAtx-247、RDP-58、PNU-156804、LJP-1082、TMC-95A、TV-4710、PTR-262-MG和AGI-1096(参见美国专利No.7,563,822)。本领域技术人员将理解其它适当的免疫抑制药。
本发明的治疗方法包括将分离的肾细胞群体或其混合物递送入个体。在一个实施方案中,细胞至期望有益的位置的直接施用是优选的。在一个实施方案中,可将本发明的细胞制剂或其混合物在递送媒介物中递送至个体。
有此需要的受试者还可通过将自体肾与从一种或多种富集的肾细胞群体和/或混合物或包含所述细胞群体的构建体分泌的产物体内接触来进行治疗。可通过使用/施用一组(a population of)来自细胞培养基例如条件培养基的分泌产物或通过植入能够在体内分泌产物的富集的细胞群体和混合物或构建体来实现将自体肾在体内与分泌产物接触的步骤。体内接触的步骤给自体肾提供了再生作用。
根据本说明书,许多用于将细胞和/或分泌产物施用给受试者的方法对于本领域技术人员来说是显然的。此类技术包括细胞至受试者的靶位置内的注射。可将细胞和/或分泌产物插入递送装置或媒介物,所述装置或媒介物通过注射入或植入受试者来促进引入。在某些实施方案中,递送媒介物可包括天然材料。在某些其它实施方案中,递送媒介物可包括合成材料。在一个实施方案中,递送媒介物提供模拟或适当地拟合入器官结构的结构。在其它实施方案中,递送媒介物在自然界中为流体样的。此类递送装置可包括用于将细胞和流体注射入接受者的身体的管,例如导管。在优选实施方案中,管额外地具有针,例如,注射器,通过其可将本发明的细胞在期望的位置上引入受试者。在一些实施方案中,哺乳动物肾来源的细胞群体被配制来利用导管(其中术语“导管”意欲包括任何各种用于将物质递送至血管的管状系统)施用至血管中。或者,可将细胞插入生物材料或支架(包括但不限于纺织品,例如编织物、织物、穗带(braid)、网丝(meshes)及非纺布(non-wovens)、有孔软片(perforated film)、海绵和泡沫以及珠粒,例如实心或多孔珠粒、微粒、纳米颗粒等(例如,Cultispher-S明胶珠粒-Sigma))或插在其上。可以多种不同的形式制备用于递送的细胞。例如,可将细胞悬浮于溶液或凝胶中。可将细胞与药学上可接受的载体或稀释剂混合,在所述载体或稀释剂中本发明的细胞保持活力。药学上可接受的载体和稀释剂包括盐水、缓冲水溶液、溶剂和/或分散介质。此类载体和稀释剂的用途在本领域是公知的。溶液优选为无菌的和流动的,并且通常为等渗的。优选,溶液在制造和贮存的条件下是稳定的并且通过使用例如对羟基苯甲酸、三氯叔丁醇、苯酚、抗坏血酸、硫柳汞等抵抗微生物例如细菌和真菌的污染作用。本领域技术人员将理解,用于递送本发明的细胞群体及其混合物的递送媒介物可包括上述特征的组合。
分离的肾细胞群体例如单独的或与B4’和/或B3混合的B2细胞群体的施用模式包括但不限于全身性、肾内(例如,肾实质)、静脉内或动脉内注射和直接至期望的活性位置上的组织的注射。待按照本发明使用的其它施用模式包括通过直接剖腹术、通过直接腹腔镜检查、经腹或经皮的单次或多次注射。待按照本发明使用的其它施用模式包括例如逆行输注和输尿管肾盂输注。手术施用法包括一步法例如但不限于肾部分切除术和构建体植入、肾部分切除术、髌骨部分切除术、利用网膜(omentum)±腹膜(peritoneum)的血管形成、多病灶活检针轨迹(multifocal biopsy needle track)(圆锥体或锥体至圆柱体)以及肾柱状置换(renal pole-like replacement),以及两步法包括例如用于再种(replanting)的类器官-内部生物反应器(organoid-internalbioreactor)。在一个实施方案中,通过相同途径同时递送细胞的混合物。在另一个实施方案中,将每一种包含受控混合物的细胞组合物分开地递送至特定的位置或通过特定方法同时或以时间上受控的方式,通过一种或多种本文中描述的方法递送至特定的位置。
可与细胞的活性例如EPO生成相关的现有信息确定,或从在临床前研究中进行的给药研究推断人的适当细胞植入剂量。根据体外培养和体内动物实验,可定量细胞的量,并且将所述量用于计算植入材料的适当剂量。或者,可监测患者以确定可进行额外的植入还是相应地减少植入的材料。.
可将一种或多种其它组分添加至本发明的细胞群体及其混合物中,包括选择的细胞外基质组分,例如本领域已知的一种或多种类型的胶原或透明质酸,和/或生长因子、富含血小板的血浆和药物。
本领域技术人员将理解适合于本文中描述的分泌产物的各种制剂和施用方法。
试剂盒
本发明还包括试剂盒,所述试剂盒包括本发明的聚合物基质和支架以及相关材料,和/或细胞培养基及使用说明书。使用说明书可以包括例如培养细胞或施用细胞和/或细胞产物的说明书。在一个实施方案中,本发明提供了包括本文中描述的支架和说明书的试剂盒。在另一个实施方案中,试剂盒包括用于检测标志物表达的试剂、用于药剂的使用的试剂(reagentsforuse ofthe agent)和使用说明书。该试剂盒还可用于测定植入或施用本文中描述的细胞群体、混合物或构建体后受试者的自体肾的再生预后的目的。试剂盒还可用于测定本文中描述的细胞群体、混合物或构建体的生物治疗功效。
报告
本发明的方法,当为了商业目的而被实施时,通常产生生成再生预后的报告或概要。本发明的方法将生成包括在本文中描述的细胞群体、混合物或构建体的任何施用或植入之前和之后再生的可能过程或结果的预测的报告。报告可包括关于与预后有关的任何指标的信息。本发明的方法和报告还可包括将报告存储在数据库中。或者,方法还可在数据库中生成受试者的记录和填充记录数据。在一个实施方案中,报告为纸媒报告,在另一个实施方案中,报告为听觉报告(auditory report),在另一个实施方案中报告为电子记录。预期报告被提供给医生和/或患者。报告的接受还可包括建立至包括数据和报告的服务器计算机的网络连接以及从服务器索要数据和报告。由本发明提供的方法还可以进行完全或部分自动化。
本说明书中引用的所有专利、专利申请和文献参考资料通过引用整体并入本文。
下列实施例仅被提供用于举例说明目的,并且无意以任何方式限定本发明的范围。
实施例
实施例1-生物响应性肾细胞的分离及表征
在成年雄猪(野猪(Sus scrofa))中具有贫血的特发性进行性慢性肾病(CKD)的病例提供了用于通过与年龄匹配的正常猪肾组织直接比较进行细胞组成的评估和表征的新鲜患病肾组织。收获时肾组织的组织学检查确认了特征在于严重慢性弥漫性间质纤维化和具有多病灶纤维化的新月体性肾小球肾炎(crescentic glomerulonephritis)的肾病。临床化学确认了氮血症(血尿素氮和血清肌酸酐的升高)和轻微贫血(血细胞比容的轻微减小和降低的血红蛋白水平)。从患病肾组织和正常肾组织分离细胞,扩增细胞,以及表征细胞。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图1中所示,Gomori’s Trichrome染色突显了与正常肾组织相比较患病肾组织的纤维化(由箭头标示的蓝色染色)。从正常和患病肾组织繁殖表达cubulin:兆蛋白并且能够进行受体介导的白蛋白转运的功能性肾细胞。表达红细胞生成素(EPO)的细胞也存在于培养物中并且被保留通过多次传代和冷冻/解冻周期。此外,分子分析确认了来自正常和患病组织的EPO表达细胞在体外通过EPO和其它缺氧调控的基因靶包括vEGF的HIF1α-驱动的诱导响应缺氧条件。通过利用胶原酶+分散酶(dispase)进行酶促消化从猪肾组织分离细胞,还通过进行简单机械消化和外植体培养在单独的实验中分离所述细胞。在第二代,将包含EPO表达细胞的外植体来源的细胞培养物经历大气(21%)和不同的缺氧(<5%)培养条件以确定对缺氧的暴露是否在EPO基因表达的上调中达到极点。正如啮齿类动物培养(参见实施例3),正常猪显示EPO基因的依赖于氧的表达和调控。令人惊讶地,尽管CKD猪的尿毒症/贫血状态(血细胞比容<34,肌酸酐>9.0),但可容易地从组织分离和繁殖EPO表达细胞,并且EPO基因的表达仍然受缺氧调控,如Presnell等人WO/2010/056328(通过引用整体并入本文)的图2中显示的。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图3中显示的,繁殖的培养物中的细胞显示自组织成肾小管状结构的能力。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图4中显示的,通过观察培养的细胞对缀合有FITC的白蛋白的受体介导的吸收确认功能性肾小管细胞在培养物(在第3代)中的存在。绿点(通过细白色箭头标示的)表示通过肾小管细胞特异性受体兆蛋白和立方蛋白介导的内吞的缀合有荧光素的白蛋白,这表明蛋白质被功能性肾小管细胞重吸收。蓝色染色(通过粗白色箭头标示的)为Hoescht染色的细胞核。综合起来,这些数据表明可从猪肾组织,甚至在因CKD而已严重受损的肾组织中分离和繁殖功能性肾小管和内分泌细胞。此外,这些发现支持基于自体细胞的治疗产物用于治疗CKD的进步。
此外,从正常成年人肾酶促分离EPO生成细胞(如实施例1中显示的)。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图5中显示的,分离方法导致在分离后比初始组织中更多的相对EPO表达。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图6中显示的,可能在培养物中维持人EPO生成细胞,保留EPO基因表达。在平面组织培养处理的塑料或已用一些细胞外基质例如纤连蛋白或胶原包被的塑料上培养/繁殖人细胞,并且发现所有细胞随时间过去支持EPO表达。
实施例2-特定生物反应性肾细胞的分离及富集
肾细胞的分离:简而言之,从商业供应商(Hilltop Lab Animals Inc.)获得成批的10只2周龄雄性路易斯大鼠的肾,将其在约4℃的温度下在Viaspan保存介质中装载过夜。在生物安全工作厨(BSC)中进行本文中描述的所有步骤以保持无菌性。将肾在汉克平衡盐溶液(HBSS)中洗涤3次以漂洗掉Viaspan保持介质。在第三次洗涤后,除去剩下的肾被膜以及任何剩下的间质组织(stromaltissue)。还使用显微解剖技术除去肾大盏。随后使用无菌解剖刀将肾细细地切碎成浆。随后将浆转移至50ml尖底离心管并且称重。收集少量样品的RNA,将其置于无RNA酶的无菌1.5ml微量离心管中,在液氮中快速冷冻(snap frozen)。冷冻后,随后将其转移至-80度的冰箱中直至分析。10只少年肾的组织重量约等于1克。基于批次的重量,调整消化介质以递送20ml消化介质/1克的组织。用于该方法的消化缓冲液包含4个单位的HBSS中的分散酶1(Stem Cell Tech)、300个单位/ml的胶原酶IV型IV(Worthington)和5mM CaCl2(Sigma)。
将适当体积的预加温的消化缓冲液添加至管中,随后密封管,将其在振荡器上置于37℃的培养箱中进行20分钟。第一消化步骤除去许多红细胞并且增强剩余组织的消化。20分钟后,取出管,将其置于BSC中。使组织在管的底部静置,随后除去上清液。随后用等于起始体积的新鲜消化缓冲液补充剩余的组织。再次将管在振荡器上置于37℃的培养箱中进行另外30分钟。
30分钟后,用移液器将消化混合物转移通过70μm细胞过滤器(cellstrainer)(BD Falcon),进入等体积的中和缓冲液(DMEM w/10%FBS)中以终止消化反应。随后通过以300xg离心5分钟来洗涤细胞悬浮物。离心后,随后将沉淀重悬浮于20ml KSFM培养基中,获取样品以进行细胞计数和使用台盼蓝拒染法进行活力评估。计算细胞计数后,收集100万个细胞以提取RNA,将细胞于PBS中洗涤,然后于液氮中快速冷冻。将剩余的细胞悬浮物置于50ml的KSFM培养基中,通过以300xg离心5分钟再次洗涤。洗涤后,以1500万个细胞/ml的KSFM的浓度重悬浮细胞沉淀。
随后将5毫升肾细胞悬浮物添加至15ml尖底离心管(BD Falcon)中的5ml30%(w/v)
中,随后通过倒转6次进行混合。这形成了15%(w/v)的
的终混合物。倒转后,用1mL PBS小心地将管分层。将管在无制动装置的情况下以800xg离心15分钟。离心后,取出管,在混合梯度的顶部形成细胞带(cell band)。还存在包含红细胞、死亡细胞和一小群活细胞(包括一些小的颗粒性更低的细胞(small less granular cell)、一些红细胞生成素生成细胞、一些肾小管细胞和一些内皮细胞)的沉淀。使用移液器小心地取出条带,将其转移至另一个15ml尖底离心管中。通过抽吸移取梯度介质,通过重浮于1ml KSFM中收集沉淀。随后重组条带细胞和沉淀细胞,使用KSFM将其重悬浮于收集的条带体积的至少3个稀释物中,通过以300xg离心5分钟进行洗涤。洗涤后,将细胞重悬浮于20ml KSFM中,收集用于细胞计数的样品。在使用台盼蓝拒染法计算细胞计数后,将集100万个细胞用以提取RNA样品,将其在PBS中进行洗涤,随后于液氮中快速冷冻。
使用密度梯度分离进行的增强特定生物活性肾细胞的活力和培养性能 的预培养‘净化(Clean-up)’:为了生成用于培养的干净的有活力的细胞群体,首先如在上文的“肾细胞分离”中所述生成细胞悬浮物。作为任选步骤和作为净化初始制剂的方法,将悬浮于无菌等渗缓冲液中的共达1亿个细胞与等体积的在室温下从原液60%(w/v)碘克沙醇制备的30%
(从而生成终15%w/v Optiprep溶液)以1:1充分混合,通过倒转6次充分混合。混合后,将1ml PBS缓冲液在混合细胞悬浮物顶部小心地分层。随后将梯度管小心地装载入离心机,确保适当的平衡。将梯度管在无制动装置的情况下在25°C下以800xg离心15分钟。净化的细胞群体(包含有活力的功能性集合管细胞、肾小管细胞、内分泌细胞、肾小球细胞和血管细胞)在6%与8%(w/v)
之间分段,相应于1.025-1.045g/mL的密度。其它细胞和碎片沉淀至管底部。
肾细胞培养:随后将组合的细胞条带与沉淀以30,000个细胞/cm2的细胞浓度于150ml DMEM(高葡萄糖)/KSFM(包含5%(v/v)FBS,2.5μg EGF,25mg BPE,1X ITS(胰岛素/转铁蛋白/亚硒酸钠培养基补充物)和抗生素/抗真菌素)的50:50混合物中涂铺在组织培养处理的三瓶(triple flask)(NuncT500)或等同物中。将细胞在潮湿的5%CO2培养箱中培养2-3天,从而为细胞提供21%的大气氧水平。两天后,改变培养基,将培养物置于由CO2/氮气多气体潮湿培养箱(Sanyo)提供的2%氧水平环境中进行24小时。在24小时的孵育后,用60ml1XPBS洗涤细胞,随后40ml0.25%(w/v)胰蛋白酶/EDTA(Gibco)移取细胞。移取后,用等体积的含10%FBS的KSFM中和细胞悬浮物。随后通过以300xg离心10分钟洗涤细胞。洗涤后,将细胞重悬浮于20ml KSFM中,将其转移至50ml圆锥管中,收集样品以进行细胞计数。在使用台盼蓝拒染法测定活细胞计数后,收集100万个细胞以提取RNA样品,将其在PBS中洗涤,然后于液氮中快速冷冻。将细胞再次于PBS中洗涤,通过以300xg离心5分钟来收集细胞。将已洗涤的细胞沉淀以3750万个细胞/ml的浓度重悬浮于KSFM中。
使用密度不连续梯度分离来富集特定生物活性肾细胞:使用从多个浓度w/v的碘克沙醇(Optiprep)制备的密度不连续梯度将主要由肾小管细胞组成但包含其它细胞类型(集合管、肾小球、血管和内分泌)的小亚群的培养的肾细胞分成它们的组分亚群。将培养物置于缺氧环境中进行达到24小时,然后收获并且用于梯度。通过在无菌的15mL圆锥管中在使4种不同的密度介质在彼此的顶上分层,将具有最高密度的溶液置于底部并且将密度最小的溶液置于顶部来生成不连续梯度。将细胞施用至不连续梯度的顶部,然后离心,这导致群体基于尺寸和粒度分离成多个条带。
简而言之,使用KFSM介质作为稀释剂制备7、11、13和16%
(60%w/v碘克沙醇)的密度。例如:对于50ml7%(w/v)
将5.83ml原液60%(w/v)碘克沙醇添加至44.17ml的KSFM介质中,通过倒转充分混合。将通过管道连接至无菌毛细管的装载有无菌L/S16Tygon蠕动泵(Master Flex L/S)设置至每分钟2ml的流速,将各自2mL的4种溶液装载入无菌的15mL圆锥管,始于16%的溶液,然后13%的溶液,11%的溶液和7%的溶液。最后,将2mL的含有7500万个培养的啮齿类动物肾细胞的细胞悬浮物装载在不连续梯度的顶部(已如上文的‘肾细胞培养’中所述生成的悬浮物)。重要地,当泵开始递送梯度溶液至管时,小心地使流体以45°角缓慢地沿管的侧面流下以确保在梯度的每一层之间形成适当的界面。随后将载有细胞的不连续梯度在无制动装置的情况下以800xg离心20分钟。离心后,小心地将管取出以不扰乱每一界面。产生5个不同的细胞级分(4条带和沉淀)(B1-B4,+沉淀)(参见图1A,左圆锥管)。使用无菌一次性球吸管或5ml移液器收集每一个级分,在表型和功能上表征所述级分(参见Presnell等人WO/2010/056328的实施例10)。当将啮齿类动物肾细胞悬浮物在分离后立即经历不连续梯度分级分离时,富集了肾小管细胞(和包含一些来自集合管的细胞)的级分划分至1.062-1.088g/mL的密度。相反地,当在离体培养后进行密度梯度分离时,富集了肾小管细胞(和包含一些来自集合管的细胞)的级分划分至1.051-1.062g/mL的密度。类似地,当将啮齿类动物肾细胞悬浮物在分离后立即经历不连续梯度分级分离时,富集了红细胞生成素生成细胞、肾小球足细胞和血管细胞的级分(“B4”)在1.025-1.035g/mL的密度上分离。相反地,当在离体培养后进行密度梯度分离时,富集了红细胞生成素生成细胞、肾小球足细胞和血管细胞的级分(“B4”)在1.073-1.091g/mL的密度上分离。重要地,通过将培养物暴露于缺氧培养环境(缺氧被定义为小于21%(大气)的氧水平)(进行约1小时的时期至24小时的时期)来增强细胞至“B2”和“B4”级分的培养后分布,然后进行收获和不连续梯度法(关于对条带分布的缺氧影响的其它详细内容提供于实施例3中)。
通过用3x体积的KSFM稀释来洗涤每一个条带,将其充分混合,以300xg离心5分钟。将沉淀重悬浮于2ml KSFM中,使用台盼蓝拒染法和血细胞计数器计数活细胞。收集100万个细胞以提取RNA样品,在PBS中洗涤细胞,然后于液氮中快速冷冻。将来自B2和B4的细胞用于至尿毒症和贫血雌大鼠(在Charles River实验室通过两步5/6肾切除术产生)内的移植研究。利用定量实时PCR确认B4的特征,包括氧调控的红细胞生成素和vEGF的表达,肾小球标志物(去氧肾上腺素、podocin)的表达和血管标志物(PECAM)的表达。通过E-钙粘蛋白、N-钙粘蛋白和水通道蛋白-2的表达确认‘B2’级分的表型。参见Presnell等人WO/2010/056328的图49a和49b。
因此,不连续梯度策略的使用不仅允许富集了红细胞生成素生成细胞的罕见群体(B4),而且还是生成相对富集的功能性肾小管细胞的级分(B2)的方法(参见Presnell等人WO/2010/056328的图50及51)。不连续梯度策略还允许EPO生成细胞和肾小管细胞与红细胞、细胞碎片和其它潜在不期望的细胞类型例如大细胞聚集体和某些类型的免疫细胞分离。
不连续梯度法可能需要在使用的特定密度方面进调整以提供细胞组分的良好分离。调整梯度的优选方法包括1)运行其中从梯度底部的高密度(例如,16-21%Optiprep)至梯度顶部的相对低密度(例如,5-10%)的连续密度梯度。可按照标准方法(Axis Shield)利用任何标准密度梯度溶液(Ficoll、Percoll、蔗糖、碘克沙醇)制备连续梯度。将目标细胞装载至连续梯度上,在无制动装置的情况下以800xG离心20分钟。具有相似尺寸和粒度的细胞倾向于在梯度中一起分离,以便可测量梯度中的相对位置,还测量该位置上的溶液的比重。因此,随后,可衍生聚集在基于它们在特定条件下横断密度梯度的能力的特定细胞群体的分离的确定的不连续梯度。当从不健康对健康组织分离细胞时,或当从不同物种分离特定细胞时,可能需要应用这样的最优化。例如,对犬和人肾细胞培养物进行最优化,以确保在大鼠中鉴定的特定B2和B4亚群可从其它物种分离。用于分离啮齿类动物B2和B4亚群的最佳梯度由7%、11%、13%和16%(w/v)的Optiprep组成。用于分离犬B2和B4亚群的最佳梯度由7%、10%、11%和16%(w/v)Optiprep组成。用于分离人B2和B4亚群的最佳梯度由7%、9%、11%、16%(w/v)组成。因此,用于从培养的啮齿类动物、犬和人肾细胞局限化B2和B4的密度范围提供于表2.1中。
表2.1.物种密度范围
实施例3–在梯度之前进行低氧培养影响条带分布、组成和基因表达
为了测定氧条件对原型B2和B4的分布和组成的影响,将来自不同物种的新肾细胞制剂暴露于不同氧条件,然后进行梯度步骤。使用用于大鼠细胞分离和培养起始的标准方法(如上文中所描述的)建立啮齿类动物新生肾增强(neo-kidney augmentation)(NKA)细胞制剂(RK069)。将所有培养瓶在21%(大气)氧条件下培养2-3天。改变培养基,随后将一半培养瓶重新放置至设置至2%的氧的控氧的培养箱中,同时将剩余培养瓶在21%的氧条件下保持另外24小时。随后使用上文中描述的标准酶促收获法来从每一组条件收获细胞。按照标准方法制备不连续梯度,单独地收获“含氧量正常的”(21%氧)和“缺氧”(2%氧)培养物,将其并行地用于相同的不连续梯度(图2)。虽然在两个条件下都生成4个条带和沉淀,但在21%和2%的氧培养的批次中,细胞在整个梯度上的分布是不同的(表1)。具体地B2的产率因缺氧而增加,伴随B3的减少。此外,B4-特异性基因(例如红细胞生成素)的表达在从缺氧培养的细胞生成的所得梯度中增强(Presnell等人WO/2010/056328的图73)。
使用用于狗细胞分离和培养的标准方法(与啮齿类动物分离和培养法类似)建立犬NKA细胞制剂(DK008),如上文中所描述的。将所有培养瓶在21%(大氧)的氧条件下培养4天,随后将一亚组培养瓶转移至缺氧(2%),进行24小时,同时将一亚组培养瓶维持在21%。随后,收获每一组培养瓶,使其经历相同的不连续梯度(图3)。与大鼠结果(实施例1)相似,缺氧培养的狗细胞与大气氧培养的狗细胞在整个梯度中差异分布(表3.1)。再次地,B2的产率在进行梯度之前因缺氧暴露而增加,同时伴随至B3中的分布减少。
表3.1.
上述数据显示对缺氧的梯度前暴露增加B2的组成以及特定的特化细胞(红细胞生成素生成细胞、血管细胞和肾小球细胞)至B4的分布。因此,如上所述,进行缺氧培养,然后进行密度梯度分离是跨物种生成‘B2’和‘B4’细胞群体的有效方法。
实施例4-从人肾分离肾小管/肾小球细胞
利用详尽描述的酶促分离法从正常人肾组织分离和繁殖肾小管和肾小球细胞。通过上述梯度法,在培养后离体富集了肾小管细胞级分。如Presnell等人WO/2010/056328(通过引用整体并入本文)的图68中显示的,表型属性在分离和繁殖中得到维持。通过标记的白蛋白的吸收评估的肾小管细胞功能在反复传代和低温保藏后也得到保持。Presnell等人WO/2010/056328(通过引用整体并入本文)的图69显示当在3D动态培养中培养富集了肾小管细胞的群体和消耗了肾小管细胞的群体时,在富集了肾小管细胞的群体中表现出肾小管标志物钙粘蛋白的表达的显著增加。这确认了当在3D动态环境中培养细胞时,可维持超过初始富集的肾小管细胞的富集。
实施例5-通过流式细胞术进一步分离EPO生成细胞
将上文实施例2中描述的肾细胞的相同培养群体经历流式细胞术分析以检查前向散射和侧向散射。小的颗粒性更低的EPO生成细胞群体是可辨别的(8.15%)并且可使用流式细胞仪的分选能力通过小的颗粒性更低的群体的阳性选择来分离(参见Presnell等人WO/2010/056328(通过引用整体并入本文)的图70)。
实施例6-从自身免疫性肾小球肾炎患者样品分离的肾细胞的未分级的
混合物的表征
如上所述,从自身免疫性肾小球肾炎患者样品分离肾细胞的未分级混合物。为了测定从肾组织分离和扩增的肾细胞的特定亚群的无偏表型组成,将定量实时PCR(qrtpcr)分析(Brunskill等人,同上,2008)用于鉴定细胞亚级分间差异细胞类型特异性和途径特异性基因表达模式。如表6.1中显示的,HK20为自身免疫性肾小球肾炎患者样品。表6.2显示从HK20产生的细胞缺少肾小球细胞,如通过qRTPCR测定的。
实施例7-从局灶性节段性肾小球硬化症的病例分离的治疗上相关的肾
生物活性细胞群体的遗传谱表征
为了测定从肾组织分离和扩增的肾细胞的特定亚群的无偏基因型组成,利用定量实时PCR(qrtpcr)分析(Brunskill等人,同上,2008)来鉴定细胞级分间差异细胞类型特异性和途径特异性基因表达模式。评估收获时人制剂HK023(来源于其中大部分肾小球已被破坏的局灶性节段性肾小球硬化症(FSGS)的病例)的肾小球细胞在B4级分中的存在。简而言之,从使用标准活组织检查法从肾获取的(4)核心活检组织的每一个单独地产生(Aboushwareb等人,同上,2008)和维持未分级的(UNFX)培养物。在UNFX离体传代(2)后,收获细胞,将其经历密度梯度法(如在实施例8中一样)以产生亚级分,包括亚级分B4,基于在啮齿类动物、狗和其它人样品中进行的工作,已知其富集了内分泌细胞、血管细胞和肾小球细胞。
单独地从HK023的每一个独立的UNFX样品收集B4级分,所述级分表现为具有1.063-1.091g/mL的浮力密度的独特细胞条带。从每一个样品分离RNA,通过定量实时PCR检查其的Podocin(肾小球细胞标志物)和PECAM(内皮细胞标志物)的表达。如从来自严重FSGS的病例的活组织检查生成的样品所预期的,podocin(+)肾小球细胞在B4级分中的存在与podocin在2/4的样品中不能被检测到不一致。相反地,PECAM+血管细胞始终存在于4/4的活组织检查起始的培养物的B4级分中。因此,可在1.063-1.091g/mL密度范围上,甚至从具有严重疾病状态的人肾分离B4级分。
表7.1用于检测从FSGS的病例分离的亚级分B4中的肾小球细胞和血管细胞的Podocin和PECAM的表达
此外,如表7.2中显示的,人样品(HK018)在密度梯度离心后显示通过qRTPCR未检测到的Podocin(肾小球标志物)。
表7.2.B2&B4’的HK018梯度后基因表达的表征
基因 |
RQ(Unfx) |
RQ(B2) |
RQ(B4) |
B2/B4 |
Podocin |
1 |
ND |
ND |
- |
VegF |
1 |
1.43 |
1.62 |
0.9 |
Aqp1 |
1 |
1.7 |
1.2 |
1.4 |
Epo |
1 |
0.9 |
0.5 |
1.8 |
立方蛋白 |
1 |
1.2 |
0.7 |
1.7 |
Cyp |
1 |
1.2 |
1.4 |
0.85 |
Ecad |
1 |
1.15 |
0.5 |
2.3 |
Ncad |
1 |
1.02 |
0.72 |
1.4 |
实施例8-使用荧光激活细胞分选术(FACS)富集/消耗有活力的肾细胞
类型
可使用荧光激活细胞分选术(FACS)从分离的原代肾组织富集一种或多种分离的肾细胞,和/或消耗一种或多种特定肾细胞类型。
试剂:70%乙醇;洗涤缓冲液(PBS);50:50肾细胞培养基(50%DMEM高葡萄糖):50%角质细胞-SFM;台盼蓝0.4%;针对靶肾细胞群体例如CD31(对于肾内皮细胞)和去氧肾上腺素(对于肾的肾小球细胞)的第一抗体。匹配的同种型特异性荧光第二抗体;染色缓冲液(0.05%的PBS中的BSA)。
方法:在进行清洁生物安全工作厨(BSC)的标准方法后,可从T500T/C处理的培养瓶获得来自原代分离的肾细胞或培养的细胞的单细胞悬浮物,将其重悬浮于肾细胞培养基中并且置于冰上。随后进行细胞计数,使用台盼蓝拒染法测定活力。为了从异源群体肾细胞富集/消耗例如肾小球细胞或内皮细胞,获得具有至少70%的活力的10至50e6个活细胞。随后以1μg/0.1ml的染色缓冲液/1x106个细胞(必要时滴度)的起始浓度利用对于靶细胞类型是特异性的第一抗体染色肾细胞的异源群体。可缀合(例如CD31PE(对于肾内皮细胞是特异性的))或不缀合(例如去氧肾上腺素(对于肾的肾小球细胞是特异性的))靶抗体。
随后在冰上或在4℃下避光染色细胞,进行30分钟。30分钟的孵育后,通过以300xg离心5分钟洗涤细胞。随后将沉淀重悬浮于PBS或染色缓冲液中,这取决于是否需要缀合的同种型特异性第二抗体。如果用缀合有荧光染料的第一抗体标记细胞,则将细胞重悬浮于2ml PBS每10e7个细胞,然后继续进行FACS aria或等同的细胞分选仪。如果不用缀合有荧光染料的抗体标记细胞,则以1ug/0.1ml/1e6个细胞的起始浓度用缀合有荧光染料的同种型特异性第二抗体标记细胞。
随后在冰上或在4℃下避光染色细胞,进行30分钟。在30分钟的孵育后,通过以300xg离心5分钟洗涤细胞。离心后,将沉淀以5e6/ml的PBS的浓度重悬浮于PBS中,随后将4ml每12x75mm转移至无菌试管中。
按照制造商的说明书(BD FACs Aria User Manual)准备用于活细胞无菌分选的FACs Aria。将样品管装载至FACs Aria中,在获取开始后调整PMT电压。将门拉下以使用特定波长,利用荧光强度选择肾特异性细胞类型。将另一个门拉下以选择阴性群体。在已将期望的门拉下以将阳性靶群体和阴性群体封入后,使用制造商的说明书分选细胞。
将阳性靶群体收集在一个15ml圆锥管中,将阴性群体收集在另一个装有1ml肾细胞培养基的15ml圆锥管中。收集后,利用流式细胞术分析每一个管的样品以测定纯度。通过以300xg离心5分钟洗涤收集的细胞,将沉淀重悬浮于肾细胞培养基中以用于进一步分析和实验。
实施例9-使用磁性细胞分选术富集/消耗肾细胞类型
可从分离的原代肾组织富集一种或多种分离的肾细胞和/或消耗一种或多种特定的肾细胞类型。
试剂:70%乙醇;洗涤缓冲液(PBS);50:50肾细胞培养基(50%DMEM高葡萄糖):50%角质细胞-SFM;台盼蓝0.4%;电泳缓冲液(PBS,2mMEDTA,0.5%BSA);漂洗缓冲液(PBS,2mM EDTA);清洁液(70%v/v乙醇);Miltenyi FCR封闭试剂;对于IgG同种型靶抗体例如CD31(PECAM)或去氧肾上腺素是特异性的Miltenyi微珠或第二抗体。
方法:在进行清洁生物安全工作厨(BSC)的标准方法后,获得来自原代分离物或培养物的肾细胞的单细胞悬浮物,将其重悬浮于肾细胞培养基。使用台盼蓝拒染法测定细胞计数和活力。
为了从异源群体肾细胞富集/消耗例如肾小球细胞或内皮细胞,获得具有至少70%的活力的至少10e6至高达4e9个活细胞。
基于目标靶细胞测定富集/消耗法的最佳分离。为了富集低于10%的靶频率,例如肾小球细胞(使用去氧肾上腺素),使用Miltenyi autoMACS,或等同物,仪器程序POSSELDS(灵敏模式中的双阳性选择)。为消耗大于10%的靶频率,使用Miltenyi autoMACS,或等同物,仪器程序DEPLETES(灵敏模式中的消耗)。
通过在15ml尖底离心管中添加1μg/10e6个细胞/0.1ml的含0.05%BSA的PBS,然后在4℃下孵育15分钟,利用靶特异性第一抗体例如去氧肾上腺素rb多克抗体(对于肾小球细胞)标记活细胞。
标记后,通过添加1-2ml缓冲液每10e7个细胞,然后以300xg离心5分钟洗涤细胞以除去未结合的第一抗体。洗涤后,以1ug/10e6/0.1ml的含0.05%BSA的PBS加入同种型特异性第二抗体例如鸡抗-兔PE,然后在4℃下孵育15分钟。
孵育后,通过添加1-2ml缓冲液每10e7个细胞,然后以300xg离心5分钟洗涤细胞以除去未结合的第二抗体。除去上清液,将细胞沉淀重悬浮于60μl缓冲液每10e7个总细胞,然后添加20μl FCR封装试剂每10e7个总细胞,随后将其充分混合。添加20μl的直接MACS微珠(例如抗-PE微珠),混合,随后在4℃下孵育15分钟。
孵育后,通过添加10-20x标记体积的缓冲液,然后以300xg离心细胞悬浮物5分钟来洗涤细胞,将细胞沉淀重悬浮于500μl-2ml缓冲液每10e8个细胞。
按照制造商的说明书,清洁和装填(prime)autoMACS系统以准备使用autoMACS进行磁性细胞分离。将新的无菌收集管置于排出口下。选择autoMACS细胞分离程序。对于选择,使用POSSELDS程序。对于消耗,选择DEPLETES程序。
将标记的细胞插在吸收口(uptake port)上,随后开始程序。在细胞选择或消耗后,收集样品,将其置于冰上直至使用。利用流式细胞术验证消耗或选择的样品的纯度。
实施例10-可从正常和患慢性病的肾组织分离和繁殖具有治疗潜能的
细胞
本研究的目的是通过高含量分析(HCA)测定人NKA细胞的功能特征。高含量成像(High-content imaging)(HCI)提供了使用两个或更多个跨许多样品的荧光探针(多路技术(multiplexing))对多个亚细胞事件的同时成像。高含量分析(HCA)提供了对高含量成像中捕获的多个细胞参数的同时定量测量。简而言之,使用标准活组织检查法从从5个患有晚期慢性肾病(CKD)的人肾和3个非CKD人肾获取的核心活检组织独立地生成(Aboushwareb等人,同上,2008)和维持未分级(UNFX)培养物。在UNFX离体传代(2)后,收获细胞,将其经历密度梯度法(如实施例2中的一样)以生成亚级分,包括亚级分B2、B3和/或B4。
从非CKD和CKD人供体获取人肾组织,如表10.1中概述的。图4显示HK17和HK19样品的组织病理学特征。从所有非CKD(3/3)和CKD(5/5)肾建立离体培养物。确定目标区域(regions of interest)(ROI)的人NKA细胞中的白蛋白转运的高含量分析(HCA)示于图5(人NKA细胞中的白蛋白转运的HCA)。来源于非CKD和CKD肾的NKA细胞中白蛋白转运的定量比较示于图6中。如图6中显示的,在CKD来源的NKA培养物于中白蛋白转运未被削弱。富集了肾小管细胞的B2与消耗了肾小管细胞的B4亚级分之间的标志物表达的比较分析示于图7(CK8/18/19)中。
富集了肾小管细胞的B2与消耗了肾小管细胞的B4亚级分之间的白蛋白转运的比较功能分析示于图8中。亚级分B2富含近端肾小管细胞,从而显示增强的白蛋白转运功能。
白蛋白吸收:用不含酚红、无血清的含有1X抗真菌素/抗生素和2mM谷氨酰胺的低葡萄糖DMEM(pr-/s-/lg DMEM)替换在24孔胶原IV板(BDBiocoatTM)中生长至汇合的细胞的培养基,进行18-24小时。在即将进行测定时,利用pr-/s-/lg DMEM+10mM HEPES、2mM谷氨酰胺、1.8mM CaCl2和1mM MgCl2洗涤细胞,并且用其孵育细胞30分钟。将细胞暴露于25μg/mL缀合有罗丹明的牛白蛋白(Invitrogen),进行30分钟,然后用冰冷PBS洗涤细胞以终止胞吞作用,立即用含25μg/mL赫斯特细胞核染料的2%多聚甲醛固定细胞。对于抑制实验,在添加白蛋白之前10分钟,添加1μM受体相关蛋白(RAP)(Ray Biotech,Inc.,Norcross GA)。利用BD PathwayTM855High-Content BioImager(Becton Dickinson)(参见Kelley等人Am JPhysiol Renal Physiol.2010年11月;299(5):F1026-39.2010年9月8日电子出版)进行显微成像和分析。
综上所述,HCA产生细胞水平数据并且可显示不能通过其它测定即基因或蛋白质表达检测的群体动态(populations dynamics)。用于测量白蛋白转运功能的可计量的离体HCA测定(HCA-AT)可用于将人肾的肾小管细胞表征为人NKA原型的组分。HCA-AT使得能够进行细胞功能的比较评估,从而显示具有白蛋白转运能力的细胞保留在来源于人CKD肾的NKA培养物中。还显示了NKA培养物的特定亚级分B2和B4在表型和功能上与代表具有增强的白蛋白转运活性的富集了肾小管细胞的级分的B2显著不同。来自人CKD的B2细胞亚群在表型和功能上与在体内显示功效(如上显示的)的啮齿类动物B2细胞类似。
实施例11-作为肾再生的预测器的标志物表达
本研究涉及在利用治疗性生物活性的原代肾细胞亚群治疗的5/6肾切除的大鼠中作为肾再生的预测器的干细胞和祖细胞标志物的表达。NKA治疗籍以增强肾功能的背后机制将被表征。我们关于NKA治疗的作用机制的研究涉及细胞间信号转导、移植和纤维化途径。本工作聚焦在NKA治疗可如何增强器官的固有再生能力-可能通过动员肾干细胞。我们假定在NKA-治疗的5/6NX大鼠中观察到的肾功能的延长的存活和增强与特定干细胞标志物的分子表达相关。
通过使用CKD的大鼠5/6肾切除模型,本研究利用分子测定来评估大鼠的5/6肾切除的肾内的驻留干细胞和祖细胞响应利用明确的治疗性生物活性的原代肾细胞群体的直接注射的动员。已观察到该基于细胞的疗法与关键干细胞标志物CD24、CD133、UTF1、SOX2、LEFTY1和NODAL在转录物和蛋白质水平上的上调特异性相关。到注射后1周检测到上调,到注射后12周上调达到峰值。干细胞和祖细胞标志物的激活与相对于未治疗的肾切除对照增加的存活率和血清生物标志物的显著增加相关。
材料和方法
从大鼠分离原代肾细胞群体。如先前所描述的(Aboushwareb等人,同上,2008;Presnell等人,2009FASEB J23:LB143),从大鼠分离原代肾细胞群体。
原位研究设计和分析。原代肾细胞群体的分离(Presnell等人Tissue EngPart C Methods.2010年10月27日[先于印刷的电子出版])和在CDK的5/6肾切除的啮齿类动物模型中评估原代肾细胞亚群的生物活性的体内研究(Kelley等人,同上,2010)的详细描述。在其它地方公布了原代肾细胞的富集肾小管细胞的亚群在慢性肾病的啮齿类动物模型中提高了存活率并且增强了肾功能。在本研究中,尸检时从用B2(NKA#1)或B2+B4混合物(NKA#2)处理的大鼠分离组织,将其与肾切除的大鼠(Nx)和经历假手术的非肾切除的大鼠(对照)相比较。在图9和11以及表11.1中,汇集来自NKA#1和NKA#2处理的大鼠的数据。通过分析每周和尸检前从研究的大鼠抽取的血液样品获得全身性数据。
表11.1显示假处理的动物(对照),n=3;nx对照(Nx),n+3;用B2细胞(NKA#1)处理的动物,n=7;B2+B4细胞(NKA#2)处理的动物;n=7的存活数据。在研究结束时(23-24周)没有一只Nx动物留下。NKA处理的动物具有与未处理的Nx对照相比较更优的存活率。
表11.1
|
早期 |
中期 |
研究结束时 |
处理组 |
1周 |
12-13周 |
[23-24周] |
对照 |
2/3* |
2/2 |
2/2 |
NX |
2/3* |
1/2 |
0/1 |
NKA#1 |
5/7** |
3/7** |
1/3** |
NKA#2 |
5/7** |
3/7** |
3/3 |
*在预定的时间点处死1只动物以获取组织
**在预定的时间点处死2只动物以获取组织
RNA分离、cDNA合成和qRT-PCR。如下从包埋在最佳切削温度(optimum cutting temperature)(OCT)冷冻培养基中的组织分离RNA:将组织块置于室温下,除去过量OCT,随后将组织置于PBS中以使其完全解冻和除去残留OCT,将组织在PBS中洗涤3次,随后进行粗切,将其等分至微量离心管中。随后使用研杵将等分的组织研磨成粉末,使用RNeasy PlusMini试剂盒(Qiagen,Valencia CA)提取RNA。通过分光光度法测定RNA完整性,使用
VILO
TM cDNA合成试剂盒(Invitrogen,Carlsbad CA)从一个体积的RNA(相当于1.4μg)生成cDNA。在cDNA合成后,通过添加200μl diH
2O使终体积达到240μl来以1:6稀释每一个样品。使用来自ABI和ABI-Prism7300实时PCR系统(Applied Biosystems,Foster City CA)的编目的引物(catalogued primer)和探针通过定量实时PCR(qRT-PCR)检查靶转录物的表达水平。使用
基因表达预混合物(ABI,Cat#4369016)进行扩增,将肽基脯氨酰异构酶B(PPIB)用作内源对照。
qRT-PCR反应:10μl预混合物(2X),1μl引物和探针(20X),9μl cDNA,20μl总体积/反应。使用
引物和探针如下建立每一个反应。
蛋白质印迹。将包埋在OCT冷冻培养基中的冷冻的完整肾组织用于蛋白质样品收集。如上所述除去OCT,将所有组织在由50mM Tris(pH8.0)、120mM NaCl、0.5%NP40和蛋白酶抑制剂混合物(Roche Applied Science,Indianapolis IN)组成的缓冲液中进行裂解。在摇动的条件下在室温下进行裂解15分钟,随后以13,000RPM离心10分钟。收集所有上清液,利用Bradford测定法测定蛋白质浓度。通过将30μg蛋白质每样品添加至
Novex10%Bis-Tris凝胶(Invitrogen)的每一个孔中进行SDS PAGE凝胶电泳。将凝胶在200V下于MES电泳缓冲液(Invitrogen)中电泳40分钟。随后使用I-Blot系统(Invitrogen)将蛋白质转移至硝酸纤维素滤膜,用15mL4%w/v的溶解于含有0.1%Tween-20(TBS-T)(Sigma,St.Louis,MO)的Tris缓冲盐溶液中的低脂奶在室温下封闭2小时。利用下列抗体(将每一种抗体稀释于5mL含有2%w/v低脂奶的TBS-T中)在室温下探测膜过夜。(抗-人Lefty-A长及短同种型(R&D systems MAB7461);抗-人、小鼠及大鼠CD133(Abcam AB19898);抗-人及小鼠UTF1(Millipore MAB4337);抗-人NODAL(Abcam AB55676);抗-人及大鼠CDH11(OB钙粘蛋白)(ThermoScientific MA1-06306);抗-大鼠CD24(Becton Dickinson))。用TBS-T洗涤膜3次,每次10分钟,随后在室温下用稀释于(1:60,000)含有2%w/v的低脂奶的TBS-T中的适当的缀合有HRP的第二抗体(Vector Labs PI-2000;PI-1000)探测1.5小时。用TBS-T洗涤膜3次,每次10分钟,随后于用diH
2O中洗涤2次,每次10分钟。使用ECLAdvance化学发光试剂(GE HealthcareLife Sciences,Piscataway NJ)对印迹进行显影,使用ChemiDoc
TM XRSmolecular imagert Quantity
软件(BioRad,Hercules CA)使印迹可见。
结果。开发评估5/6NX大鼠中驻留干细胞和祖细胞的动员的分子测定法,将其用于研究此类标志物对NKA处理的时间响应。已观察到NKA处理与关键干细胞标志物CD24、CD133、UTF-1、SOX-2、LEFTY和NODAL在mRNA转录物和蛋白质水平上的上调特异性相关。到注射后1周检测到上调,到注射后12周上调已达到峰值。干细胞和祖细胞的标志物的激活与相对于未处理的5/6NX对照动物增加的存活率和血清生物标志物的显著增加(即,肾滤过的增加)相关。
图9显示在利用NKA处理5/6NX大鼠后宿主组织的SOX2mRNA的表达。SOX2mRNA表达的时间分析显示到植入后12周NKA处理组内的SOX2mRNA为Nx对照的1.8倍。到植入后24周,观察到NKA处理组的SOX2mRNA表达为Nx对照的2.7倍。(1-周,对于对照(假手术)、Nx(对照)和NKA处理的,各自的n=3)(12周,对于对照(假手术)和Nx(对照),各自的n=1;NKA处理的n=4)(24周,对于对照(假手术)和Nx(对照),各自的n=1);NKA处理的n=4)。*表示p-值=0.023或<0.05。
图10-显示处理后1、12和24周假手术对照(对照)、Nx对照(Nx)和用NKA#1和NKA#2处理的大鼠的CD24、CD133、UTF1、SOX2、NODAL和LEFTY的表达的时间过程的蛋白质印迹。将包埋在OCT冷冻培养基中冷冻的完整肾组织(对于每一个样品,N=1)用于蛋白质样品收集。利用装载的总蛋白标准化泳道。NKA处理的组织的CD133、UTF1、NODAL、LEFTY和SOX2蛋白水平在所有时间点上相对于对照或Nx大鼠升高。
图11描述了再生响应指数(RRI)的时间过程。将个别蛋白质表达的密度计分析(图10)用于生成再生标志蛋白表达的定量指数或再生响应指数(RRI)。使用Image J v1.4软件(NIH)和每一种蛋白质的每单位面积标准化的值从每一个蛋白质印迹计算条带强度。通过汇编每一个时间点的蛋白质印迹分析中使用的5个标志物测定假手术组、Nx和NKA处理组的平均强度。图示显示具有从1、12和24周时间点生成的平滑线拟合的XY散射。将每一个组的平均强度随时间过去作图,以突出显示干细胞标志蛋白表达在宿主组织响应中的趋势。假定每一个样品具有相等的变异,使用标准双尾学生t检验进行统计分析。使用95%的置信区间(p-值<0.05)测定统计显著性。(NKA处理组n=2;对照(假手术)n=1;Nx(对照)n=1)。在假手术对照动物中,RRI仅显示从处理后1周的90.47至处理后24周的81.89的轻微减小。相反地,来自5/6Nx对照的肾显示基本上相反的响应,RRI从处理后1周的82.26增加至处理后18周的140.56,在该点上动物死亡。在NKA处理的动物中,RRI从处理后1周的62.89急剧增加至处理后12周的135.61,然后到处理后24周下降至112.61。
在宿主组织中已观察到NKA处理与干细胞标志物CD24、CD133、UTF-1、SOX-2和NODAL在转录物和蛋白质水平上的上调相关。到处理后1周检测到上调,到处理后12周上调达到峰值。宿主组织的干细胞和祖细胞的标志物的总体激活与相对于未处理的肾切除的对照动物增加的存活率(1)和临床相关血清生物标志物的增加相关。
响应NKA处理的驻留干细胞和祖细胞群体的动员可通过再生受损肾组织和器官结构促成5/6NX动物的肾功能的恢复。因此本研究中使用的分子测定提供了用于评估针对CKD的组织工程和再生医学治疗的再生结果的快速、直接和预测性测定。
实施例12-来源于原代肾细胞的外来体包含微小RNA
我们设法使特定的外来体来源的miRNA与靶细胞在体外的功能上相关的结果相关联,以告知用于阐明产生再生结果的机制的体内研究的设计。
方法:使用商购的细胞:HK-2(人近端肾小管细胞系)、原代人肾小球系膜细胞(HRMC)和人脐带内皮细胞(HUVEC)研究条件培养基对与再生愈合响应相关的信号转导途径的作用。利用设计来检测已知miRNA的基于PCR的阵列筛选来自条件培养基(来自人和大鼠原代肾细胞培养物(UNFX))中的外来体的RNA内容物。已报导低氧影响外来体排出;因此,将一组培养物暴露于低氧(2%O2)24小时,然后收集培养基。通过FACS将外来体与细胞碎片分离。
图12提供了UNFX-条件培养基的制备和分析的示意图。
结果:发现UNFX-条件培养基影响与再生愈合响应相关的信号转导途径;在使用非条件培养基的对照中未观察到此类响应。具体地,NFκB(免疫响应)和上皮至间质转化(纤维化响应)在HK-2细胞中减弱,PAI-1(纤维化响应)在HRMC细胞中减弱,血管生成在HUVEC中得到促进。来自UNFX-条件培养基的外来体内容物的PCR阵列筛选的初步数据显示UNFX生成包含与观察到的对UNFX-条件培养基的响应一致的miRNA序列的外来体。
图13A-C显示来自UNFX培养物的条件培养基在体外影响多个潜在地与再生结果相关的细胞过程。NFkB信号转导被提议为肾病的炎症性过程的关键介质(Rangan等人,2009.Front Biosci12:3496-3522;Sanz等人,2010.JAm Soc Nephrol21:1254-1262),并且可被肿瘤坏死因子(TNF)激活。用非条件培养基(左)或UNFX条件培养基(右)在37℃下预孵育HK-2细胞1小时,随后用或不用10ng/ml TNFa进行激活。
图13A显示UNFX-条件培养基减弱TNF-a介导的NF-kB的激活。NFkB激活通过RelA/p65免疫荧光染色(绿色)来测量。赫斯特复染色的细胞核(蓝色)和鬼笔环肽染色的丝状肌动蛋白(红色)有助于RelA/p65核定位(白色箭头)的评估。
图13B显示UNFX-条件培养基增强HUVEC细胞培养物的促血管生成行为。将HUVEC细胞(100,000个/孔)覆盖在Media200加0.5%BSA中的聚合基质胶(Matrigel)上。添加非条件培养基(左)或UNFX条件培养基(右),通过图像捕捉可视地监测细胞组织响应,进行3-6小时。对细胞组织的细胞迁移(白色箭头)、调整(alignment)(黑色箭头)、管形成(红色箭头)和闭合多边形的形成(星号)进行评分。UNFX条件培养基与非条件培养相比较诱导更多的小管和闭合多边形,这表明促血管生成因子存在于培养基中。
图13C显示UNFX-条件培养基减弱上皮细胞中的纤维化途径。HK-2细胞失去上皮特征,并且当体外暴露于转化生长因子(TGF)时获得间质表型,从而复制与肾脏纤维化进展相关的上皮至间质转化(EMT)(Zeisberg等人2003Nat Med9:964-968)。将HK-2细胞在非条件培养基(CTRL)、含10ng/ml TGFβ1的非条件培养基(TGFβ1)或含10ng/ml TGFβ1的UNFX条件培养基(TGFβ1+CM)中培养72小时。通过定量RT-PCR测定细胞的CDH1(上皮标志物)、CNN1(间质标志物)和MYH11(间质标志物)。条件培养基减小TGFβ1-诱导的EMT的程度,如通过CDH1、CNN1和MYH11基因表达测量的。误差棒代表3个实验重复的平均值的标准差(SEM)。
图13D描述了通过TGFβ1和纤溶酶原激活物抑制剂-1(PAI-1)建立的正反馈回路,当不抑制该回路时,可导致细胞外基质蛋白质的逐渐积累(Seo等人,2009.Am JNephrol30:481-490)。
图14A-B显示系膜细胞中纤维化途径的减弱。将HRMC在对照(CTRL)或添加(+)或不添加(-)5ng/ml TGFβ1的UNFX条件培养基(UNFX CM)中培养24小时。PAI-1的蛋白质印迹分析显示UNFX CM减弱TGFβ1-诱导的PAI-1蛋白水平的升高。b肌动蛋白显示为上样对照。人肾小球系膜细胞(HRMC)在5ng/ml TGFb1存在(+)的情况下表达升高水平的PAI-1。利用来源于人生物活性肾细胞的条件培养基(CM)的共培养减弱TGFb1诱导的PAI-1蛋白表达。CM不改变PAI-1在mRNA水平上的表达(数据未显示)。
图14B显示来自大鼠生物活性肾细胞的CM对利用TGFb1诱导(+)和未利用其诱导(-)的培养HRMC具有相似的作用。离心后收集的CM上清液(消耗大鼠CM)在减弱PAI-1表达上不太有效,这表明负责观察到的PAI-1蛋白的减弱的CM组分可能与由大鼠生物活性肾细胞分泌的囊泡结合。
图15显示来自UNFX的条件培养基包含分泌的囊泡。图145A描述了分泌的囊泡(包括外来体),其为包括细胞质来源的内部组分(绿色)的双脂质结构(红色)。磷脂酰丝氨酸(蓝色三角形)为在囊泡生物合成过程中暴露于细胞外空间的膜的组分(Thery等人,2010.Nat Rev Immunol9:581-593)。
PKH26和CFSE分别标记分泌的囊泡的脂质膜和细胞质(Aliotta等人,2010.Exp Hematol38:233-245),而膜联蛋白V结合磷脂酰丝氨酸。
图15B-C显示FACS分选。UNFX条件培养基用PKH26、CFSE和缀合有APC的膜联蛋白V进行标记,随后利用荧光辅助细胞分选术(FACS)进行分选。收集代表分泌的囊泡的三阳性颗粒,使用TRIZol试剂提取总RNA。使用商购的基于RT-PCR的阵列筛选微小RNA内容物的已知序列。
表12.1显示分泌的囊泡包含具有预测的治疗结果的微小RNA。UNFX细胞排出包含已知的miRNA序列的外来体。UNFX-条件培养基影响人细胞系的功能上相关的再生响应。检测到的miRNA与观察到的再生响应之间的因果关系正处于活跃的研究中;然而,迄今获得的结果表明UNFX细胞具有生成通过外来体-介导的miRNA至靶细胞和组织的转移的治疗上相关的旁分泌作用的潜能。
表12.1
外来体中的miRNA |
基因靶 |
预测的作用 |
miR-146a |
TRAF6,IRAK1* |
抑制NFkB |
miR-130a |
GAX,HOXA5** |
促进血管生成 |
miR-23b |
Smad3/4/5*** |
抑制TGFβ信号转导(抗纤维化) |
*Taganov等人,2006.Proc Natl Acad Sci USA103:12481-12486.
**Chen和Gorski,2008.Blood111:1217-1226.
***Rogler等人,2009.Hepatology50:575-584.
数据支持来自生物活性肾细胞培养物的外排囊泡包含减弱由TGFb1/PAI-1反馈回路诱导的PAI-1的组分的结论。
微阵列和RT-PCR分析。将来自路易斯大鼠的未分级(UNFX)的生物活性肾细胞在低氧条件(2%O2)下于基础培养基(不含血清或添加物的DMEM与KSFM的50:50混合物)中培养24小时。收集条件培养基,在4℃下以100,000xg超速离心2小时来沉淀分泌的囊泡(例如微囊泡、外来体)。从所得的沉淀提取总RNA,利用实时RT-PCR(Rat MicroRNA Genome V2.0PCRArray;Qiagen#MAR-100A)测定已知的微小RNA种类。下列miRNA是可检测的。
实施例13-来源于生物活性肾细胞的旁分泌因子
在本研究中,我们利用基于细胞的体外测定来研究生物活性肾细胞可籍以通过调节介质例如溶酶原激活物抑制剂-1(PAI-1)调节纤维化的潜在旁分泌机制。
材料和方法:从无血清和无补充物的条件下的大鼠和人的生物活性肾细胞的培养物收集条件培养基(Aboushwareb等人,World J Urol26,295,2008;Presnell等人2010,同上),将其用于体外测定。商购的大鼠和人来源的系膜细胞在体外测定中用作宿主响应组织的替代者,因为系膜细胞为受损或患病的肾中PAI-1生成的来源(Rerolle等人,Kidney Int58,1841,2000.)。分别通过定量RT-PCR和蛋白质印迹测定PAI-1基因和蛋白质表达。通过利用高速离心(Wang等人,Nuc Acids Res2010,1-12doi:10.1093/nar/gkq601,2010年7月7日)收集由细胞排到培养基的囊泡颗粒(例如,外来体),利用TRIzol试剂(Invitrogen)从沉淀提取总RNA。使用已知的微小RNA序列的基于PCR的阵列筛选囊泡的RNA内容物(Qiagen)。
结果:来自生物活性肾细胞培养物的条件培养基减弱系膜细胞中TGFβ1-诱导的PAI-1稳定状态蛋白质水平的增加,但不影响稳定状态mRNA水平;观察与微小RNA籍以调节靶基因的机制一致。基于假说:微小RNA可通过细胞外囊泡运输在细胞之间转移(Wang等人,同上,2010),我们分析条件培养基的微小RNA内容物并且确认了微小RNA30b-5p(miR-30b-5p),PAI-1的假定抑制剂的存在。
此处显示的数据表明生物活性肾细胞可直接通过miR-30b-5p经外来体至靶系膜细胞的细胞间转移调节纤维化。作为系膜细胞吸收miR-30b-5p的结果,TGFβ1-诱导的稳定状态的PAI-1蛋白水平的增加被减弱(肾组织中可最终减少细胞外基质在肾小球空间内的沉积的响应)。目前的工作正在进行,以确认PAI-1确实是miR-30b-5p的直接靶。
图14A-B显示在对照(CTRL)或向培养基中添加了(+)或未添加(-)TGFβ1的生物活性肾细胞条件培养基(CM)中培养24小时的人系膜细胞的PAI-1和α-肌动蛋白(对照)的蛋白质表达的蛋白质印迹。在CTRL培养物中,TGFβ1增加PAI-1蛋白的表达。在CM培养物中,TGFβ1诱导的响应被减弱。
分析分泌的囊泡的可为PAI-1的假定抑制物的微小RNA。通过高速离心从人和大鼠生物活性肾细胞CM收集分泌的囊泡,使用已知序列的基于PCR的阵列测定囊泡的微小RNA内容物。鉴定了miR-449a,PAI-1的假定调节剂(6)。利用miR-449a或不用miR-449a(CTRL)瞬时转染HRMC。将转染后24小时的细胞暴露于5ng/ml TGFb1(+)或不暴露(-)另外24小时。
图16A显示其中制备总蛋白质并且测定其PAI-1和b肌动蛋白的蛋白质印迹。miR-449a降低稳定状态PAI-1蛋白水平(比较泳道1至泳道3)并且诱导的PAI-1蛋白的水平在miR-449a转染的培养物中也更低(比较泳道2至泳道4)。数据支持外排的囊泡包含miR-449a并且miR-449a至系膜细胞中的吸收减少PAI-1表达的结论。
图16B描述了微小RNA,miR-30b-5p,其也在基于PCR的阵列中被鉴定,并且基于预测算法(http://mirbase.org-miRBase由曼彻斯特大学的生命科学学院托管和维护)为PAI-1的假定调节剂。
在利用生物活性肾细胞处理通过5/6肾切除术诱导的CKD后,体内检查肾小球中的PAI-1蛋白水平。
图17A-C显示已经历单侧肾切除术(A)、5/6肾切除术(B)或5/6肾切除术和生物活性肾细胞的肾内递送(C)的路易斯大鼠肾的PAI-1(A-C)的代表性免疫组织化学图像。由于5/6肾切除术(B),PAI-1在肾小球(箭头)中的积累作为处理的结果(C)而减少。
在独立的研究中,对在尸检时收获的肾组织进行qRT-PCR,将相对基因表达值针对研究的天数作图。
图17D显示5/6肾切除的大鼠(红色方块)相对于利用生物活性肾细胞(蓝色荾形)和假手术对照假手术对照(绿色三角形)处理的大鼠显示更强劲的PAI-1表达。
图17E显示在处理后3个月和6个月关于肾样品的代表性蛋白质印迹分析。5/6肾切除的大鼠(Nx)的处理的组织(Nx+Tx)已减少了PAI-1和纤连蛋白(FN)蛋白质的积累(Kelley等人2010,同上)。
数据支持在利用生物活性肾细胞处理由5/6肾切除术诱导的CKD后,肾小球疾病中体内PAI-1蛋白水平降低的结论。
综上所述,实施例12-13支持假说:生物活性肾细胞的肾内递送籍以增强肾功能的一个机制可能是通过调节驻留肾细胞中的纤维化途径的组分的细胞间转移。
实施例14-来自生物活性肾细胞的分泌的因子减弱NFκB信号转导途
径
在本研究中,我们在5/6肾切除术模型中研究了NFκB途径在NKA介导的疾病进展的减弱中的作用并且鉴定了可通过直接调节NFκB激活促成再生结果的生物活性肾细胞的性质。图17G描述了TNFα对NFkB途径的典型激活。
材料和方法:从其中在利用PBS中的B2+B4(NKA原型)处理之前6周进行两步5/6肾切除术过程的路易斯大鼠收获残余肾。通过免疫组织化学、RT-PCR、蛋白质印迹分析以及电泳迁移率变化测定(EMSA)分析NKA-处理(TX)或未处理(UNTX)的组织的NFκB激活。将从在无血清和无补充物的培养基中生长的离体NKA细胞培养物收集的条件培养基(CM)用于体外功能测定。将人近端肾小管细胞系(HK-2)用作用于基于分子和免疫荧光的测定读出的靶细胞类型。通过高速离心收集由细胞排到培养基的囊泡颗粒(外来体)。使用已知微小RNA序列的基于PCR的阵列(Qiagen)筛选从外来体分离的总RNA。
结果:在来自5/6肾切除的大鼠的残余肾中观察到NFκB亚单位RelA/p65的核定位,这表明UNTX组织中的炎症途径的激活。通过RT-PCR进行的与TX组织的初步比较显示RelA基因表达的减少,这表明NKA处理可通过抑制RelA/p65表达来影响NFκB途径的激活。该假说得到这样的观察的支持:CM在体外减弱TNFα-诱导的NFκB激活,如通过相对于响应肿瘤坏死因子-α(TNFα)看到的暴露于CM的HK-2细胞中减少的RelA/p65的核定位(图17F)所证明的。不断发展的NKA外来体微小RNA的RT-PCR分析研究是否存在已知影响NFκB途径的序列。
图17F显示在免疫荧光测定中,对NKA CM的2小时暴露减少了HK-2中NFκB p65(绿色)的核定位(与在用TNFα预处理的对照培养物中观察到的相比较)。在HK-2中,在暴露于TNFα(对照培养基)30分钟后,NFkB p65(绿色)定位至细胞核。然而,在添加TNFα之前利用NKA条件培养基预处理HK-2细胞2小时减弱了NFkB p65的核定位响应。用DAPI(蓝色)对细胞核进行染色,用Alexa594-鬼笔环肽(红色)对丝状肌动蛋白进行染色以帮助定性评估NFκB核定位的强度(注意底排的合并图像中TNFα-处理的对照细胞的略微减小的鬼笔环肽边界)。在合并图像中,复染色为NFkB定位提供了参照。
路易斯大鼠的肾组织的NFkB p65亚单位的免疫组织化学显示具有通过5/6肾切除术(图框B)引起的进行性CKD的动物相对于对照动物的通过单侧肾切除(图框A)引起的非进行性肾功能不全具有更强劲的NFkB p65亚单位的核定位(特别地在肾小管上皮细胞(黑色箭头)中)。肾切除术后6周收获组织。放大倍数为200X。
图框C:已经历5/6肾切除术的路易斯大鼠肾组织的细胞质(‘C’)和细胞核(‘N’)蛋白质提取物中NFkB p65的蛋白质印迹分析。比较第1周与第13周,其中gtubulin水平(上样对照)相对一致,细胞核NFkB p65随时间过去增加,与免疫组织化学结果一致。
图框D:关于细胞核提取物的电泳迁移率变化测定(EMSA)确认了在5/6肾切除术后定位至细胞核的NFkB被激活以进行DNA结合。泳道代表在每一个时间点上从两个动物制备的核提取物。
NFkB途径在慢性肾病的5/6肾切除术模型中被逐渐激活。对路易斯大鼠的肾组织的NFkB p65亚单位进行免疫组织化学。
图18A-D显示具有由5/6肾切除术(图框B)引起的进行性CKD的动物相对于对照动物的由单侧肾切除术(图A)引起的非进行性肾功能不全具有更强劲的NFkB p65亚单位的核定位(特别地在肾小管上皮细胞(黑色箭头))。肾切除术后6周收获组织。放大倍数为200X。
图18C显示已经历5/6肾切除术的路易斯大鼠肾组织的细胞质(‘C’)和细胞核(‘N’)蛋白质提取物中NFkB p65的蛋白质印迹分析。比较第1周与第13周,其中gtubulin水平(上样对照)相对一致,细胞核NFkB p65随时间过去增加,与免疫组织化学结果一致。
图18D显示关于细胞核提取物的电泳迁移率变化测定(EMSA)并且确认在5/6肾切除术后定位至细胞核的NFkB被激活以进行DNA结合。泳道代表在每一个时间点上从两个动物制备的细胞核提取物。将1mg核蛋白与5ng NFkB DNA结合位点一起孵育,将其在6%DNA阻滞凝胶上进行电泳,随后用溴化乙锭染色。
NKA细胞的肾内递送减少NFkB的核定位。多个确定的肾细胞亚群已被分离,并且已在CKD的5/6肾切除术模型中体内测定了其在促进肾功能中的生物活性(Presnell等人2010,同上)。NKA细胞显示生物活性,然而其它亚群未显示生物活性(Kelley等人2010,同上)。
图18E显示接受NKA(A)或无生物活性肾细胞(B)的肾内注射的具有已建立的CKD的路易斯大鼠。具有已建立的CKD的路易斯大鼠接受NKA(A)或无生物活性肾细胞(B)的肾内注射。在处理后6个月,收获组织,通过免疫组织化学测定其NFkB p65亚单位。来自NKA处理的动物的组织与来自利用无生物活性肾细胞处理的动物的组织相比较显示更少的NFkB p65的核定位(特别地在近端肾小管细中),这表明NKA处理在体内参与减弱NFkB途径活性。
使用已知序列的基于PCR的阵列通过高速离心进行的从人和大鼠NKA条件培养基分离的分泌囊泡的微小RNA内容物的分析鉴定了几个微小RNA种类,基于文献报导(Marquez RT等人(2010)Am J PhysiolGastrointest Liver Physiol298:G535;Taganov KD等人(2006)Proc Natl AcadSci USA103:12481)或预测算法(http://mirbase.org-miRBase由曼彻斯特大学的生命科学学院托管和维护),所述微小RNA种类可通过NFkB影响免疫响应。
体内和体外发现提供了关于生物活性肾细胞(NKA)如何能够通过调节免疫响应途径例如受NFkB激活影响的免疫调节响应途径来增强患慢性病的肾的肾功能的见解。激活的NFkB(p65核定位,特别地在近端肾小管细胞中)与5/6肾切除啮齿类动物模型中慢性肾病的建立相关并且被NKA处理减弱。近端肾小管细胞(HK-2)对NKA条件培养基的体外响应模拟NFkB核定位响应NKA处理的体内减弱。在NKA条件培养基中鉴定了NFkB激活的细胞间抑制的假定介质(微小RNA)。综上所述,这些数据支持假说:生物活性肾细胞的肾内递送籍以增强肾功能的一个机制是通过调节驻留肾细胞的免疫响应的组分例如RNA的细胞间转移。
实施例15-NKA构建体的功能评估
接种在明胶或基于HA的水凝胶上的肾细胞群体是能够存活的并且在3天的体外成熟过程中维持肾小管上皮功能表型,如通过转录物组学、蛋白质组学、分泌蛋白质组学和共聚焦免疫荧光测定所测量的。为了研究NKA构建体可籍以影响疾病状态的潜在机制,评估条件培养基对与与CKD进展相关的小管间质性纤维化(tubulo-interstitial fibrosis)相关的TGF-β信号转导途径的作用。在人近端肾小管细胞系(HK2)中观察到条件培养基在体外减弱TGF-β-诱导的上皮细胞-间质细胞转化(EMT)。
材料和方法
生物材料。将生物材料制备为珠粒(同质的球状结构)或颗粒(具有锯齿边缘的异源群体)。由Percell BiolyticaSweden)制造的明胶球粒(Cultispher S和Cultispher GL)分别购自Sigma-Aldrich(St.Louis,MO)和Fisher Scientific(Pittsburgh,PA)。从按照制造商的说明书产生的冻干的海绵形成交联的HA和HA/明胶(来自Glycosan BioSystems,Salt Lake Citj,UT的HyStemTM和ExtracelTM)颗粒。从交联的冻干海绵形成明胶(Sigma)颗粒。
PCL购自Sigma-Aldrich(St.Louis,MO)。PLGA50:50购自DurectCorp.(Pelham,AL)。使用经修饰的复乳剂(W/O/W)溶剂萃取法制备PCL和PLGA珠粒。使用溶剂浇铸粒子沥滤技术(solvent casting porogen leachingtechnique)制备PLGA颗粒。所有珠粒和颗粒当以干燥状态测量时为65至355微米。
细胞分离、制备和培养。遵照管理用于研究目的的人组织的使用的所有NIH指导方针通过全国疾病研究院(National Disease ResearchInstitute)(NDRI)获得人尸体肾脏。从合同研究组织(contract researchorganization)(Integra)获得犬的肾脏。大鼠肾脏(21天龄路易斯大鼠)获自Charles River实验室(MI)。先前已描述了原代肾细胞群体(UNFX)和来自完整大鼠、犬和人肾的确定的亚群(B2)的制备(Aboushwareb等人WorldJ Urol26(4):295-300;2008;Kelley等人,同上,2010;Presnell等人WO/2010/056328)。简而言之,在含有4.0个单位/mL分散酶(Stem CellTechnologies,Inc.,Vancouver BC,Canada)和300个单位/ml胶原酶IV(Worthington Biochemical,Lakewood NJ)的缓冲液中酶促离解肾组织,随后利用通过15%碘克沙醇
Axis Shield,Norton,MA)的离心除去红细胞和碎片以生成UNFX。将UNFX细胞接种在组织培养处理的聚苯乙烯板(NUNC,Rochester NY)上,然后在50:50的培养基(含有5%FBS、2.5μgEGF、25mg BPE、1X ITS(胰岛素/转铁蛋白/亚硒酸钠培养基补充物)和抗生素/抗真菌素(全都来自Invitrogen,Carlsbad CA)的高葡萄糖DMEM:角质细胞无血清培养基(KSFM)的1:1混合物)中培养。利用通过四步碘克沙醇(OptiPrep;60%w/v,于未补充的KSFM)密度梯度(特别地针对啮齿类动物(16%、13%、11%和7%)、犬(16%、11%、10%和d7%)或人(16%、11%、9%和7%)分层的)的离心从UNFX培养物分离B2细胞(Presnell等人WO/2010/056328;Kelley等人,同上,2010)。在室温下以800xg离心梯度20分钟(无制动装置)。通过移液器取出目标条带,将其在无菌磷酸缓冲盐溶液(PBS)中洗涤2次。
细胞/生物材料复合物(NKA构建体)。为了在生物材料上进行细胞功能的体外分析,将均匀层生物材料(如上所述制备的)覆盖在6孔低附着板(Costar#3471,Corning)的一个孔上。将UNFX或B2细胞(2.5x105/孔)直接接种在生物材料上。为了研究犬细胞至生物材料的粘附,将2.5x106个UNFX细胞与50μl堆积体积的生物材料接种在非粘附24孔板(Costar#3473,Corning)中。在振荡平台上4小时后,将犬NKA构建体在37℃下于5%CO2培养箱中成熟过夜。第二天,按照制造商的说明书使用活细胞/死细胞染色测定试剂盒(Invitrogen)进行活细胞/死细胞染色。在具有1RPM的旋转速度的滚瓶装置上将大鼠NKA构建体制备于60cc注射器中。
为了进行下述转录物组学、分泌蛋白质组学和蛋白质组学分析,将NKA构建体成熟3天。随后收获细胞以进行转录物组分析或蛋白质组学分析,收集条件培养基以进行分泌蛋白质组学图谱表征。
肾小管细胞相关酶活性的功能分析。使用从先前公布的方法(Tate等人Methods Enzymol113:400-419;1985)改进而来的亮氨酸氨肽酶(LAP)活性的测定法于24孔板中评估犬NKA构建体(10μl松装体积(loose packedvolume))。简而言之,将0.5ml0.3mM的PBS中的L-亮氨酸p-硝基苯胺(L-Ieucine p-nitroanalide)(Sigma)添加至NKA构建体,在室温下进行1小时。以一式二份对孔进行取样,将在405nm下的吸光度记录为LAP活性的量度。LLC-PK1细胞裂解物(美国典型培养物保藏中心或ATCC)用作阳性对照。
转录物组学图谱表征。使用RNeasy Plus Mini试剂盒(Qiagen,CA)提取多腺苷酸化RNA。通过UV分光光度法测定浓度和完整性。使用SuperScriptVILO cDNA合成试剂盒(Invitrogen)从1.4μg分离的RNA产生cDNA。使用商购的引物和探针(表15.1)以及ABI-Prism7300实时PCR系统(AppliedBiosystems,CA)通过定量实时聚合酶链式反应(qRT-PCR)检查靶转录物的表达水平。使用TaqMan基因表达预混合物(ABI,Cat#4369016)进行扩增,TATA框结合蛋白基因(TBP)用作内源对照。每一个反应由10μl预混合物(2X)、1μl引物和探针(20X)以及9μl cDNA组成。以一式三份运行样品。
表15.1
分泌蛋白组学图谱表征。收集来自人NKA构建体的条件培养基,将其于-80℃下冷冻。评估样品的生物标志物浓度定量。将条件培养基的给定的标志物浓度的结果相对于来自对照培养物(无生物材料的2D培养)的条件培养基的相同生物标志物的浓度进行标准化,将其表示为无单位比率。
蛋白质组学图谱表征。从细胞/生物材料复合物提取来自3个独立重复的蛋白质,将其汇集以通过2D凝胶电泳进行分析。所有试剂来自Invitrogen。通过将30μg重悬浮于200μl变焦2D蛋白质稳定剂#1(Cat#ZS10001)、变焦载体两性电解质pH4-7(Cat#ZM0022)和2M DTT(Cat#15508-013)中的蛋白质添加至pH4-7变焦IEF条(ZOOM IEF Strip)(Cat#ZM0012)来进行等电聚焦(IEF)。在于500V下电泳18小时后,将IEF条加载至NuPAGE Novex4-12%Bis-Tris ZOOM IPG孔凝胶(Cat#NP0330BOX)上以进行SDS-PAGE分离,在200V下于MES缓冲液(Cat#NP0002)中电泳45分钟。按照制造商的说明书使用SYPRO Ruby蛋白质凝胶染色(Cat#S-12000)使蛋白质可视。
共聚焦显微镜检查。使从人或大鼠UNFX或B2细胞制备的NKA构建体成熟3天,随后在2%多聚甲醛中固定30分钟。通过在10%的D-PBS(Invitrogen)中的山羊血清(Invitrogen)+0.2%Triton X-100(Sigma)中于室温(RT)下孵育1小时来对固定的NKA构建体进行封闭和透化。为了进行免疫荧光,用终浓度为5μg/ml的第一抗体(表15.2)在RT对NKA构建体标记过夜。用2%山羊血清/D-PBS+0/2%Triton X-100洗涤标记的NKA构建体2次,然后将其与浓度为5μg/ml的缀合有山羊或兔TRITC的抗-大鼠IgG2A(Invitrogen)的第二抗体一起孵育。为了用DBA(双花扁豆凝集素)进行双标记,将NKA构建体候选物再与于2%山羊血清/D-PBS+0.2%TritonX-100中稀释至2mg/ml的缀合有FITC的DBA(Vector Labs)在RT下一起孵育2小时。
表152
抗体 |
来源 |
制造商 |
目录号 |
靶 |
IgG1对照 |
小鼠 |
BD |
557273 |
本底对照 |
1gG对照 |
山羊 |
Invitrogen |
026202 |
本底对照 |
1gG对照 |
兔 |
Invitrogen |
026102 |
本底对照 |
N-钙粘蛋白 |
小鼠 |
BD |
610920 |
近端肾小管 |
E-钙粘蛋白 |
小鼠 |
BD |
610182 |
远端肾小管 |
立方蛋白(A-20) |
山羊 |
SantaCruz |
Sc-20609 |
近端肾小管 |
GGT-1 |
兔 |
SantaCruz |
Sc-20638 |
肾小管上皮 |
兆蛋白 |
兔 |
SantaCruz |
Sc-25470 |
近端肾小管 |
利用D-PBS洗涤样品2次,使用Zeiss LSM510激光扫描共聚集系统(Cellular Imaging Core,Wake Forest Baptist Medical Center),运行LSM Image软件(Zeiss)或利用Pathway855共聚集显微镜(BD Biosciences)对样品进行光学切片(optically section)。
HK2细胞的TGF-β介导的EMT的分析。将HK2细胞(ATCC)在纤连蛋白或胶原(IV)包被的培养皿(BD Biosciences)中培养于50:50培养基中。为了进行EMT测定,利用50:50培养基或从二维(2D)人UNFX培养物或用在培养基收集之前进行3天成熟的人UNFX制备的NKA构建体收集的条件培养基将HK2细胞以70-80%的汇合度接种在24-孔胶原(IV)包被的板中。通过在从细胞分离RNA用于EMT测定之前3天将10ng/ml TGF-β添加至培养基来起始TGF-β诱导。利用qRT-PCR,通过分析在3天孵育期结束时E-钙粘蛋白(上皮标志物)和钙调节蛋白(间质标志物)的相对表达来监测EMT。从收获的HK2细胞制备RNA以用于TaqMan qRT-PCR分析,如上文中所描述的。使用标准双尾学生t检验来进行统计分析,假定对于每一个样品存在相同的变化。将95%(p-值<0.05)和99%(p-值<0.01)的置信区间用于测定统计显著性。
非细胞生物材料和NKA构建体的体内植入。路易斯大鼠(6至8周龄)购自Charles River(Kalamazoo,MI)。在卡罗来纳医学中心的PHS和IACUC的指导方针下进行所有实验过程。在异氟醚麻醉下,雌性路易斯大鼠(约2至3月龄)进行正中切口,暴露左肾。通过显示注射将35μl的填充生物材料(非细胞生物材料或NKA构建体)引入肾实质。使用两个注射轨迹:(i)从每一极朝向皮质(称为皮质注射),或(ii)从肾中间线朝向骨盆(称为髓内注射)。在注射后1、4或8周处死大鼠。没有发生早期死亡。非细胞植入研究的研究设计示于表15.3(ND=未进行的)。
肾组织学。收集代表性肾样品,将其置于10%缓冲福尔马林中24小时。将切片在递升等级的乙醇中进行脱水,然后包埋在石蜡中。切取切片(5μm),将其置于带电荷的载玻片上,按照标准染色方案(Prophet等人,ArmedForces Institute of Pathology:Laboratory methods in histotechnology.Washington,DC:American Registry of Pathology;1992)处理以进行苏木精和伊红(H&E)染色、Masson's trichrome染色和过碘酸-希夫(PAS)染色。使用配备有Digital Sight(DS-U1)照相机的Nikon Eclipse50i显微镜在x40、x100和x400的总放大倍数下捕捉数字显微照片。利用通常使用的(Shackelford等人Toxicol Pathol30(1):93-96;2002)严重度分级量表(1、2、3、4级)评估肾形态学改变,针对所述严重度分级量表的描述性术语(最轻,轻微,中等,显著/严重)被用于描述观察到的肾小球硬化、肾小管萎缩和扩张、肾小管管型(tubular casts)和间质纤维化以及炎症的程度。
表15.3
结果
哺乳动物肾组织对生物材料至肾实质内的注射的响应。通过至健康大鼠肾的直接注射分析生物材料在肾细胞/生物材料复合物中的可能用途(表15.3)。通过在注射后1周和4周测量组织病理学参数(炎症、纤维化、坏死、钙化/矿化)和生物相容性参数(生物材料的降解、新生血管形成和新生组织形成)的程度来评估组织响应。
图19A-B显示植入后1周时的生物材料的体内评估。肾横切面的Trichrome X10低倍图像显示生物材料聚集。Trichrome X40:生物材料聚集的特写镜头。H&E X400:用以评估细胞/组织浸润的程度的生物材料聚集的高放大倍数图像。如材料和方法中所描述的,在两个位置注射每一个肾。在植入后1周,由每一种测试的生物材料引发的宿主组织响应通常是相似的;然而,明胶水凝胶似乎引起不太强的组织病理学反应和更具生物相容性的响应。
图19C显示植入后4周时生物材料的体内评估。在植入后4周,用HA或明胶颗粒注射的组织的组织病理学参数的严重度与植入后1周相比较定性地减小。明胶颗粒几乎完全被再吸收,观察到比接受HA颗粒的组织中更少的巨细胞反应。在大多数其中通过髓内注射轨道(medullary injectiontrajectory)(例如,更深入至髓质/骨盆)注射生物材料的情况下,观察到不期望的结果,包括导致肾积水的阻塞,更大严重度的炎症反应以及导致梗塞的肾小动脉和毛细血管微血栓形成(数据未显示)。
评估具有生物材料的治疗上相关的肾细胞群体的功能表型。在直接注射入肾实质后在慢性肾病的啮齿类动物模型中延长存活并且增强肾功能的治疗上相关的肾细胞群体(UNFX)已被表征(Presnell等人WO/2010/056328;Kelley等人,同上,2010)并且用于其分离、表征和扩增的方法已被开发并且可在多个物种间移植使用(Presnell等人,2010,同上)。为了评估当掺入NKA构建体时UNFX细胞是否粘附、保持活力和保留主要地管状上皮表型,对从UNFX和各种生物材料生成的NKA构建体进行转录物组学、分泌蛋白质组学、蛋白质组学和共聚焦免疫荧光显微检查分析。
粘附和活力。将犬来源的UNFX细胞接种在如所描述的明胶珠粒、PCL珠粒、PLGA珠粒、HA颗粒和HA/明胶颗粒(3个NKA构建体/生物材料)。通过活细胞/死细胞染色在接种后一天评估细胞的分布和活力。
图20A-D显示利用犬UNFX细胞接种的NKA构建体的活细胞/死细胞染色(A=明胶珠粒;B=PCL珠粒;C=HA/明胶颗粒;D=HA颗粒)。绿色表示活细胞;红色表示死细胞。(A)明胶珠粒;(B)PCL珠粒;(C)HA/明胶颗粒;和(D)HA颗粒。可在所有基于水凝胶的NKA构建体上观察到活细胞。
UNFX细胞强烈地粘附至天然来源的基于水凝胶的生物材料例如明胶珠粒和HA/明胶颗粒(在A、D中黑色箭头),但对合成PCL(B)或PLGA珠粒显示最小的粘附(未显示)。细胞不粘附于HA颗粒(C)但显示生物响应的证据(即,球状体的形成)。通过测定亮氨酸氨肽酶,近端肾小管相关水解酶(proximal tubule-associated hydrolase)确认基于水凝胶的NKA构建体上接种的UNFX细胞的功能活性(数据未显示)。
转录物组学图谱表征。利用定量转录物组学分析来比较基于水凝胶的NKA构建体中的人UNFX细胞(3个NKA构建体/生物材料)和UNFX细胞的平行2D培养物的基因表达谱。
图20E-G显示NKA构建体的转录物组学图谱表征。TC:2D中培养的原代人UNFX细胞。明胶:由人UNFX细胞和明胶水凝胶组成的NKA构建体。HA-凝胶:由人UNFX细胞和HA/明胶颗粒组成的NKA构建体。qRT-PCR数据以图和表格形式显示。转录物经检查落入4个主要分类:(i)肾小管:水通道蛋白2(AQ2)、E-钙粘蛋白(ECAD)、红细胞生成素(EPO)、N-钙粘蛋白(NCAD)、细胞色素P450、家族24、亚家族A、多肽1-aka维生素D24-羟化酶(CYP)、立方蛋白、去氧肾上腺素;(ii)间质:钙调节蛋白(CNN1)、平滑肌肌球蛋白重链(SMMHC);(iii)内皮:血管内皮生长因子(VEGF)、血小板内皮细胞粘附分子(PECAM);和(iv)肾小球:podocin。总之,肾小管标志物表达在基于水凝胶的NKA构建体与2D UNFX培养物之间是相当的。类似地,内皮标志物(VEGF和PECAM)是相当的。相反地,肾小球标志物podocin在NKA构建体之间显示显著的变化性。基于HA/明胶的NKA构建体中的Podocin水平与在2D UNFX培养物中观察到的最相当。有趣地,间质标志物(CNN1和SMMHC)表达在基于水凝胶的NKA构建体中相对于2D UNFX培养物被显著下调(p<0.05),这表明UNFX的成纤维细胞亚群可能在肾培养基制剂(renal mediaformulation)中的基于水凝胶的NKA构建体中也不增殖。
分泌蛋白质组学图谱表征。利用人UNFX和B2细胞以及明胶或HA/明胶水凝胶(1个NKA构建体/生物材料/细胞类型=总共4个NKA构建体)生成NKA构建体。
图21A-B显示NKA构建体的分泌蛋白质组学图谱表征。数据表示为3D:2D比。如材料和方法中所述,从人UNFX或B2细胞和明胶(水凝胶1)或HA/明胶(水凝胶2)水凝胶生成NKA构建体。对来自进行了3天成熟的NKA构建体的条件培养基进行分泌蛋白质组学图谱表征,通过计算NKA构建体(三维或3D,培养物)对2D培养物的分析物表达的比率(3D:2D比)来将所述分泌蛋白质组学图谱与人UNFX或B2细胞的平行2D培养物的相比较。对于利用UNFX细胞接种的3种NKA构建体的每一种,3D:2D比为1或接近1,这表明在此类生物材料上进行的接种过程和3天的成熟对UNFX细胞的分泌蛋白质组学图谱几乎没有影响。对于利用B2细胞接种的NKA构建体,观察到为1或接近1的3D:2D比的相似结果,从而提供了在此类生物材料上进行的接种过程和3天的成熟对治疗上相关的肾细胞的分泌蛋白质组学图谱几乎没有影响的额外证据。
蛋白质组学图谱表征。通过使用2D凝胶电泳分离总细胞蛋白质来生成给定的细胞或组织的蛋白质组学图谱,所述蛋白质组学图谱已被用于鉴定与肾病相关的特定标志物(Vidal等人Clin Sci(Lond)109(5):421-430;2005)。
图22A-B显示NKA构建体的蛋白质组学图谱表征。利用如所显示的人UNFX细胞和生物材料生成NKA构建体。如材料和方法中所述,通过2D凝胶电泳分离总蛋白质提取物中的蛋白质。在本实验中,将蛋白质组学图谱表征用于比较NKA构建体(明胶或基于HA/明胶水凝胶的,3个NKA构建体/生物材料)与2D组织培养中人UNFX细胞的蛋白质表达。从UNFX细胞的NKA构建体或2D培养物分离的总蛋白质的蛋白质组学图谱基本上相同,从而提供了在此类生物材料上进行的接种过程和3天的成熟对由UNFX细胞表达的蛋白质组学几乎没有影响的额外证据。
共聚集显微镜检查。通过已建立的标志物的共聚焦成像评估大鼠和人B2细胞的肾小管上皮表型(Presnell等人2010,同上)在NKA构建体中的保持:图23A-C显示NKA构建体的共聚焦显微镜检查。利用人(A)或大鼠(B、C)B2细胞和明胶水凝胶产生的NKA构建体的共聚焦显微镜检查。利用DIC光学可显现(A)E-钙粘蛋白(红色-实线白色箭头),DBA(绿色-虚线绿色箭头)和明胶水凝胶珠粒。(B)利用DAPI染色(蓝色-实线白色箭头)显现的DNA和以绿色显示的下列标志物的每一个(虚线白色箭头):IgG对照、N-钙粘蛋白、E-钙粘蛋白、细胞角蛋白8/18/18、DBA。(C)标志物的双标记图像,颜色如所显示的。人NKA构建体中的E-钙粘蛋白和DBA,以及大鼠NKA构建体中的E-钙粘蛋白、DBA、N-钙粘蛋白、细胞角蛋白8/18/19、γ-谷氨酰转肽酶(GGT-1)和兆蛋白。共聚焦图像的光学切片还允许评估接种和3天的成熟后细胞浸润至生物材料的程度。人和大鼠NKA构建体中的B2细胞显示多个肾小管上皮标志物的表达。光学切片显示水凝胶构建体的最小细胞浸润,细胞通常被限制于生物材料的表面。
对NKA构建体原型的植入的体内响应。基于对生物材料至肾实质内的注射的体内响应以及上述NKA构建体中UNFX和B2细胞的体外表型和功能表征,选择明胶水凝胶来评估对NKA构建体至健康路易斯大鼠的肾实质内的注射的体内响应。从同基因B2细胞生成NKA构建体,将其植入两个动物,在植入后1、4和8周处死所述动物。所有动物存活至按预定时间进行尸检,此时收获肾组织的切片,将其切片,然后用Trichrome、苏木精和伊红(H&E)以及过碘酸-希夫(PAS)染色。
图24A-B显示植入后1和4周时NKA构建体的体内评估。肾横切面的Trichrome X10低倍图像显示生物材料聚集体。Trichrome X40:生物材料聚集体的特写镜头。H&E/PAS X400:评估细胞/组织浸润的程度的生物材料聚集体的高放大倍数图像。在两个位置注射每一个肾,如材料和方法中描述的。
图24A显示在植入后1周时NKA构建体的体内评估。在注射后1周时,明胶珠粒以球状多孔材料的病灶聚集体(左图框,圆圈区域)形式存在,所述球状多孔材料呈嗜碱性染色并且被显著的维管组织以及吞噬细胞的多核巨噬细胞(phagocytic multi-nucleated macrophage)和巨细胞包围。纤维血管组织被整合入珠粒并且显示表示新生肾组织形成的肾小管上皮组分。此外,肾小管和血管肾小球(vasculoglomerular)结构通过形态学(PAS图框)来鉴定。
图24B显示植入后4周时的NKA构建体的体内评估。到注射后4周,水凝胶完全被再吸收,空间被进行性肾再生和修复替代,纤维化最低(注意4周Trichrome图框的圆圈标示的区域内的许多功能性小管)。
图25A-D显示植入后8周时NKA构建体的体内评估。肾横切面的Trichrome X10低倍图像显示生物材料聚集。Trichrome X40:生物材料聚集的特写镜头。H&E/PAS X400:评估细胞/组织浸润的程度的生物材料聚集的高放大倍数图像。(A)中度慢性炎症(巨噬细胞、浆细胞和淋巴细胞),中等数量的具有显著的纤维血管响应(被Masson’s Trichrome染成蓝色的-黑色箭头)的充满含铁血黄素的巨噬细胞(hemosiderin-laden macrophages)(因注射而生成的慢性出血);(B)(A)的加框区域的更高放大倍数(trichrome染色的,x400),其显示与(C)代表显示典型的皮层肾小球形态学HE的相邻(正常)肾实质,x400)的新生肾组织形成一致的再生响应诱导;(D)HE染色的切片,x400,其将在处理区域观察到的新肾小球形态学与图154C中的相比较。
图25A-D显示植入后8周时NKA构建体的体内评估。在植入后8周时,观察到新生肾样组织形成的证据,与肾发生中的早期事件的诱导一致。再生诱导的区域(B、D)与相邻皮层薄壁组织(C)的比较显示多个S形小体(S-shaped body)和新形成的肾小球的存在。
来自NKA构建体的条件培养基对HK2细胞的TGF-β诱导的EMT的作用。在CKD的进展过程中小管-间质性纤维化的发展与肾小管上皮细胞的TGF-β介导的EMT相关(Zeisberg等人Am J Pathol160(6):2001-2008;2002)。同样地,也在进行性CKD的啮齿类动物模型中体内观察到TGF-β途径的减弱,其中存活被延长并且肾功能通过利用UNFX和B2细胞的处理得到增强(Presnell等人WO/2010/056328)。人近端肾小管细胞系HK2已被良好地建立为测试小分子或蛋白质对TGF-β诱导的EMT的刺激或抑制作用的体外模型系统(Dudas等人Nephrol Dial Transplant24(5):1406-1416;2009;Hills等人Am J Physiol Renal Physiol296(3):F614-621;2009)。为了研究NKA构建体可能籍以影响植入后肾组织响应的潜在机制,在HK2EMT测定系统中评估从利用UNFX细胞与水凝胶生成的NKA构建体收集的条件培养基。
图26显示来自NKA构建体的条件培养基在体外减弱HK2细胞的TGF-β诱导的EMT。通过定量ECAD(上皮)和CNN1(间质)标志物的相对表达来监测EMT。将HK2细胞培养在50:50培养基(对照和TGFB对照样品)或来自人UNFX细胞(TC)的2D培养物或从人UNFX细胞与所示明胶或HA/明胶生成的NKA构建体的条件培养基(CM)中。为了诱导EMT,将10ng/mlTGF-β添加至每一个样品(除对照外)进行3天,然后进行测定。当将HK2细胞培养在50:50培养基(对照)中时,ECAD(上皮标志物)以比CNN1(间质标志物)高的水平表达。当将TGF-β添加至培养基中进行3天(TGFB对照)时,ECAD表达被显著下调,同时伴随CNN1的上调,这与EMT事件的诱导一致。来自2D UNFX细胞培养物的条件培养基显著(p<0.05,对于ECAD和CNN1)减弱HK2细胞对TGF-β的EMT响应(TC CM)。来自NKA构建体(明胶CM和HA/明胶CM)的条件培养基也减弱对TGF-β的EMT响应;然而,总体作用小于对于来自2D UNFX细胞培养物的条件培养基观察到的作用(对于两种NKA构建体,对于ECAD而言,p<0.05是显著的,并且趋向于对照,虽然对于CNN1而言在统计上不显著)。筛选另外的间质标志物,并且所述标志物生成相似的结果(数据未显示)。这些数据表明NKA构建体可在体内以与对于基于细胞的处理观察到的方式(Presnell等人WO/2010/056328)相似的方式潜在地影响与小管间质性纤维化相关的TGF-β途径。这些数据还表明如果体内响应经显示可与体外EMT响应具有统计上显著的关联性,则体外EMT测定具有用于筛选/最优化/监测NKA构建体的生物治疗功效的潜在应用,从而潜在地减少了对耗时昂贵的体内测定的需要。
本研究研究了哺乳动物肾实质对合成及天然生物材料(非细胞和作为生物活性肾细胞/生物材料复合物(即,NKA构建体))的植入的响应。分析体外功能测定和体内再生结果的组合以在功能上筛选用于潜在掺入NKA构建体原型的候选生物材料。基于水凝胶的非细胞生物材料至肾实质的植入(图19)通常与最小纤维化或慢性炎症相关并且到植入后4周无坏死的证据。观察到适当的细胞/组织向内生长和新生血管形成,具有最少残留生物材料。基于这些体内数据,选择基于水凝胶的生物材料来生成籍以评估体外生物功能性和体内再生潜能的NKA构建体。通过NKA构建体的活细胞/死细胞分析提供材料生物相容性的体外确认(图20)。含明胶的水凝胶与原代肾细胞群体的强粘附相关。从生物活性原代肾细胞群体(UNFX或B2)以及水凝胶生物材料生成的NKA构建体的表型和功能分析与肾小管上皮细胞表型的连续维持一致。NKA构建体的转录组学、分泌蛋白组学、蛋白组学和共聚焦显微镜分析确认了相对于在2D培养物中接种的原代肾细胞无显著差异。最后,基于水凝胶的NKA构建体至健康成年啮齿类动物的肾实质的植入与到植入后8周新生肾样组织的最小炎症和纤维化响应以及再生相关。
综上所述,这些数据提供了表明再生响应由NKA构建体体内诱导的证据。这些研究代表了哺乳动物的肾对治疗上相关的原代肾细胞/生物材料复合物的植入的生物响应的第一个体内肾内研究。观察到的结果表明NKA结构具有促进新生肾组织的再生和减弱非再生性(例如,修复性愈合)响应的潜能。
哺乳动物肾对聚合材料的植入的生物响应。在另一个研究中,研究啮齿类动物肾对天然和合成生物材料的肾内注射的宿主组织响应以评估用于与生物活性肾细胞群体形成细胞/生物材料复合物的候选生物材料(Presnell等人,同上,2010)。方法:天然生物材料包括明胶和透明质酸(HA)。合成生物材料包括聚已酸内酯(PCL)和乳酸-羟基乙酸共聚物(PLGA)。以两个分别的物理构造(physical conformation):同质球状珠粒或异源不均匀颗粒评估候选生物材料。使用经修饰的复乳剂(水/油/水)溶剂萃取法制备PCL和PLGA珠粒。购买明胶珠粒
Sigma-Aldrich,St.Louis,MO)。使用溶剂浇铸粒子沥滤技术制备PLGA颗粒;从交联的冻干泡沫制备明胶和HA颗粒。将两次35μl疏堆积的生物材料的注射递送至3月龄路易斯大鼠的左肾实质。使用从0(缺少)至4(明显)的炎症、组织/细胞向内生长、新生血管形成、材料分解和纤维-细胞响应的半定量分级严重程度量表进行注射后1周和4周福尔马林固定的肾组织切片的组织病理学评估。总体评分计算为阳性响应%对阴性响应%的比率(总体评分越高,结果越好)。
结果。对生物材料候选物进行的组织病理学评估-植入后1周收获的肾的代表性40X图像,用Masson’s Trichrome染色的切片(数据未显示)。由天然来源的聚合物例如明胶和HA组成的材料与当与合成生物材料例如PLGA和PCL(组织的纤维性胶囊)相比较时更弱的纤维-细胞响应和慢性炎症,以及更多的细胞向内生长、新生血管形成、生物材料分解以及组织愈合和整合所需的必要炎症相关。组织病理学评估评分的概述。根据材料组成计算评分的平均值(平均值±SD)。合成材料(PLGA和PCL)评分最低,明胶材料通常评分高于HA材料。该趋势在4周的时间点上最明显。归因于与材料注射无关的因素,并且并非所有在第1周测试的样品都可用以在第4周进行分析。明胶、HA和合成组中包括的样品的数目在第1周分别为3、4、3以及在第4周分别为2、3、1。
在注射后4周,通过注射递送至健康肾实质的天然来源的生物材料(例如,明胶或HA)引发的组织响应在病理学上比合成来源的生物材料弱,如通过半定量组织病理学评估测量的。
实施例16-培养的人肾细胞的缺氧暴露诱导细胞迁移和附着的介质以
及有助于肾小管细胞单层的体外修复
研究氧张力在于慢性肾病(CKD)的模型中具有证实的治疗功能的肾上皮细胞(B2)的选择的群体的分离和功能中的作用。本研究检查在处理过程中低氧暴露是否改变选择的人肾细胞(SRC)或生物活性肾细胞(BRC)的组成和功能。在暴露于2%的氧后,观察到下列现象:细胞跨密度梯度的分布的改变(参见Presnell等人WO10/056328,通过引用整体并入本文),总体梯度后产率的提高,氧调节的基因表达的调节(先前报导于Kelley等人,同上,(2010)中),增加的红细胞生成素、VEGF、HIF1-α和KDR(VEGFR2)的表达。在处理中,对低氧的暴露增强选择的生物活性肾细胞修复/再生受损肾小管的能力。
图27描述了在处理过程中将细胞暴露于低氧的方法。图28显示在暴露于2%的氧后,观察到下列现象:改变细胞的跨密度梯度的分布,提高了总体梯度后产率。缺氧暴露(<3%)增加了培养的人CKD来源的肾细胞从基于碘克沙醇的密度梯度的回收(相对于大气氧张力(21%))(96%对74%)和增加了选择的细胞(B2)至高密度(>9%碘克沙醇)级分(21.6%对11.2%)的相对分布。
竞争性体外测定显示预暴露于缺氧条件24小时的B2细胞比在21%的氧张力下培养的B2细胞更精于修复受损的近端肾小管细胞单层培养物,58.6%±3%的修复在损害的两小时内发生。
图29A描述了被开发来体外观察肾小管细胞单层的修复的测定。1.用荧光染料标记细胞(2%的氧,21%的氧和HK2肾小管细胞)。2.建立肾小管细胞单层,损害所述单层。3.加入暴露于氧的标记细胞(暴露于2%和21%的氧的细胞)。将它们同样地以20,000/cm2接种。在5%O2下于无血清培养基中培养24小时。4.定量修复损害的细胞。图29B-定量成像分析(BDPathway855BioImager)-红圆圈=在2%O2下培养的细胞,蓝圆圈=21%O2。图29C-观察到2%的氧诱导的细胞更快地(2小时)附着并且保持微弱优势24小时。利用2%的氧诱导的细胞更精于肾小管上皮单层的修复。
图30A描述了被开发来体外观察肾小管细胞单层的修复的测定。1.用荧光染料标记细胞。2.在8μm孔径的transwell插入物的底部建立肾小管细胞单层,然后损害所述单层。3.倒转插入物,添加暴露于氧的标记细胞(暴露于2%和21%的氧的细胞)。将它们同样地以50,000/cm2接种。在5%O2下于无血清培养基中培养24小时。4.定量修复损害的细胞。
图30B显示利用2%的氧诱导细胞与未诱导的(21%的氧)相比较增强了迁移和伤口修复。图30C将迁移细胞%对迁移时间作图。细胞的平均数目和细胞的平均百分比提供于表16.1中。
缺氧还诱导CXCR4、MMP9、ICAM1和肌营养不良蛋白聚糖、介导细胞迁移和粘附的基因的mRNA表达。通过免疫细胞化学确认MMP9在细胞膜上的局部积累和连接蛋白43聚集体在细胞膜上的增加。
图31A显示骨桥蛋白由肾小管细胞分泌并且响应损害而被上调(骨桥蛋白免疫组织化学:赫斯特核染色(蓝色),骨桥蛋白(红色),10x)。骨桥蛋白为分泌型磷酸化糖蛋白(Kelly等人J Am Soc Soc Nephrol,1999)。骨桥蛋白在肾小管中表达并且参与粘附和迁移。骨桥蛋白在已建立的肾小管细胞单层中因损害而被上调,如通过免疫荧光(图31A)和ELISA(图31B)显示的。
表161
使用简单PCI的定量图像分析
图32A显示细胞的迁移响应部分由骨桥蛋白介导(绿色=迁移的细胞(5x))。图32B显示针对骨桥蛋白的中和抗体(NAb)减少肾细胞迁移响应50%。
图33显示细胞的低氧诱导调节组织重构基因的表达。窖蛋白1为参与整联蛋白信号转导的调控的支架蛋白质。MMP9为通过细胞外基质降解帮助迁移的金属蛋白酶。ICAM1为与上皮细胞运动相关的细胞内粘附分子。CXCR4为介导细胞迁移的趋化因子表面受体。
图34描述了导致肾再生的细胞的生物活性的低氧增强的假定机制。
综上所述,这些结果表明缺氧暴露有利于显示具有肾小管损害的体外修复的生物活性的特定肾细胞亚群的分离,从而可在体内递送后潜在地增强此类细胞迁移和移入患病组织的能力。SRC在进行性CKD的啮齿类动物模型中显示稳定肾功能和增强存活的能力。低氧水平(2%O2)提供了下列方面:增加的选择的再生细胞的培养后回收;增强的响应肾小管损害的细胞粘附和单层修复;和响应肾小管损害的刺激的细胞迁移。此外,细胞迁移和粘附部分由骨桥蛋白体外介导,低氧上调整联蛋白、分泌型蛋白质以及介导组织重构、迁移和细胞间通信的细胞粘附分子。
实施例17-尿来源的微囊泡
进行排入尿中的肾来源的微囊泡的腔内容物中的miRNA和蛋白质的分析以确定它们是否可能用作评估再生结果的生物标志物。由于过量微囊泡排入细胞外空间中,因此一些微囊泡与相邻细胞融合,而其它微囊泡排入尿中(Zhou等人2008.Kidney Int.74(5):613-621)。此类尿微囊泡现成为测定发展(以更好地理解治疗结果)的优良生物标志物。
使用具有慢性进行性肾功能衰竭的代谢疾病的ZSF1啮齿类动物模型。将B2+B4细胞注射入ZSF1动物的肾实质。将健康动物和PBS媒介物用作对照。如下所概述的,在不同时间点上分析尿来源的囊泡。
1:ZSF1动物-注射PBS媒介物;在注射后197天收集尿
2:ZSF1动物-注射PBS囊泡;在注射后253天收集尿
3:ZSF1动物-注射B2+B4级分;在注射后197天收集尿
4:ZSF1动物-注射B2+B4级分;在注射后253天收集尿
5.ZSF1动物-无注射;在研究的第197天收集尿
6.ZSF1动物-无注射;在研究的第253天收集尿
7.健康动物-无注射;在研究的第197天收集尿
8.健康动物-无注射;在研究的第253天收集尿
在处理后第197天和约253天从测试动物收集尿。通过本领域已知的标准方法(例如,参见Zhou等人Kidney Int.2008年9月;74(5):613-621)从尿回收微囊泡。如由图35中的标准蛋白质印迹所显示的,从处理的动物(泳道3-4)的尿回收的微囊泡,当与媒介物处理的(泳道1-2)或未处理的对照(泳道5-8)相比较时,显示与祖细胞相关的蛋白质(CD133及WNT7A)的增加。事实上,仅从患病动物(泳道1-6)而未从健康对照(泳道7-8)回收到微囊泡,如通过微囊泡特异性蛋白CD63的表达显示的(图35)。含CD133的微囊泡似乎为从肾细胞排出的prominosome。CD133和WNT7A都与再生和干细胞分裂相关(Romagnani P和Kalluri R.2009.Fibrogenesis Tissue Repair.2(1):3;Lie等人2005.Nature.437(7063):1370-5;Willert等人2003.Nature.423(6938):448-52;Li等人2009.Am J Physiol Renal Physiol.297(6):F1526-33)。综上所述,这支持微囊泡中表达的靶蛋白为用于被设计来监测再生的测定发展的生物标志物。
miRNA微阵列和RT-PCR。利用本领域已知的标准方法(例如,参见Wang等人,同上,2010)进行来自尿来源的囊泡的miRNA的微阵列和RT-PCR分析。除了蛋白质外,还在分离的微囊泡的内容物中发现了miRNA。表17.1提供了经发现因处理而增加的miRNA的实例。
表17.1
miRNA |
RQ值 |
miRNA |
RQ值 |
miRNA |
RQ值 |
miR-15b |
6.5206 |
miR-21 |
6.4755 |
miR-30a |
6.0002 |
miR-30a* |
2.4666 |
miR-30b-5p |
9.8833 |
miR-30c |
6.1688 |
miR-30d |
5.9176 |
miR-30d* |
4.1482 |
miR-30e |
8.0836 |
miR-30e* |
2.1622 |
miR-141 |
5.1515 |
miR-146a |
2.3054 |
miR-151 |
3.4462 |
miR-200a |
9.3340 |
miR-200c |
8.0278 |
miR-429 |
9.7136 |
|
|
|
|
分析随时间过去(第197和第253天)用B2+B4处理的ZSF1动物的miRNA的改变。观察了下列miRNA的倍数变化:
分析用B2+B4处理的ZSF1动物(第253天)的miRNA水平,并且将其与用PBS媒介物处理的ZSF1动物(第253天)的miRNA水平相比较。观察下列miRNA的倍数变化:
分析用B2+B4处理的ZSF1动物(第197天)的miRNA水平,将其与用PBS媒介物处理的ZSF1动物(第197天)的miRNA水平相比较。观察下列miRNA的倍数变化:
表17.1中所列的miRNA提供了已牵涉与组织再生相关的过程的miRNA的实例。miR-15b已牵涉通过BCL-2和半胱天冬酶(caspase)调控调节细胞凋亡(Guo等人2009.J Hepatol.50(4):766-78)以及通过细胞周期蛋白的调控调节细胞周期进展(Xia等人2009.Biochem Biophys Res Commun.380(2):205-10)。已显示miR-21通过调节存活途径MAPK/ERK抑制细胞凋亡。miRNA的miR-30家族对于足细胞(podocyte)结构和功能是至关重要的,这表明增加可能是肾小球发生(glomerulargenisis)所必需的。miR-141、200a、200c和429全都参与调节响应可能减少纤维化的TGF-β信号转导的上皮至间质转化(EMT)(Saal等人2009.Curr.Opin.Nephrol.Hypertens.18:317-323)。miR-146a和151牵涉NFκB调节,因此潜在地减少体内炎症响应(Taganov等人2006.Proc Natl Acad Sci U S A.103(33):12481-6;Griffiths-Jones等人2006.NAR.34Database Issue:D140-D144)。综上所述,此类miRNA调控与成功的再生结果相关的过程;因此使它们成为测定发展的候选生物标志物。总之,该数据支持这样的概念:除了为医生提供监测治疗的非侵袭性方法外,尿微囊泡和/或其腔内容物还可为再生测定的可行的靶,因为它们包含能够调控多个途径的蛋白质和miRNA,所述途径包括:TGFβ-1、NFκB、细胞凋亡、细胞分裂和多能性。