CN103145400B - 一种高性能蜂窝陶瓷用高岭土的制备方法 - Google Patents

一种高性能蜂窝陶瓷用高岭土的制备方法 Download PDF

Info

Publication number
CN103145400B
CN103145400B CN201310061927.1A CN201310061927A CN103145400B CN 103145400 B CN103145400 B CN 103145400B CN 201310061927 A CN201310061927 A CN 201310061927A CN 103145400 B CN103145400 B CN 103145400B
Authority
CN
China
Prior art keywords
kaolin
ore pulp
ore
honeycomb ceramic
settling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310061927.1A
Other languages
English (en)
Other versions
CN103145400A (zh
Inventor
邓毅超
陈丽昆
张忠飞
冯杰
李青
蒋国明
石晓岚
王炜
陈华林
江卫忠
杨洪军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA KAOLIN CLAY Co Ltd
Original Assignee
CHINA KAOLIN CLAY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA KAOLIN CLAY Co Ltd filed Critical CHINA KAOLIN CLAY Co Ltd
Priority to CN201310061927.1A priority Critical patent/CN103145400B/zh
Publication of CN103145400A publication Critical patent/CN103145400A/zh
Application granted granted Critical
Publication of CN103145400B publication Critical patent/CN103145400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种高性能蜂窝陶瓷用高岭土的制备方法,其特征在于:依次由下列步骤组成:破碎;捣浆;选择性絮凝;沉降,控制矿浆质量浓度在12~18%,并加入质量浓度为7~13%的水玻璃以及六偏磷酸钠,测出沉降池中矿浆的温度以及液面高度,再根据斯托克斯定律的简化经验公式t=Tn×h/d2算出沉降时间,其中,所述简化公式中d表示颗粒的粒径并取值为3,在所述沉降时间下静置,结束后下层矿浆的颗粒的粒径在3微米以上、上层矿浆颗粒的粒径在3微米以下;抽滤、烘干后,造粒,使得高岭土产品中含有Fe2O3的质量百分数小于或等于0.20%、含有K2O和Na2O的质量百分数之和小于或等于0.4%,颗粒度小于2微米的含量大于或等于91%,堆积密度为0.30~0.36g/cm3,从而满足高性能蜂窝陶瓷行业的应用要求。

Description

一种高性能蜂窝陶瓷用高岭土的制备方法
技术领域
本发明涉及高性能蜂窝陶瓷用高岭土矿物原料制备领域,具体涉及一种高性能蜂窝陶瓷用高岭土的制备方法。    
背景技术
高岭土是一种由特殊硅铝晶体结构组成的粘土矿物。经过深加工和改性的高岭土是一种对于高性能蜂窝陶瓷行业来说必需的原材料,它已受到了蜂窝陶瓷行业的广泛重视,成为制备高性能蜂窝陶瓷的关键性原料。
蜂窝陶瓷是近三十年来开发的一种结构似蜂窝形状的新型陶瓷产品。由最早应用于小型汽车尾气净化到今天广泛应用在化工、电力、冶金、石油、电子电器、机械等工业中,其应用越来越广泛,发展前景相当可观。
为了解决汽车尾气排放所带来的环境压力,我国已经紧跟世界脚步先后在各城市和地区采用了汽车尾气排放国Ⅲ、国Ⅳ排放法规。因此,目前国内的研究院所以及蜂窝陶瓷生产厂家也在积极进行生产工艺的改进,试图采用生料生产工艺来生产出高性能的汽车用堇青石蜂窝陶瓷产品。但是在近10年左右的研究探索中,人们所遇到的最大的问题在于找不到合适的原料,其中最大制约在于高岭土。
目前美国康宁公司和日本NGK公司所采用的高岭土原料都是来自美国乔治亚州的片状高岭土,此高岭土不但片状晶体结构发育得非常完好,同时原料中的碱金属和碱土金属的含量也特别低。这种高品质的高岭土生产出来的蜂窝陶瓷不但能够在产品成形方向上产生很好的C轴定向排列,同时在产品烧成合成堇青石的过程中,不会出现由于碱金属和碱土金属的存在而产生大量的玻璃相的问题,也不会出现产品的热膨胀系数提高或产品的细孔容量降低的问题。但目前此高岭土早已经垄断在这两大蜂窝陶瓷巨头的手中。
其实,我国也有着丰富的高岭土资源,南方广东省有大量的水洗高岭土,北方也有着大量的硬质煤系高岭土。从矿山资源的稳定性和原料的纯度、晶体结构的角度来看,北方的煤系硬质高岭土要优于南方的水洗高岭土。特别是以山西大同土为代表,此类高岭土的晶体结构完好,同时纯度又较高,矿山的稳定性也较好,是目前国内最理想的蜂窝陶瓷生产用高岭土。但此高岭土也存在一些较大的局限性:一方面,由于煤系高岭土中含有较高的有机煤质成份,使得产品的烧失率很高,导致用此高岭土生产的产品的烧成收缩率较高,使产品容易烧成开裂,同时产品的尺寸也难以控制;另一方面,由于此高岭土为硬质高岭土,这样使得原料粉体颗粒的内流动性降低,从而使高岭土晶体结构的挤出方向定向排列会大打折扣。同时,硬质高岭土的成形外观较差,对模具的磨损也会远超过软质高岭土。
在南方的水洗高岭土中,大矿脉的产品的晶体结构达不到要求,而晶体结构好的产品又都是来源于很小的矿山,产品很不稳定,碱金属和碱土金属的含量往往都过高,很难用于工业化生产。另外,有代表性的福建龙岩高岭土,也是由于钙含量过高而不能使用。
虽然作为蜂窝陶瓷原料之一的高岭土目前在国内的生产开发技术已较为成熟,各项技术指标均基本达到要求,但是国内蜂窝陶瓷的技术水平与国外相比仍有一定差距。因此为了陶瓷非金属材料工业的突飞猛进,以及目前国内外市场上对高性能蜂窝陶瓷不断提升的性能要求,亟待开发一种高技术含量,各项物化指标均(即堆积密度,-2微米含量,杂质钾、钠以及铁的含量)能达到国际先进水平的高岭土原材料,从而满足高性能蜂窝陶瓷行业的应用需求。为此,以我国天然的优质高岭土为原料,如何提供一种高性能蜂窝陶瓷用高岭土的制备方法成为本发明研究的课题。
发明内容
本发明提供一种高性能蜂窝陶瓷用高岭土的制备方法,解决了目前蜂窝陶瓷用高岭土其主要性能较差的问题。
为达到上述目的,本发明采用的技术方案是:一种高性能蜂窝陶瓷用高岭土的制备方法,依次由下列步骤组成:
第一步,破碎
选用高岭土原矿作为原料,将其进行破碎,其中所述高岭土原矿中含有Fe2O3的质量百分数为0.5~2%、含有K2O和Na2O的质量百分数之和为0.5~1.5%;
第二步,捣浆
针对第一步中破碎后的高岭土原矿,将其放入捣浆池中,加水并机械搅拌,直至将高岭土原矿捣浆成矿浆;
第三步,选择性絮凝
将第二步中的矿浆采用泵输入到一级或二级或三级旋流器中进行选择性絮凝,从最后一级旋流器的溢流口得到选择后的矿浆;
第四步,沉降
第三步中选择后的矿浆进入沉降池中进行沉降,控制矿浆中高岭土矿物的质量浓度在12~18%之间,并加入质量浓度为7~13%的水玻璃以及与水玻璃同浓度的六偏磷酸钠水溶液,其中,加入的水玻璃的质量为沉降池中高岭土矿物质量的1~1.5%,加入六偏磷酸钠水溶液的质量为加入水玻璃质量的35~50%;然后测出沉降池中矿浆的温度以及矿浆的液面高度,再根据公式t= Tn×h/d2算出沉降时间,其中,d表示颗粒的粒径并取值为3,单位为微米,t表示沉降时间,单位为秒,h表示矿浆的液面高度,单位为厘米,n表示温度,单位为摄氏度,Tn表示温度系数,通过测出的温度值对应所述公式的温度对照表,查表得到Tn值,所述温度对照表为:
T5=15000      T6=14800      T7=14600      T8=14400
T9=14200      T10=14000      T11=13800     T12=13600
T13=13400     T14=13200      T15=13000     T16=12100
T17=11950     T18=11800      T19=11650      T20=11500
T21=11350     T22=10800      T23=10600       T24=10400
T25=10200     T26=10000      T27=9800       T28=9600
T29=9400      T30=9200;
在所述沉降时间下静置,沉降结束后沉降池的下层矿浆的颗粒的粒径在3微米以上、上层矿浆的颗粒的粒径在3微米以下;
第五步,抽滤、烘干
取出第四步中在沉降池中的上层矿浆,向取出的上层矿浆中加入硫酸溶液,调节pH值至4~5,再用抽滤机对上层矿浆进行抽滤,得到滤饼;再将滤饼进行烘干,得到高岭土粉料,高岭土粉料中含有Fe2O3的质量百分数小于或等于0.20%、含有K2O和Na2O的质量百分数之和小于或等于0.4%,高岭土粉料的颗粒度小于2微米的粒径含量大于或等于91%;
第六步,造粒
向第五步中的高岭土粉料中加入质量浓度为25~35%的聚乙烯醇溶液,加入聚乙烯醇溶液的质量为所述高岭土粉料质量的8%~15%,再在造粒机中将高岭土粉料进行造粒,得到高性能蜂窝陶瓷用高岭土产品;造粒后,高性能蜂窝陶瓷用高岭土产品的堆积密度为0.30~0.36g/cm3。 
上述技术方案中的有关内容解释如下:
1、上述方案中,所述第三步中采用泵输入到一级或二级或三级旋流器中进行选择性絮凝,即指用一级旋流器进行一次选择性絮凝,或用二级选旋流器进行两次选择性絮凝,或用三级旋流器进行三次选择性絮凝。
2、上述方案中,所述公式是根据斯托克斯定律中的公式简化并推算得来,斯托克斯定律是指与粘滞力相比,惯性力可以忽略的情况下斯托克斯导出的阻力表达式,可以指球状实体在液体中下沉时所受阻力的方程。
3、上述方案中,颗粒度小于2微米的粒径含量指的是粉体中颗粒度小于2微米的粒径的含量,以质量百分率(%)来记,也称-2微米含量。
4、上述方案中,堆积密度是指散粒材料或粉状材料,在自然堆积状态下单位体积的质量,亦称堆密度。
5、上述方案中,所述第四步中,控制矿浆中高岭土矿物的质量浓度较佳在14~16%之间。
6、上述方案中,所述六偏磷酸钠溶液作为分散剂,能够防止固体颗粒之间相互聚集;所述水玻璃指的是硅酸钠水溶液,它起到辅助分散的作用,又因为水玻璃呈碱性,在沉降时加入可以适当调节矿浆的pH值。
本发明设计构思是:一种高性能蜂窝陶瓷用高岭土的制备方法,首先选选择优质的高岭土原矿作为原料,高岭土原矿中含有Fe2O3的质量份数为0.5~2%、含有K2O和Na2O的质量分数之和为0.5~1.5%,再依次对高岭土原矿进行破碎、捣浆、选择性絮凝,然后进行沉降。由于在原本的选矿工艺过程中,除了高岭土本身所带有的微量的K、Na等碱金属杂质外,许多药剂的添加也会导致高岭土矿物中K、Na等杂质含量指标的上升,因此控制水玻璃、六偏磷酸钠等药剂的添加量在一个合理的范围之内,能够有效地降低高岭土中K、Na杂质的含量,本发明通过控制加入质量为高岭土矿物质量1~1.5%的质量浓度为7~13%的水玻璃,并控制加入同浓度的六偏磷酸钠的质量为水玻璃质量的35~50%来控制高岭土矿物中K、Na等杂质的含量,达到高岭土中K2O和Na2O的质量分数之和小于或等于0.4%的要求。
为了能够达到目前蜂窝陶瓷市场上对高岭土原料的粒度要求,在进行了多次选矿工艺试验及反复验证以后,最终得到在斯托克斯定律的简化经验公式t= Tn×h/d2中d值取值为3微米时的沉降时间条件下,其沉降可以有效地控制高岭土原料的颗粒粒径,使其颗粒度小于2微米的粒径含量≥91%。根据重力选矿的原理,在本发明的沉降条件下沉降还可以排除许多粗颗粒的杂质,其中也包括高岭土中的K、Na等杂质,而高岭土矿物中的Fe杂质在该条件下沉降时可基本被除去,达到Fe2O3的质量含量≤0.20%的要求。此外,在本发明沉降条件下沉降来控制高岭土矿物的粒径这一方法虽然很有成效,但是由于颗粒粒径过于细小,严重影响了高岭土粉料产品的堆积密度。在此基础上需要通过控制高岭土矿物的颗粒外观形状和流动性来控制高岭土粉料产品的堆积密度,因为在沉降结束后选用质量浓度为25~35%的聚乙烯醇溶液对所得的高岭土粉料产品进行造粒,再过筛,得到高性能蜂窝陶瓷用高岭土产品,其堆积密度为0.30~0.36g/cm3
由于上述技术方案的运用,本发明与现有技术相比具有下列优点和效果:
1. 本发明充分利用重力选矿的原理,在本发明的沉降条件下进行沉降,沉降时间比原有的长,在该沉降时间周期下使得颗粒较粗的高岭土矿物以及其中的K、Na、Fe等杂质都能够被除去,有效地降低了高岭土矿物中杂质K、Na和Fe的含量,高岭土粉料中含有Fe2O3的质量分数小于或等于0.20%、含有K2O和Na2O的质量分数之和小于或等于0.4%,并且高岭土矿物的颗粒度小于2微米的粒径含量大于或等于91%。
2. 本发明通过控制高岭土矿物的颗粒外观形状和流动性来控制高岭土粉料产品的堆积密度,得到高岭土产品的堆积密度为0.30~0.36g/cm3
附图说明
附图1为本发明高性能蜂窝陶瓷用高岭土的制备方法的工艺流程图;
具体实施方式
下面结合附图以及实施例对本发明作进一步描述:
实施例一:一种高性能蜂窝陶瓷用高岭土的制备方法
参见图1所示,依次由下列步骤组成:
第一步,破碎
选用高岭土原矿作为原料,将其进行破碎,其中所述高岭土原矿中含有Fe2O3的质量百分数为0.5~2%、含有K2O和Na2O的质量百分数之和为0.5~1.5%;
第二步,捣浆
针对第一步中破碎后的高岭土原矿,将其放入捣浆池中,加水并机械搅拌,直至将高岭土原矿捣浆成矿浆;
第三步,选择性絮凝
将第二步中的矿浆采用泵输入到三级旋流器中进行选择性絮凝,首先采用直径为200mm的第一级旋流器进行絮凝,从旋流器的溢流口得到第一次选择后的矿浆;再采用直径为150mm的第二级旋流器进行絮凝,从该旋流器得到第二次选择后的矿浆;再采用直径为75mm的第三级旋流器进行絮凝,从第三级旋流器的溢流口得到选择后的矿浆;
第四步,沉降
第三步中选择后的矿浆进入沉降池中进行沉降,控制矿浆中高岭土矿物的质量浓度在15%,并加入质量浓度为10%的水玻璃以及与水玻璃同浓度的六偏磷酸钠溶液,其中,加入的水玻璃的质量为沉降池中高岭土矿物质量的1.2%,加入六偏磷酸钠溶液的质量为水玻璃质量的43%;然后测出沉降池中矿浆的温度以及矿浆的液面高度,再根据公式t= Tn×h/d2算出沉降时间,其中,所述简化公式中d表示颗粒的粒径并取值为3微米,t表示沉降时间,单位为秒,h表示矿浆的液面高度,单位为厘米,n表示温度,单位为摄氏度,Tn表示温度系数,通过测出的温度值对应所述简化公式的温度对照表,查表得到Tn值,所述温度对照表为
T5=15000      T6=14800      T7=14600      T8=14400
T9=14200      T10=14000      T11=13800     T12=13600
T13=13400     T14=13200      T15=13000     T16=12100
T17=11950     T18=11800      T19=11650      T20=11500
T21=11350     T22=10800      T23=10600       T24=10400
T25=10200     T26=10000      T27=9800       T28=9600
T29=9400      T30=9200;
在所述沉降时间下静置,沉降结束后沉降池的下层矿浆的颗粒的粒径在3微米以上、上层矿浆的颗粒的粒径在3微米以下;
第五步,抽滤、烘干
取出第四步中在沉降池中的上层矿浆,向取出的上层矿浆中加入硫酸溶液,调节pH值至4~5,再用抽滤机对上层矿浆进行抽滤,得到滤饼;再将滤饼进行烘干,得到高岭土粉料,高岭土粉料中含有Fe2O3的质量百分数为0.15%、含有K2O和Na2O的质量百分数之和小为0.2%,高岭土粉料的颗粒度小于2微米的粒径含量为93%;
第六步,造粒
向第五步中的高岭土粉料中加入质量浓度为30%的聚乙烯醇溶液,加入聚乙烯醇溶液的质量为所述高岭土粉料质量的10%,再在造粒机中将高岭土粉料进行造粒,得到高性能蜂窝陶瓷用高岭土产品;造粒后,高性能蜂窝陶瓷用高岭土产品的堆积密度为0.32g/cm3
实施例二:一种高性能蜂窝陶瓷用高岭土的制备方法
依次由下列步骤组成:
第一步,破碎
选用高岭土矿物作为原料,将其进行破碎,其中所述高岭土矿物中含有Fe2O3的质量百分数为0.5~2%、含有K2O和Na2O的质量百分数之和为0.5~1.5%;
第二步,捣浆
针对第一步中破碎后的高岭土矿物,将其放入捣浆池中,加水并机械搅拌,直至将高岭土矿物捣浆成矿浆;
第三步,选择性絮凝
将第二步中的矿浆采用泵输入到二级旋流器中进行选择性絮凝,首先采用直径为150mm的第一级旋流器进行絮凝,从旋流器的溢流口得到第一次选择后的矿浆;再采用直径为75mm的第二级旋流器进行絮凝,从第二级旋流器溢流口得到选择后的矿浆; 
第四步,沉降
第三步中选择后的矿浆进入沉降池中进行沉降,控制矿浆中高岭土矿物的质量浓度在12%之间,并加入质量浓度为7%的水玻璃以及与水玻璃同浓度的六偏磷酸钠溶液,其中,加入的水玻璃的质量为沉降池中高岭土矿物质量的1.5%,加入六偏磷酸钠溶液的质量为水玻璃质量的50%;然后测出沉降池中矿浆的温度以及矿浆的液面高度,再公式t= Tn×h/d2算出沉降时间,其中,所述简化公式中d表示颗粒的粒径并取值为3微米,t表示沉降时间,单位为秒,h表示矿浆的液面高度,单位为厘米,n表示温度,单位为摄氏度,Tn表示温度系数,通过测出的温度值对应所述简化公式的温度对照表,查表得到Tn值,所述温度对照表为
T5=15000      T6=14800      T7=14600      T8=14400
T9=14200      T10=14000      T11=13800     T12=13600
T13=13400     T14=13200      T15=13000     T16=12100
T17=11950     T18=11800      T19=11650      T20=11500
T21=11350     T22=10800      T23=10600       T24=10400
T25=10200     T26=10000      T27=9800       T28=9600
T29=9400      T30=9200;
在所述沉降时间下静置,沉降结束后沉降池的下层矿浆的颗粒的粒径在3微米以上、上层矿浆的颗粒的粒径在3微米以下;
第五步,抽滤、烘干
取出第四步中在沉降池中的上层矿浆,向取出的上层矿浆中加入硫酸溶液,调节pH值至4~5,再用抽滤机将矿浆进行抽滤,得到滤饼;再将滤饼进行烘干,得到高岭土粉料,高岭土粉料中含有Fe2O3的质量百分数为0.20%、含有K2O和Na2O的质量百分数之和为0.4%,高岭土粉料的颗粒度小于2微米的粒径含量为91%;
第六步,造粒
向第五步中的高岭土粉料中加入质量浓度为25%的聚乙烯醇溶液,加入聚乙烯醇溶液的质量为所述高岭土粉料质量的15%,再在造粒机中将高岭土粉料进行造粒,得到高性能蜂窝陶瓷用高岭土产品;造粒后,高性能蜂窝陶瓷用高岭土产品的堆积密度为0.30g/cm3
实施例三:一种高性能蜂窝陶瓷用高岭土的制备方法
依次由下列步骤组成:
第一步,破碎
选用高岭土原矿作为原料,将其进行破碎,其中所述高岭土原矿中含有Fe2O3的质量百分数为0.5~2%、含有K2O和Na2O的质量百分数之和为0.5~1.5%;
第二步,捣浆
针对第一步中破碎后的高岭土矿物,将其放入捣浆池中,加水并机械搅拌,直至将高岭土矿物捣浆成矿浆;
第三步,选择性絮凝
将第二步中的矿浆采用泵输入到直径为75mm的一级旋流器中进行选择性絮凝,从旋流器的溢流口得到选择后的矿浆;
第四步,沉降
第三步中选择后的矿浆进入沉降池中进行沉降,控制矿浆中高岭土矿物的质量浓度在18%之间,并加入质量浓度为13%的水玻璃以及与水玻璃同浓度的六偏磷酸钠溶液,其中,加入的水玻璃的质量为沉降池中高岭土矿物质量的1%,加入六偏磷酸钠溶液的质量为水玻璃质量的35%;然后测出沉降池中矿浆的温度以及矿浆的液面高度,再根据公式t= Tn×h/d2算出沉降时间,其中,所述简化公式中d表示颗粒的粒径并取值为3微米,t表示沉降时间,单位为秒,h表示矿浆的液面高度,单位为厘米,n表示温度,单位为摄氏度,Tn表示温度系数,通过测出的温度值对应所述简化公式的温度对照表,查表得到Tn值,所述温度对照表为
T5=15000      T6=14800      T7=14600      T8=14400
T9=14200      T10=14000      T11=13800     T12=13600
T13=13400     T14=13200      T15=13000     T16=12100
T17=11950     T18=11800      T19=11650      T20=11500
T21=11350     T22=10800      T23=10600       T24=10400
T25=10200     T26=10000      T27=9800       T28=9600
T29=9400      T30=9200;
在所述沉降时间下静置,沉降结束后沉降池的下层矿浆的颗粒的粒径在3微米以上、上层矿浆的颗粒的粒径在3微米以下;
第五步,抽滤、烘干
取出第四步中在沉降池中的上层矿浆,向取出的上层矿浆中加入硫酸溶液,调节pH值至4~5,再用抽滤机将矿浆进行抽滤,得到滤饼;再将滤饼进行烘干,得到高岭土粉料,高岭土粉料中含有Fe2O3的质量百分数为0.18%、含有K2O和Na2O的质量百分数之和小于或等于0.35%,高岭土粉料的颗粒度小于2微米的粒径含量为91.8%;
第六步,造粒
向第五步中的高岭土粉料中加入质量浓度为35%的聚乙烯醇溶液,加入聚乙烯醇溶液的质量为所述高岭土粉料质量的8%,再在造粒机中将高岭土粉料进行造粒,得到高性能蜂窝陶瓷用高岭土产品;造粒后,高性能蜂窝陶瓷用高岭土产品的堆积密度为0.36g/cm3
在实施例一、实施例二以及实施例三中,高岭土中Fe2O3含量的测定方法参见GB/T 14563-2008《高岭土及其试验方法》第12页;高岭土中K2O和Na2O含量的测定方法参见GB/T 14563-2008《高岭土及其试验方法》第16页。高岭土的颗粒度小于2微米的粒径含量是用湿法在TopSizer激光粒度分析仪(生产厂商:珠海欧美克仪器有限公司)中进行测定。
堆积密度的测定方法:首先称量出盛粉料的容器的质量m0(单位为克,g),容器的容积规定为100毫升,再取一漏斗,漏斗中装有容器容积1.2~1.5倍的粉料。抽出堵住漏斗的塞棒后,粉料由一定的高度落入容器,然后用厚3mm的刮片将容器上堆积的粉料刮平,称取容器于粉料的质量之和ms(单位为克,g),求得粉料的堆积密度ρB(单位为克/立方厘米,g/cm3),计算公式为                                                
Figure 2013100619271100002DEST_PATH_IMAGE001
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种高性能蜂窝陶瓷用高岭土的制备方法,其特征在于:依次由下列步骤组成:
第一步,破碎
选用高岭土原矿作为原料,将其进行破碎,其中所述高岭土原矿中含有Fe2O3的质量百分数为0.5~2%、含有K2O和Na2O的质量百分数之和为0.5~1.5%;
第二步,捣浆
针对第一步中破碎后的高岭土原矿,将其放入捣浆池中,加水并机械搅拌,直至将高岭土原矿捣浆成矿浆;
第三步,选择性絮凝
将第二步中的矿浆采用泵输入到一级或二级或三级旋流器中进行选择性絮凝,从最后一级旋流器的溢流口得到选择后的矿浆;
第四步,沉降
第三步中选择后的矿浆进入沉降池中进行沉降,控制矿浆中高岭土矿物的质量浓度在12~18%之间,并加入质量浓度为7~13%的水玻璃以及与水玻璃同浓度的六偏磷酸钠水溶液,其中,加入的水玻璃的质量为沉降池中高岭土矿物质量的1~1.5%,加入六偏磷酸钠水溶液的质量为加入水玻璃质量的35~50%;然后测出沉降池中矿浆的温度以及矿浆的液面高度,再根据公式t= Tn×h/d2算出沉降时间,其中,d表示颗粒的粒径并取值为3,单位为微米,t表示沉降时间,单位为秒,h表示矿浆的液面高度,单位为厘米,n表示温度,单位为摄氏度,Tn表示温度系数,通过测出的温度值对应所述公式的温度对照表,查表得到Tn值,所述温度对照表为:
T5=15000      T6=14800      T7=14600      T8=14400
T9=14200      T10=14000      T11=13800     T12=13600
T13=13400     T14=13200      T15=13000     T16=12100
T17=11950     T18=11800      T19=11650      T20=11500
T21=11350     T22=10800      T23=10600       T24=10400
T25=10200     T26=10000      T27=9800       T28=9600
T29=9400      T30=9200;
在所述沉降时间下静置,沉降结束后沉降池的下层矿浆的颗粒的粒径在3微米以上、上层矿浆的颗粒的粒径在3微米以下;
第五步,抽滤、烘干
取出第四步中在沉降池中的上层矿浆,向取出的上层矿浆中加入硫酸溶液,调节pH值至4~5,再用抽滤机对上层矿浆进行抽滤,得到滤饼;再将滤饼进行烘干,得到高岭土粉料,高岭土粉料中含有Fe2O3的质量百分数小于或等于0.20%、含有K2O和Na2O的质量百分数之和小于或等于0.4%,高岭土粉料的颗粒度小于2微米的粒径含量大于或等于91%;
第六步,造粒
向第五步中的高岭土粉料中加入质量浓度为25~35%的聚乙烯醇溶液,加入聚乙烯醇溶液的质量为所述高岭土粉料质量的8%~15%,再在造粒机中将高岭土粉料进行造粒,得到高性能蜂窝陶瓷用高岭土产品;造粒后,高性能蜂窝陶瓷用高岭土产品的堆积密度为0.30~0.36g/cm3
2. 根据权利要求1所述的高性能蜂窝陶瓷用高岭土的制备方法,其特征在于:所述第四步中,控制矿浆中高岭土矿物的质量浓度在14~16%之间。
CN201310061927.1A 2013-02-27 2013-02-27 一种高性能蜂窝陶瓷用高岭土的制备方法 Active CN103145400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310061927.1A CN103145400B (zh) 2013-02-27 2013-02-27 一种高性能蜂窝陶瓷用高岭土的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310061927.1A CN103145400B (zh) 2013-02-27 2013-02-27 一种高性能蜂窝陶瓷用高岭土的制备方法

Publications (2)

Publication Number Publication Date
CN103145400A CN103145400A (zh) 2013-06-12
CN103145400B true CN103145400B (zh) 2014-02-19

Family

ID=48543786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310061927.1A Active CN103145400B (zh) 2013-02-27 2013-02-27 一种高性能蜂窝陶瓷用高岭土的制备方法

Country Status (1)

Country Link
CN (1) CN103145400B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071964B (zh) * 2016-04-15 2022-04-26 巴斯夫公司 制备水合高岭土粘土的方法以及所制得的产物
CN108854172B (zh) * 2018-06-22 2021-02-05 中国高岭土有限公司 一种提升高岭土矿浆脱水效率的方法
CN113912072A (zh) * 2021-10-09 2022-01-11 上海磐石矿业有限公司 一种低品位粘土矿物的高效提纯方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661515A (en) * 1970-05-18 1972-05-09 Huber Corp J M Method of brightening kaolin clay by removing organic contaminants
CN1101592A (zh) * 1993-10-12 1995-04-19 武汉工业大学 高岭土选择性分散—絮凝除铁工艺
KR100334295B1 (ko) * 1999-11-30 2002-05-03 곽영훈 고령토에 함유된 산화철과 이산화티탄 제거를 위한 건식정제 방법
CN1613818A (zh) * 2004-11-09 2005-05-11 茂名高岭科技有限公司 一种超细高岭土的生产方法
CN102357400A (zh) * 2011-07-29 2012-02-22 合浦沪天高岭土有限责任公司 低品位高岭土矿的加工方法

Also Published As

Publication number Publication date
CN103145400A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
CN104876625B (zh) 一种利用粘土性含铁尾矿制备超轻陶粒的方法
CN104496438B (zh) 一种石英砂矿尾矿或硅砂矿尾矿基高强度陶瓷板及其制备方法
CN107043274A (zh) 一种以大掺量、低成本、高性能多孔陶瓷的制备方法
CN108821758A (zh) 用花岗岩石材废料制备的透水砖及其制备方法
CN104072193A (zh) 基于含硅铝固废的发泡陶瓷材料及制备防火保温板的方法
CN103145400B (zh) 一种高性能蜂窝陶瓷用高岭土的制备方法
CN103468239B (zh) 以焦宝石为原料的低密高强陶粒支撑剂及其制备方法
CN105801161B (zh) 一种离子型稀土尾矿多孔陶粒的制备方法
CN103979546A (zh) 一种利用石英砂尾砂提纯高白石英砂、硅微粉的生产方法
CN104291539B (zh) 一种利用co2与废酸联合处理拜耳法赤泥脱碱的方法
CN101935203A (zh) 一种综合利用多种尾矿生产的日用陶瓷及其制造方法
CN104371703B (zh) 一种以高铝粉煤灰为原料制备石油压裂支撑剂的方法
CN104402017A (zh) 一种粉煤灰合成沸石的方法
CN107500325A (zh) 一种煤矸石生产纳米氧化铝粉体的方法
CN106629743B (zh) 一种利用石英尾砂生产陶瓷釉用石英砂的方法
CN105837252A (zh) 多孔氧化铝陶瓷及其制备方法
CN104496433B (zh) 一种以钨尾矿为主要原料的高强度陶瓷及其制备方法
CN102910931A (zh) 轻质高强度高气孔率多孔陶瓷的制备方法
CN109336123A (zh) 一种利用粉煤灰制备高模数水玻璃的方法
CN108658583A (zh) 一种中温高白瓷泥的制备方法
CN103482627A (zh) 重结晶用的碳化硅微粉的生产方法
CN103435050A (zh) 一种从单晶硅环保废砂浆中制备白炭黑的方法
CN102259874B (zh) 一种连续碳分制备白炭黑的方法
CN111960701B (zh) 还原焙烧分离回收铁及硅铝同步活化赤泥全量化利用方法
CN103588468A (zh) 一种回收既有电瓷废料进行再制造的电瓷材料及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant