CN103045238A - 一种纳米片发光材料及其制备方法 - Google Patents
一种纳米片发光材料及其制备方法 Download PDFInfo
- Publication number
- CN103045238A CN103045238A CN2012105750096A CN201210575009A CN103045238A CN 103045238 A CN103045238 A CN 103045238A CN 2012105750096 A CN2012105750096 A CN 2012105750096A CN 201210575009 A CN201210575009 A CN 201210575009A CN 103045238 A CN103045238 A CN 103045238A
- Authority
- CN
- China
- Prior art keywords
- white powder
- mgga
- nanometer sheet
- furnace temperature
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明涉及一种MgGa2O4:Mn2+纳米片的合成方法,采用两步合成法,包括:采用尿素水解沉淀法制备前驱体白色粉末;将白色粉末研磨均匀,倒入瓷舟中,进行加热;炉温达到1000℃后保持反应三小时,然后在Ar气保护下冷却到室温;收集到白色的粉末分散在HCI溶液中超声10min;过滤,洗涤以及真空干燥之后得到MgGa2O4:Mn2+纳米片。
Description
技术领域
本发明涉及一种纳米片发光材料,尤其涉及MgGa2O4:Mn2+纳米片。
背景技术
纳米发光材料是指基质的粒子尺寸在1-100nm的发光材料,它包括半导体纳米晶体发光材料和具有分立发光中心的掺杂稀土或过渡金属离子的纳米发光材料。1994年Bharagava等首次报道了过渡金属离子掺杂半导体纳米微粒Zns:Mn的发光性质,发现其发光寿命缩短了5个数量级,而外量子效率仍高达18%。尽管这是一个有争议的结果,但是却引起了人们半导体纳米发光材料的极大兴趣。目前,在半导体纳米发光材料上已经进行了大量的、较深入的研究,如量子点、量子线、量子阱、超品格、多孔硅和有序纳米结构阵列等。在理论上,主要探讨量子限域效应和小尺寸效应等对半导体材料能带结构和光谱性质的影响;在应用上,从材料的制备和加工入手,寻找材料的应用及功能器件制造的途径。与此同时,稀土或过渡金属离子掺杂的纳米发光材料也开始受到关注,并探索了大量的合成方法,如沉淀法、热分解法、溶胶-凝胶法、燃烧法、激光蒸发冷凝法、CVD法、水热法、模板组装等。从应用的背景考虑,以掺杂纳米材料取代相应的体材料,可以提高显示的分辨率,并能在光电器件、光催化和化学传感器等方面有更多应用。从基础研究考虑,掺杂纳米发光材料为研究微观表面物理问题尤其是表面微观环境提供了理想的载体。因此,稀土和过渡金属掺杂纳米发光材料正成为发光学研究的热点之一。
发明内容
本发明采用两步合成法合成MgGa2O4:Mn2+纳米片。
本发明提供一种MgGa2O4:Mn2+纳米片的合成方法,采用两步合成法,包括:
采用尿素水解沉淀法制备前驱体白色粉末;
将白色粉末研磨均匀,倒入瓷舟中,进行加热;
炉温达到1000℃后保持反应三小时,然后在Ar气保护下冷却到室温;
收集到白色的粉末分散在HCl溶液中超声10min;
过滤,洗涤以及真空干燥之后得到MgGa2O4:Mn2+纳米片。
附图简要说明
图1室温下用390nm波长激发所得到的MgGa2O4:Mn2+纳米片的光致发光谱图。
具体实施方式
本发明采用采用两步合成法合成MgGa2O4:Mn2+纳米片。
前驱体的制备采用的是尿素水解沉淀法。将一定量的Ga(NO3)3,Mg(NO3)2,Mn(NO3)2,尿素以及蒸馏水按照摩尔比例1:2:0.004:5:400混合在一起,磁力搅拌成透明溶液。然后将上述混合溶液倒入内衬聚四氟乙烯的高压釜中并密封,在150℃下保持反应24h。待反应结束后,将高压釜中的白色沉淀经过滤、水洗若干遍之后再在60℃真空干燥数小时,得到白色粉末作为反应的前驱体。
将上述白色粉末研磨均匀,倒入瓷舟中,置于管式炉的中央。在加热之前,通入大流量的高纯度Ar气,大概持续20分钟,以便将整个气路中的空气排出。然后通入氢气和氢气的混合气体,并接通加热炉的主回路电源对石英管进行加热。通入氢气的原因是防止Mn2+被氧化。炉温达到1000℃后保持反应三小时,然后在Ar气保护下冷却到室温。反应完毕后,将在舟中收集到白色的粉末分散在浓度为O.1M的HCI溶液中超声10min,之后过滤,用蒸馏水洗涤到中性,在室温下真空干燥之后得到MgGa2O4:Mn2+纳米片。
图1是在室温下用390nm波长激发所得到的MgGa2O4:Mn2+纳米片的光致发光谱图。图中显示样品具有宽带发射,发射峰强度最大值对应的波长位于566nm处。
MgGa2O4:Mn2+经390nm波长激发可以得到宽带发射,发射峰强度最大值对应的波长位于566nm处。Mn2+离子主要占据了MgGa2O4:Mn2+四面体空隙而处于相对比较弱的晶体场中,由4T1(4G)→6A1(6S)的跃迁而产生黄绿色光。由于MgGa2O4:Mn2+纳米片的结构特点和发光性质,其可以作为可见光区域内的纳米发光材料有着潜在的应用前景。
Claims (1)
1.一种MgGa2O4:Mn2+纳米片的合成方法,采用两步合成法,包括:
采用尿素水解沉淀法制备前驱体白色粉末;
将白色粉末研磨均匀,倒入瓷舟中,进行加热;
炉温达到1000℃后保持反应三小时,然后在Ar气保护下冷却到室温;
收集到白色的粉末分散在HCI溶液中超声10min;
过滤,洗涤以及真空干燥之后得到MgGa2O4:Mn2+纳米片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105750096A CN103045238A (zh) | 2012-12-26 | 2012-12-26 | 一种纳米片发光材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105750096A CN103045238A (zh) | 2012-12-26 | 2012-12-26 | 一种纳米片发光材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103045238A true CN103045238A (zh) | 2013-04-17 |
Family
ID=48058103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105750096A Pending CN103045238A (zh) | 2012-12-26 | 2012-12-26 | 一种纳米片发光材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103045238A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110172343A (zh) * | 2019-06-20 | 2019-08-27 | 中国人民银行印制科学技术研究所 | 发光材料、发光制品及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3407325A (en) * | 1965-09-28 | 1968-10-22 | Sylvania Electric Prod | Fluorescent manganese activated magnesium gallate phosphor and lamp |
JPS5032083A (zh) * | 1973-07-24 | 1975-03-28 | ||
JP2007031668A (ja) * | 2005-07-29 | 2007-02-08 | Japan Science & Technology Agency | 遷移金属ドープ・スピネル型MgGa2O4蛍光体およびその製造方法 |
CN101108742A (zh) * | 2007-08-15 | 2008-01-23 | 山东轻工业学院 | 一种制备纳米镓酸镁的新方法 |
CN101851506A (zh) * | 2010-04-20 | 2010-10-06 | 温州大学 | 一种纳米铝酸锶长余辉发光材料及其制备方法 |
-
2012
- 2012-12-26 CN CN2012105750096A patent/CN103045238A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3407325A (en) * | 1965-09-28 | 1968-10-22 | Sylvania Electric Prod | Fluorescent manganese activated magnesium gallate phosphor and lamp |
JPS5032083A (zh) * | 1973-07-24 | 1975-03-28 | ||
JP2007031668A (ja) * | 2005-07-29 | 2007-02-08 | Japan Science & Technology Agency | 遷移金属ドープ・スピネル型MgGa2O4蛍光体およびその製造方法 |
CN101108742A (zh) * | 2007-08-15 | 2008-01-23 | 山东轻工业学院 | 一种制备纳米镓酸镁的新方法 |
CN101851506A (zh) * | 2010-04-20 | 2010-10-06 | 温州大学 | 一种纳米铝酸锶长余辉发光材料及其制备方法 |
Non-Patent Citations (6)
Title |
---|
G.K.B. COSTA 等: "Preparation, structure analysis and photoluminescence properties of MgGa2O4:Mn2+", 《OPTICAL MATERIALS》 * |
MASAHIRO TAKESADA 等: "Glycothermal Synthesis and Photoluminescence of MgGa2O4:Mn2+ Nanophosphors: Comparison to ZnGa2O4:Mn2+ Nanophosphors", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 * |
YOUNG-MIN MOON 等: "Sensitized photoluminescent properties of manganese-activated magnesium gallate phosphor", 《JOURNAL OF LUMINESCENCE》 * |
乔彬等: "ZnGa_2O_4∶Cr~(3+)红色荧光粉的光致及电致发光性能", 《物理化学学报》 * |
史强等: "柠檬酸溶胶-凝胶法合成ZnGa_2O_4:Mn~(2+)纳米粉末的结构和发光性能研究", 《功能材料》 * |
郑淑华等: "纳米棒状MAl_2O_4∶Eu~(2+),Dy~(3+)(M=Sr,Ba)长余辉发光材料的制备与性能", 《中国稀土学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110172343A (zh) * | 2019-06-20 | 2019-08-27 | 中国人民银行印制科学技术研究所 | 发光材料、发光制品及其制备方法 |
CN110172343B (zh) * | 2019-06-20 | 2022-03-18 | 中钞印制技术研究院有限公司 | 发光材料、发光制品及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ntwaeaborwa et al. | Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles | |
Tian et al. | Luminescent properties of Y2 (MoO4) 3: Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method | |
Lang et al. | Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles | |
Li et al. | Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties | |
Hou et al. | Facile template free synthesis of KLa (MoO 4) 2: Eu 3+, Tb 3+ microspheres and their multicolor tunable luminescence | |
Cheng et al. | BaAl2O4: Eu2+, Dy3+ nanotube synthesis by heating conversion of homogeneous coprecipitates and afterglow characteristics | |
Saranya et al. | Role of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cell | |
Kumar et al. | Green synthesis of Y2O3: Dy3+ nanophosphor with enhanced photocatalytic activity | |
Chandrasekhar et al. | Synthesis of Eu3+-activated ZnO superstructures: Photoluminescence, Judd–Ofelt analysis and Sunlight photocatalytic properties | |
Wang et al. | Enhanced visible light-driven photocatalytic activities and photoluminescence characteristics of BiOF nanoparticles determined via doping engineering | |
Lu et al. | Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies | |
Zhang et al. | High yield synthesis of homogeneous boron doping C3N4 nanocrystals with enhanced photocatalytic property | |
Choudhary et al. | Facile synthesis of Ce doped ZnO nanowires for efficient photocatalytic removal of organic pollutants from water | |
Chen et al. | Novel necklace-like MAl2O4: Eu2+, Dy3+ (M= Sr, Ba, Ca) phosphors via a CTAB-assisted solution-phase synthesis and postannealing approach | |
Pandiyarajan et al. | UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures | |
Silver et al. | Yttrium oxide upconverting phosphors. Part 2: temperature dependent upconversion luminescence properties of erbium in yttrium oxide | |
CN105148973A (zh) | 一种用作可见光催化剂的电子束辐照改性类石墨相氮化碳的制备方法 | |
Wu et al. | Microwave-hydrothermal preparation of flower-like ZnO microstructure and its photocatalytic activity | |
Gu et al. | The core-shell-structured NaYF4: Er3+, Yb3+@ NaYF4: Eu3+ nanocrystals as dual-mode and multifunctional luminescent mechanism for high-performance dye-sensitized solar cells | |
Priya et al. | Synthesis of intense red light-emitting β-Ca2SiO4: Eu3+ phosphors for near UV-excited light-emitting diodes utilizing agro-food waste materials | |
Yan et al. | Synthesis and photocatalytic activity of Ag-CdWO4 nanorods | |
Madhusudana et al. | Photocatalytic performance of rice grain shaped ZnO microrods under solar irradiation | |
Fan et al. | Enhanced photocatalytic activity and upconversion luminescence of flowerlike hierarchical Bi 2 MoO 6 microspheres by Er 3+ doping | |
Choudhary et al. | Enhanced photocatalytic activity of Er doped ZnO nanospindles and nanorods for degradation of organic pollutants | |
Ding et al. | The “photons storage pool” effect of long afterglow phosphor for r'ound-the-clock photocatalytic clean energy evolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130417 |