CN103044217B - 一种费托合成反应水中非酸性含氧有机物的分离回收方法 - Google Patents

一种费托合成反应水中非酸性含氧有机物的分离回收方法 Download PDF

Info

Publication number
CN103044217B
CN103044217B CN201110315419.2A CN201110315419A CN103044217B CN 103044217 B CN103044217 B CN 103044217B CN 201110315419 A CN201110315419 A CN 201110315419A CN 103044217 B CN103044217 B CN 103044217B
Authority
CN
China
Prior art keywords
tower
logistics
pieces
acetone
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110315419.2A
Other languages
English (en)
Other versions
CN103044217A (zh
Inventor
孙启文
杨正伟
蒋凡凯
陈立才
张宗森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI YANKUANG ENERGY SOURCE SCIENCE AND TECHNOLOGY RESEARCH DEVELOPMENT Co
Original Assignee
SHANGHAI YANKUANG ENERGY SOURCE SCIENCE AND TECHNOLOGY RESEARCH DEVELOPMENT Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI YANKUANG ENERGY SOURCE SCIENCE AND TECHNOLOGY RESEARCH DEVELOPMENT Co filed Critical SHANGHAI YANKUANG ENERGY SOURCE SCIENCE AND TECHNOLOGY RESEARCH DEVELOPMENT Co
Priority to CN201110315419.2A priority Critical patent/CN103044217B/zh
Publication of CN103044217A publication Critical patent/CN103044217A/zh
Application granted granted Critical
Publication of CN103044217B publication Critical patent/CN103044217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种费托合成反应水中非酸性含氧有机物的处理方法,主要解决费托合成反应水中非酸性含氧有机物的分离回收问题,该方法包括以下步骤:费托合成反应水经过(a)有机酸精馏分离、(b)酮醇切割精馏分离、(c)乙醛精制、(d)丙醛丙酮精馏分离、(e)丙酮精制、(f)丙醛精制、(g)无水杂醇分离、(h)醇水分离、(i)醛、酮加氢还原、(j)乙醇精制、(k)正丙醇精制,最终得到乙醛、丙醛、丙酮、乙醇、正丙醇、混合醇等基本有机原料。与现有技术相比,本发明具有技术方案简单,回收率高,较好的解决了费托合成反应水中有机含氧化合物的分离问题等优点,可广泛应用于费托合成反应水非酸性含氧有机物的工业生产。

Description

一种费托合成反应水中非酸性含氧有机物的分离回收方法
技术领域
本发明涉及一种费托合成反应水的分离回收方法,尤其是涉及一种费托合成反应水中非酸性含氧有机物的分离回收方法。
背景技术
费托合成技术是将合成气(CO+H2)通过化学方法转化为液体燃料和化学品的技术。合成的燃料油是不含硫、氮和芳香族化合物的清洁燃料。随着国际油气资源的日益减少和市场情况的变化,以及环保的要求,以费托合成为核心的煤液化和天然气液化技术的开发与工业化,对保障国家能源供应安全、节能减排具有越来越重要的意义。
煤间接液化主要由煤制气、费托合成和油品精制三部分组成。煤制气是在高温条件下煤与氧气和水发生化学反应生成粗煤气,再经变换和净化后,最终得到符合费托合成要求的合成气的过程;费托合成是煤间接液化技术的关键,是合成气(CO+H2)在一定的温度和压力并有催化剂存在的条件下,生成烃类目标产物,同时副产大量水和少量含氧化合物(醇、醛、酮、酸等)的过程;油品精制是将费托合成得到的中间烃类产物经加氢精制、加氢裂化及重整,经分离后最终得到合格液体燃料及化学品的过程。
在费托合成反应过程中,CO中的氧原子大部分生成了水,少量进入含氧化合物,且含氧化合物易溶于水。反应水中含氧化合物浓度和种类与费托合成工艺条件、催化剂种类等有关。低温费托合成反应水中含氧化合物浓度一般在3%左右,高温费托合成反应水中含氧化合物浓度约达10%。煤间接液化工业装置一般规模较大,分离回收反应水中含氧化合物对提高煤间接液化装置的经济效益具有非常重要的意义。
煤制液体燃料过程耗水量大,适于建设大规模煤间接液化装置的地区水资源又相对短缺。因此,在对反应水中的高附加值含氧有机化合物进行分离后,对费托合成反应水加以充分有效的利用不但符合国家节水减排的产业政策,也能为企业创造良好的经济效益和社会效益。
根据费托合成反应水的组成特点,开发高效、合理、可行的反应水处理工艺路线,实现反应水中有机化学品的有效回收,可进一步提高煤制油的经济效益,同时对完善费托合成产品分离技术具有重要意义。
专利CN1696082A提出采用精馏的方法对费托合成反应水进行处理,塔顶得到含少量水的有机含氧化合物的混合物,塔釜得到含少量高沸点有机物的反应水,塔顶部分可燃烧或进一步分离,塔釜用于煤气化工艺系统制合成气。该方法只对费托合成反应水进行了简单处理,没有进一步分离出醛、酮、醇等有机化学品。
专利CN101492332A、CN101555194A、CN101492360A提出将费托合成反应水经过侧线采出的普通精馏塔、醋酸切割塔、乙醇切割塔、萃取精馏塔、萃取剂回收塔、脱乙醇塔、共沸精馏塔、溶剂回收塔等单元的处理,分离出丙酮、甲醇、乙醇、正丙醇、醋酸等产品。该方法回收了水中的部分醇、酮、酸等产品,没有对醛类化合物进行有效回收。
发明内容
一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,该方法包括以下步骤:
(a)有机酸精馏分离
费托合成反应水物流1进入反应水浓缩塔A进行有机酸精馏分离,得到轻组分物流2和含酸水物流3;
(b)酮醇切割精馏分离
轻组分物流2进入酮醇切割塔B精馏分离,调节塔顶采出率、回流比、温度和压力,塔顶得到醛酮物流4,塔釜得到醇水混合溶液物流5;
(c)乙醛精制
醛酮物流4进入乙醛塔C,进行乙醛精制,调节乙醛塔C精馏的操作条件,塔顶得到乙醛物流6,塔釜得到C3+醛酮物流7;
(d)丙醛丙酮精馏分离
C3+醛酮物流7进入丙醛丙酮塔D精馏分离,调节丙醛丙酮塔D操作条件,塔顶采出丙醛丙酮混合物物流8,塔釜得到C4+醛酮混合物物流9;
(e)丙酮精制
丙醛丙酮混合物物流8进入丙酮塔E,进行丙酮精制,塔顶得到丙醛丙酮混合物物流11,塔釜得到丙酮物流10;
(f)丙醛精制
丙醛丙酮混合物物流11进入丙醛塔F,进行丙醛精制,塔顶得到丙醛产品物流12,塔釜得到丙醛丙酮混合物物流13,该丙醛丙酮混合物物流13返回丙酮塔E循环处理;
(g)无水杂醇分离
醇水混合溶液物流5进入杂醇共沸精馏塔G,加入共沸剂14,进行无水杂醇分离,调节杂醇共沸精馏塔G的操作条件,塔顶采出醇、共沸剂、水混合液物流15,塔釜得到无水杂醇混合物16;
(h)醇水分离
醇、共沸剂、水混合液物流15进入溶剂回收塔H,进行有机物回收,塔顶得到含少量水的有机混合物物流17,该物流17返回杂醇共沸精馏塔G循环处理,塔釜得到排出分离系统的水物流18;
(i)醛、酮加氢还原
无水杂醇混合物物流16和C4+醛酮混合物物流9进入加氢反应器I,进行醛、酮加氢还原,将混合物流中的醛、酮类化合物转化为醇,得到杂醇混合物物流20;
(j)乙醇精制
杂醇混合物物流20进入乙醇塔J精制,塔顶得到乙醇物流21,塔釜得到C3+杂醇混合物物流22;
(k)正丙醇精制
C3+杂醇混合物物流22进入正丙醇塔K精制,塔顶得到正丙醇物流23,塔釜得到C4+杂醇混合产品物流24;
步骤a所述的费托合成反应水物流(1)是一种含有脂肪族含氧化合物的水溶液,其中所含的有机含氧化合物总含量为1(wt)%~20(wt)%,主要为C1~C10的醇、醛、酮、酸、酯;
步骤a所述的反应水浓缩塔A的理论塔板数为20~50块,进料位置为上起第5~45块塔板,回流比为1~10,控制塔顶温度为70~100℃,塔釜温度为80~160℃;所述的轻组分物流2包括水含量低于30%的醇、醛、酮和酯;
步骤b所述的酮醇切割塔B的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~10,塔顶温度为35~75℃,塔釜温度为60~120℃;
步骤c所述的乙醛塔C的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~15,塔顶温度为20℃~22℃,塔釜温度为40℃~90℃;
步骤d所述的丙醛丙酮塔D理论塔板数为15~60块,进料位置为上起第5~55块塔板数,回流比为2~10,塔顶温度为45℃~60℃,塔釜温度为60℃~85℃;
步骤e所述的丙酮塔E的理论塔板数为20~60块,进料位置为上起第5~55块塔板数,回流比3~20,塔顶温度为45℃~56℃,塔釜温度为52℃~62℃;
步骤f所述的丙醛塔F的理论塔板数为20~60块,进料位置为上起第5~55块塔板数,回流比为3~20,塔顶温度为45℃~50℃,塔釜温度为50℃~60℃;
步骤g所述的杂醇共沸精馏塔G的理论塔板数为10~50块,进料位置为上起第3~45块塔板数,回流比为1~15,塔顶温度为40℃~85℃,塔釜温度为60℃~110℃;所述的杂醇共沸精馏塔G所用的共沸剂14选自苯、甲苯、戊烷、环己烷、正己烷、乙酸乙酯及三氯甲烷中的一种或几种的混合物;
步骤h所述的溶剂回收塔H的理论塔板数为10~40块,进料位置为上起第3~35块塔板数,回流比为0.5~8,塔顶温度为45℃~90℃,塔釜温度为80℃~120℃;所述的水溶液物流17富含醇和少量共沸剂;
步骤i所述的加氢反应器I所用的催化剂选自Ni、Cu、Pt、Pd中的一种或几种,反应条件为温度30℃~200℃,压力1MPa~5MPa;
步骤j所述的乙醇塔J的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比1~12,塔顶温度为60℃~100℃,塔釜温度为80℃~130℃;
步骤k所述的正丙醇塔K的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~15,塔顶温度为80℃~120℃,塔釜温度为90℃~150℃。
本发明旨在针对费托合成反应水中的非酸性含氧化合物的组成,设计工艺流程,将水中的非酸性含氧有机物进行充分有效的回收,解决费托合成反应水中醇、醛、酮、酯类化合物的分离回收问题。
由于费托合成反应水中有机酸沸点较高,且对设备腐蚀性很强,因此本发明在反应水浓缩塔对水中的酸进行了脱除处理。醛、酮化合物与醇性质相差较大,且沸点比醇相对较低,因此对醛酮类化合物和醇进行了切割处理,然后从醛酮混合物中分离出醛、酮类化学品,对杂醇水溶液进行脱水处理后分离出醇类产品。费托合成反应水经过反应水浓缩、酮醇切割、醛酮分离、杂醇脱水、醛酮加氢等部分处理后,分离回收了乙醛、丙醛、丙酮、乙醇、正丙醇、杂醇等有机粗产品,使费托合成反应水中含非酸性氧化合物得以有效分离回收,该方法可用于费托合成反应水中有机化合物的分离回收,也可用于其它含C1~C10的醛、酮、醇、酸、酯有机水溶液中分离提纯。
与现有技术相比,本发明将费托合成反应水中的非酸类有机物乙醛、乙醇、丙醛、丙酮、正丙醇有效有序的分离回收,提高了费托合成的经济效益、减少污染、节能减排,且方法简单,回收率高。
附图说明
图1为本发明一种费托合成反应水中非酸性含氧有机物的分离回收方法的工艺流程图。
其中A为反应水浓缩塔、B为酮醇切割塔、C为乙醛塔、D为丙醛丙酮塔、E为丙酮塔、F为丙醛塔、G为杂醇共沸精馏塔、H为溶剂回收塔、I为加氢反应器、J为乙醇塔、K为正丙醇塔;
1为费托合成反应水、2为水含量低于30%的醇、醛、酮、酯混合物、3为含酸水、4为醛、酮混合液、5为杂醇水溶液、6为乙醛、7为C3醛酮混合物、8为丙醛丙酮混合物、9为C4+醛酮混合物、10为丙酮、11为丙醛丙酮混合物、12为丙醛、13为丙醛丙酮混合物、14为共沸剂、15为醇和共沸剂水混合液、16为无水混合醇、17为醇和共沸剂水混合物、18为水、19为氢气、20为无水混合醇、21为乙醇、22为C3+混合醇、23为正丙醇、24为C4+混合醇。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1:
按图1所示流程,费托合成反应水物流1(组成见表1)进入反应水浓缩精馏塔A,理论塔板数为50块,回流比为2,进料位置为上起第25块板,控制塔顶温度为71.5℃~72.5℃,塔釜温度为99.3℃~100.3℃,塔顶采出物流2进入塔B,理论塔板数为50块,进料位置为上起第25块,回流比为4,控制塔顶温度为47℃~48℃,塔釜温度为84℃~85℃,塔顶采出液4进入乙醛塔C,理论塔板数为50块,进料位置为上起第25块,回流比为4,控制塔顶温度为20~21℃,塔釜温度为58℃~59℃,塔顶采出乙醛6,塔釜采出物流7。物流7进入丙醛丙酮塔D,理论塔板数为60块,进料为上起第30块,回流比为2,控制塔顶温度为54℃~55℃,塔釜温度为72.6℃~73.6℃,塔顶得到物流8,塔釜得到物流9。物流8进入丙酮塔E,理论塔板数为60块,进料位置为上起第20块板,回流比为10,控制塔顶温度为50.9℃~51.9℃,塔釜温度为55.6℃~56.6℃时,塔顶得到物流11,塔釜得到丙酮物流10。物流11进入丙醛塔F,理论塔板数为60、进料位置为上起第40块板,回流比为10,控制塔顶温度为46.8℃~47.8℃,塔釜温度为54.7℃~55.7℃,塔顶得到丙醛物流12、塔釜得到物流13返回丙酮塔循环处理。B塔塔釜采出物流5进入共沸精馏塔G,理论塔板数为50块,进料位置为上起第25块,回流比为2,控制塔顶温度为56.5~57.6℃,塔釜温度为78.5℃~81.3℃,塔釜采出混合醇16,塔顶采出物流10进入溶剂回收塔H,理论塔板数为40块,进料为上起第20块,回流比为2,控制塔顶温度为74℃~76℃,塔釜温度为99℃~100℃,塔顶物流17返回塔G,塔釜水物流18排放。物流16和物流9进入加氢反应器I,在反应温度为80℃~85℃,压力为2MPa条件下,得到混合醇物流20,物流20进入乙醇塔J,理论塔板数为50块,进料位置为上起第25快板,回流比为2,控制塔顶温度为75℃~76℃,塔釜温度为100℃~102℃,塔顶采出大于95%浓度的乙醇产品物流21,塔釜得到C3+杂醇物流22;物流22进入正丙醇塔K,理论塔板数为50块,进料位置为上起第25块板,回流比为2,控制塔顶温度为96℃~97℃,塔釜温度为120℃~123℃,塔顶得到浓度大于95%的正丙醇物流23,塔釜得到浓度大于99%的混合醇物流24。各塔组成情况见表1。
表1 实施例1各塔物流分析数据
分离回收结果为:
  产品名称   水   乙醛   丙醛   丙酮   乙醇   正丙醇   C4+醇
  纯度%   99.91   99.30   98.31   96.59   96.46   96.00   99.31
实施例2:
按图1所示流程,费托合成反应水物流1(组成见表2)进入反应水浓缩精馏塔A,理论塔板数为20,回流比为10,进料位置为上起第10块板,控制塔顶温度为71.5℃~72.5℃,塔釜温度为99.3℃~100.3℃,塔顶采出物流2进入塔B,理论塔板数为15,进料位置为上起第7块,回流比为10,控制塔顶温度为47℃~48℃,塔釜温度为84℃~85℃,塔顶采出液4进入乙醛塔C,理论塔板数为15块,进料位置为上起第7块,回流比为10,塔顶温度为20.3~21.3℃,塔釜温度为58.1℃~59.1℃,塔顶采出乙醛6,塔釜采出物流7。物流7进入丙醛丙酮塔D,理论塔板数为20块,进料为上起第10块,回流比为10,塔顶温度为53.8℃~54.8℃,塔釜温度为72.4℃~73.4℃,塔顶得到物流8,塔釜得到物流9。物流8进入丙酮塔E,理论塔板数为40块,进料位置为上起第13块板,回流比为10,塔顶温度为50.9℃~51.9℃,塔釜温度为55.6℃~56.6℃时,塔顶得到物流11,塔釜得到丙酮物流10。物流11进入丙醛塔F,理论塔板数为40、进料位置为上起第30块板,回流比为10,塔顶温度为46.3℃~47.3℃,塔釜温度为55.1℃~56.1℃,塔顶得到丙醛物流12、塔釜得到物流13返回丙酮塔循环处理。B塔塔釜采出液5进入共沸精馏塔G,理论塔板数为10,进料位置为上起第5块,回流比为6,塔顶温度为57.5~58.6℃,塔釜温度为80.3℃~81.3℃条件下,塔釜采出混合醇16,塔顶采出物流10进入溶剂回收塔H,理论塔板数为10,进料为上起第5块,回流比为10,塔顶温度为74℃~75℃,塔釜温度为99℃~100℃的条件下,塔顶物流17返回塔G,塔釜水18排放。物流16和物流9进入加氢反应器I,在反应温度为80℃~85℃,压力为2Mpa条件下,得到混合醇物流20,物流20进入乙醇塔J,在理论塔板数为20,回流比为10,塔顶温度为75℃~76℃,塔釜温度为100℃~102℃的条件下,塔顶采出大于95%浓度的乙醇物流21,塔釜采出C3+杂醇物流22;物流22进入塔顶正丙醇塔K,理论塔板数为15,回流比为10,塔顶温度为96℃~97℃,塔釜温度为117℃~118.3℃的条件下,塔顶得到浓度大于95%的正丙醇物流23,塔釜得到浓度大于99%的混合醇物流24。各塔组成情况见表2。
表2 实施例2中各塔物流分析数据
分离回收结果为:
  产品名称   水   乙醛   丙醛   丙酮   乙醇   正丙醇   C4+醇
  纯度%   99.91   98.45   97.70   96.46   95.48   95.22   99.47
实施例3:
按图1所示流程,改变费托合成反应水物流1的有机组成,各塔操作条件如下,费托合成反应水物流1(组成见表3)进入反应水浓缩精馏塔A,理论塔板数为35,回流比为6,进料位置为上起第17块板,控制塔顶温度为74℃~75.5℃,塔釜温度为99℃~101℃,塔顶采出物流2进入塔B,理论塔板数为35,进料位置为上起第17块,回流比为8,控制塔顶温度为52℃~53℃,塔釜温度为8.54℃~86℃,塔顶采出液4进入乙醛塔C,理论塔板数为30块,进料位置为上起第15块,回流比为10,塔顶温度为20.2~21.2℃,塔釜温度为62.3℃~63.3℃,塔顶采出乙醛6,塔釜采出物流7。物流7进入丙醛丙酮塔D,理论塔板数为35块,进料为上起第17块,回流比为10,塔顶温度为54.2℃~55.2℃,塔釜温度为71℃~73℃,塔顶得到物流8,塔釜得到物流9。物流8进入丙酮塔E,理论塔板数为45块,进料位置为上起第15块板,回流比为12,塔顶温度为52℃~52℃,塔釜温度为55℃~57℃时,塔顶得到物流11,塔釜得到丙酮物流10。物流11进入丙醛塔F,理论塔板数为40、进料位置为上起第30块板,回流比为12,塔顶温度为47.2℃~48.2℃,塔釜温度为55.4℃~56.1℃,塔顶得到丙醛物流12、塔釜得到物流13返回丙酮塔循环处理。塔B塔釜采出液物流5进入共沸精馏塔G,理论塔板数为35,进料位置为上起第17块,回流比为5,塔顶温度为56.5~58℃,塔釜温度为80℃~82℃条件下,塔釜采出混合醇16,塔顶采出物流15进入溶剂回收塔H,理论塔板数为30,进料为上起第15块,回流比为3,塔顶温度为75℃~76℃,塔釜温度为99℃~100℃的条件下,塔顶物流17返回塔G,塔釜水18排放。物流16和物流9进入加氢反应器I,在反应温度为80℃~85℃,压力为2Mpa条件下,得到混合醇物流20,物流20进入乙醇塔J,理论塔板数为20,回流比为10,塔顶温度为75℃~76℃,塔釜温度为100℃~102℃的条件下,塔顶采出浓度大于95%的乙醇物流21,塔釜采出C3+杂醇物流22;物流22进入正丙醇塔K,理论塔板数为15,回流比为10,塔顶温度为96℃~97℃,塔釜温度为117.℃~118.3℃的条件下,塔顶得到浓度大于95%的正丙醇物流23,塔釜得到浓度大于99%的混合醇物流24。各塔组成情况见表3。
表3 实施例3中各塔物流分析数据
分离回收结果为:
  产品名称   水   乙醛   丙醛   丙酮   乙醇   正丙醇   C4+醇
  纯度%   100.0   99.71   96.80   92.32   95.07   95.11   99.31
实施例4:
改变费托合成反应水的进料组成,各单元的操作条件与实例3相同,各分离单元的分离结果见表4。
表4 各塔物流分析数据
分离回收结果为:
  产品名称   水   乙醛   丙醛   丙酮   乙醇   正丙醇   C4+醇
  纯度%   99.97   97.46   97.96   95.29   98.72   73.74   74.27
实施例5:
按图1所示流程,改变费托合成反应水物流1的有机组成,各塔操作条件如下,费托合成反应水物流1(组成见表3)进入反应水浓缩精馏塔A,理论塔板数为20,回流比为10,进料位置为上起第5块板,控制塔顶温度为70℃,塔釜温度为80℃,塔顶采出物流2进入塔B,理论塔板数为15,进料位置为上起第5块,回流比为10,控制塔顶温度为35℃,塔釜温度为60℃,塔顶采出液4进入乙醛塔C,理论塔板数为15块,进料位置为上起第5块,回流比为15,塔顶温度为20℃,塔釜温度为40℃,塔顶采出乙醛6,塔釜采出物流7。物流7进入丙醛丙酮塔D,理论塔板数为15块,进料为上起第5块,回流比为10,塔顶温度为45℃,塔釜温度为60℃,塔顶得到物流8,塔釜得到物流9。物流8进入丙酮塔E,理论塔板数为20块,进料位置为上起第5块板,回流比为20,塔顶温度为45℃,塔釜温度为52℃时,塔顶得到物流11,塔釜得到丙酮物流10。物流11进入丙醛塔F,理论塔板数为20、进料位置为上起第5块板,回流比为20,塔顶温度为45℃,塔釜温度为50℃,塔顶得到丙醛物流12、塔釜得到物流13返回丙酮塔循环处理。塔B塔釜采出液物流5进入共沸精馏塔G,理论塔板数为10,进料位置为上起第3块,回流比为15,塔顶温度为40℃,塔釜温度为60℃条件下,塔釜采出混合醇16,塔顶采出物流15进入溶剂回收塔H,理论塔板数为10,进料为上起第3块,回流比为8,塔顶温度为45℃,塔釜温度为80℃的条件下,塔顶物流17返回塔G,塔釜水18排放。物流16和物流9进入加氢反应器I,在反应温度为80℃~85℃,压力为2Mpa条件下,得到混合醇物流20,物流20进入乙醇塔J,在理论塔板数为15,回流比为12,塔顶温度为45℃,塔釜温度为80℃的条件下,塔顶采出浓度大于95%的乙醇物流21,塔釜采出C3+杂醇物流22;物流22进入正丙醇塔K,理论塔板数为15,回流比为15,塔顶温度为80℃,塔釜温度为90℃的条件下,塔顶得到浓度大于95%的正丙醇物流23,塔釜得到浓度大于99%的混合醇物流24。
实施例6:
按图1所示流程,改变费托合成反应水物流1的有机组成,各塔操作条件如下,费托合成反应水物流1(组成见表3)进入反应水浓缩精馏塔A,理论塔板数为50,回流比为1,进料位置为上起第45块板,控制塔顶温度为100℃,塔釜温度为160℃,塔顶采出物流2进入塔B,理论塔板数为50,进料位置为上起第45块,回流比为1,控制塔顶温度为75℃,塔釜温度为120℃,塔顶采出液4进入乙醛塔C,理论塔板数为50块,进料位置为上起第45块,回流比为15,塔顶温度为22℃,塔釜温度为90℃,塔顶采出乙醛6,塔釜采出物流7。物流7进入丙醛丙酮塔D,理论塔板数为60块,进料为上起第55块,回流比为10,塔顶温度为60℃,塔釜温度为85℃,塔顶得到物流8,塔釜得到物流9。物流8进入丙酮塔E,理论塔板数为60块,进料位置为上起第55块板,回流比为3,塔顶温度为56℃,塔釜温度为62℃时,塔顶得到物流11,塔釜得到丙酮物流10。物流11进入丙醛塔F,理论塔板数为60、进料位置为上起第55块板,回流比为3,塔顶温度为50℃,塔釜温度为60℃,塔顶得到丙醛物流12、塔釜得到物流13返回丙酮塔循环处理。塔B塔釜采出液物流5进入共沸精馏塔G,在理论塔板数为50,进料位置为上起第45块,回流比为1,塔顶温度为85℃,塔釜温度为110℃条件下,塔釜采出混合醇16,塔顶采出物流15进入溶剂回收塔H,在理论塔板数为40,进料为上起第35块,回流比为0.5,塔顶温度为90℃,塔釜温度为120℃的条件下,塔顶物流17返回塔G,塔釜水18排放。物流16和物流9进入加氢反应器I,在反应温度为80℃~85℃,压力为2Mpa条件下,得到混合醇物流20,物流20进入乙醇塔J,理论塔板数为50,回流比为1,塔顶温度为100℃,塔釜温度为130℃的条件下,塔顶采出浓度大于95%的乙醇物流21,塔釜采出C3+杂醇物流22;物流22进入正丙醇塔K,理论塔板数为50,回流比为1,塔顶温度为120℃,塔釜温度为150℃的条件下,塔顶得到浓度大于95%的正丙醇物流23,塔釜得到浓度大于99%的混合醇物流24。

Claims (5)

1.一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,该方法包括以下步骤:
(a)有机酸精馏分离
费托合成反应水物流(1)进入反应水浓缩塔(A)进行有机酸精馏分离,得到轻组分物流(2)和含酸水物流(3);
(b)酮醇切割精馏分离
轻组分物流(2)进入酮醇切割塔(B)精馏分离,塔顶得到醛酮物流(4),塔釜得到醇水混合溶液物流(5);
(c)乙醛精制
醛酮物流(4)进入乙醛塔(C),进行乙醛精制,塔顶得到乙醛物流(6),塔釜得到C3+醛酮物流(7);
(d)丙醛丙酮精馏分离
C3+醛酮物流(7)进入丙醛丙酮塔(D)精馏分离,塔顶采出第一丙醛丙酮混合物物流(8),塔釜得到C4+醛酮混合物物流(9);
(e)丙酮精制
第一丙醛丙酮混合物物流(8)进入丙酮塔(E),进行丙酮精制,塔顶得到第二丙醛丙酮混合物物流(11),塔釜得到丙酮物流(10);
(f)丙醛精制
第二丙醛丙酮混合物物流(11)进入丙醛塔(F),进行丙醛精制,塔顶得到丙醛产品物流(12),塔釜得到第三丙醛丙酮混合物物流(13),该第三丙醛丙酮混合物物流(13)返回丙酮塔(E)循环处理;
(g)无水杂醇分离
醇水混合溶液物流(5)进入杂醇共沸精馏塔(G),加入共沸剂(14),进行无水杂醇分离,塔顶采出醇、共沸剂、水混合液物流(15),塔釜得到无水杂醇混合物(16);
(h)醇水分离
醇、共沸剂、水混合液物流(15)进入溶剂回收塔(H),进行有机物回收,塔顶得到含少量水的有机混合液(17),该有机混合液(17)返回杂醇共沸精馏塔(G)循环处理,塔釜得到排出分离系统的水物流(18);
(i)醛、酮加氢还原
无水杂醇混合物(16)和C4+醛酮混合物物流(9)进入加氢反应器(I),进行醛、酮加氢还原,将混合物流中的醛、酮类化合物转化为醇,得到杂醇混合物物流(20);
(j)乙醇精制
杂醇混合物物流(20)进入乙醇塔(J)精制,塔顶得到乙醇物流(21),塔釜得到C3+杂醇混合物物流(22);
(k)正丙醇精制
C3+杂醇混合物物流(22)进入正丙醇塔(K)精制,塔顶得到正丙醇物流(23),塔釜得到C4+杂醇混合产品物流(24);
步骤(a)所述的反应水浓缩塔(A)的理论塔板数为20~50块,进料位置为上起第5~45块塔板,回流比为1~10,控制塔顶温度为70~100℃,塔釜温度为80~160℃;
步骤(b)所述的酮醇切割塔(B)的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~10,塔顶温度为35~75℃,塔釜温度为60~120℃;
步骤(c)所述的乙醛塔(C)的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~15,塔顶温度为20℃~22℃,塔釜温度为40℃~90℃;
步骤(d)所述的丙醛丙酮塔(D)理论塔板数为15~60块,进料位置为上起第5~55块塔板数,回流比为2~10,塔顶温度为45℃~60℃,塔釜温度为60℃~85℃;
步骤(e)所述的丙酮塔(E)的理论塔板数为20~60块,进料位置为上起第5~55块塔板数,回流比3~20,塔顶温度为45℃~56℃,塔釜温度为52℃~62℃;
步骤(f)所述的丙醛塔(F)的理论塔板数为20~60块,进料位置为上起第5~55块塔板数,回流比为3~20,塔顶温度为45℃~50℃,塔釜温度为50℃~60℃;
步骤(g)所述的杂醇共沸精馏塔(G)的理论塔板数为10~50块,进料位置为上起第3~45块塔板数,回流比为1~15,塔顶温度为40℃~85℃,塔釜温度为60℃~110℃;
步骤(h)所述的溶剂回收塔(H)的理论塔板数为10~40块,进料位置为上起第3~35块塔板数,回流比为0.5~8,塔顶温度为45℃~90℃,塔釜温度为80℃~120℃;
步骤(i)所述的加氢反应器(I)的反应条件为温度30℃~200℃,压力1MPa~5MPa;
步骤(j)所述的乙醇塔(J)的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比1~12,塔顶温度为60℃~100℃,塔釜温度为80℃~130℃;
步骤(k)所述的正丙醇塔(K)的理论塔板数为15~50块,进料位置为上起第5~45块塔板数,回流比为1~15,塔顶温度为80℃~120℃,塔釜温度为90℃~150℃。
2.根据权利要求1所述一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,所述的费托合成反应水物流(1)是一种含有脂肪族含氧化合物的水溶液,其中所含的有机含氧化合物总含量为1wt%~20wt%,主要为C1~C10的醇、醛、酮、酸、酯。
3.根据权利要求1所述一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,步骤(a)所述的轻组分物流(2)包括水含量低于30%的醇、醛、酮和酯。
4.根据权利要求1所述一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,所述的杂醇共沸精馏塔(G)所用的共沸剂(14)选自苯、甲苯、戊烷、环己烷、正己烷、乙酸乙酯及三氯甲烷中的一种或几种的混合物。
5.根据权利要求1所述一种费托合成反应水中非酸性含氧有机物的分离回收方法,其特征在于,步骤(i)所述的加氢反应器(I)所用的催化剂选自Ni、Cu、Pt、Pd中的一种或几种。
CN201110315419.2A 2011-10-17 2011-10-17 一种费托合成反应水中非酸性含氧有机物的分离回收方法 Active CN103044217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110315419.2A CN103044217B (zh) 2011-10-17 2011-10-17 一种费托合成反应水中非酸性含氧有机物的分离回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110315419.2A CN103044217B (zh) 2011-10-17 2011-10-17 一种费托合成反应水中非酸性含氧有机物的分离回收方法

Publications (2)

Publication Number Publication Date
CN103044217A CN103044217A (zh) 2013-04-17
CN103044217B true CN103044217B (zh) 2015-03-11

Family

ID=48057105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110315419.2A Active CN103044217B (zh) 2011-10-17 2011-10-17 一种费托合成反应水中非酸性含氧有机物的分离回收方法

Country Status (1)

Country Link
CN (1) CN103044217B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373909A (zh) * 2012-04-20 2013-10-30 上海兖矿能源科技研发有限公司 一种费托合成反应水中非酸性含氧有机物的分离回收方法
CN105669377B (zh) * 2016-01-22 2019-01-29 北京凯文特科技有限公司 一种分离混合醇的工艺方法
CN109053402B (zh) * 2018-08-21 2021-05-18 上海兖矿能源科技研发有限公司 一种丙醛丙酮混合液的分离方法
CN110606609B (zh) * 2019-08-01 2022-06-14 中石化宁波工程有限公司 一种回收f-t合成反应水中有机物的方法
CN110818531B (zh) 2019-11-12 2022-11-22 上海兖矿能源科技研发有限公司 一种费托合成反应水中含氧有机物的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239886A (zh) * 2008-03-14 2008-08-13 上海兖矿能源科技研发有限公司 一种高温费托合成反应水中有机物的分离回收方法
CN101244983A (zh) * 2008-03-14 2008-08-20 上海兖矿能源科技研发有限公司 一种低温费托合成反应水中有机物的分离回收方法
CN101585752A (zh) * 2009-07-02 2009-11-25 上海兖矿能源科技研发有限公司 一种由费托合成反应水生产乙醛的方法
CN101585753A (zh) * 2009-07-02 2009-11-25 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离提纯乙醛的方法
CN102060660A (zh) * 2010-12-13 2011-05-18 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离醇类化合物的方法
CN102093163A (zh) * 2010-12-23 2011-06-15 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离提纯乙醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239886A (zh) * 2008-03-14 2008-08-13 上海兖矿能源科技研发有限公司 一种高温费托合成反应水中有机物的分离回收方法
CN101244983A (zh) * 2008-03-14 2008-08-20 上海兖矿能源科技研发有限公司 一种低温费托合成反应水中有机物的分离回收方法
CN101585752A (zh) * 2009-07-02 2009-11-25 上海兖矿能源科技研发有限公司 一种由费托合成反应水生产乙醛的方法
CN101585753A (zh) * 2009-07-02 2009-11-25 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离提纯乙醛的方法
CN102060660A (zh) * 2010-12-13 2011-05-18 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离醇类化合物的方法
CN102093163A (zh) * 2010-12-23 2011-06-15 上海兖矿能源科技研发有限公司 一种从费托合成反应水中分离提纯乙醇的方法

Also Published As

Publication number Publication date
CN103044217A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102060660B (zh) 一种从费托合成反应水中分离醇类化合物的方法
CN105777467B (zh) 一种从费托合成油品中分离含氧化合物和1-己烯的方法
CN103044217B (zh) 一种费托合成反应水中非酸性含氧有机物的分离回收方法
CN110818531B (zh) 一种费托合成反应水中含氧有机物的处理方法
CN101492360B (zh) 分离费托合成反应水相副产物的方法
CN100548895C (zh) 含甲醇和二甲醚的污水处理工艺
CN102093163B (zh) 一种从费托合成反应水中分离提纯乙醇的方法
CN106661463A (zh) 经由催化快速热解工艺将生物质转化成具有低硫、氮和烯烃含量的btx的工艺
CN103265401A (zh) 一种煤制乙二醇工艺副产残液的回收方法
CN102690172A (zh) 丙酮加氢生产异丙醇的方法
CN101239886B (zh) 一种高温费托合成反应水中有机物的分离回收方法
CN109796310A (zh) 一种利用隔壁精馏塔对费托合成水进行初步分离的方法
CN103483148B (zh) 一种费托合成水中的非酸含氧有机物的脱水回收方法
CN102351665A (zh) 一种甲缩醛的制备方法
CN101555193B (zh) 费托合成水相副产物的分离方法
CN101492332B (zh) 费托合成反应水相副产物的分离方法
CN101555194B (zh) 分离费托合成反应水相副产物的方法
CN101492345B (zh) 加盐萃取精馏分离丙酮和甲醇的方法
CN104447198A (zh) 丙酮加氢制异丙醇分离新工艺
CN1935305A (zh) 一种用于费托合成反应水中含氧有机物回收的精馏塔
CN102807900B (zh) 一种富氧煤焦油高值化利用方法
CN111377801B (zh) 精制低碳醇的方法和系统
CN100450982C (zh) 一种由粗苯制备纯苯和浓缩噻吩的方法
CN101260025B (zh) 一种甲基丙烯醛加氢生产异丁醇的分离提纯方法
CN103467257B (zh) 费托合成水中的非酸含氧有机物的脱水回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Qiwen

Inventor after: Li Xiyong

Inventor after: Li Wei

Inventor after: Yang Zhengwei

Inventor after: Jiang Fankai

Inventor after: Chen Licai

Inventor after: Zhang Zongsen

Inventor before: Sun Qiwen

Inventor before: Yang Zhengwei

Inventor before: Jiang Fankai

Inventor before: Chen Licai

Inventor before: Zhang Zongsen