CN103028452B - 对包含几何学管数据的样品管的操作 - Google Patents
对包含几何学管数据的样品管的操作 Download PDFInfo
- Publication number
- CN103028452B CN103028452B CN201210366983.1A CN201210366983A CN103028452B CN 103028452 B CN103028452 B CN 103028452B CN 201210366983 A CN201210366983 A CN 201210366983A CN 103028452 B CN103028452 B CN 103028452B
- Authority
- CN
- China
- Prior art keywords
- pipe
- sample cell
- geometry
- sample
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
- B01L3/50825—Closing or opening means, corks, bungs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/02—Identification, exchange or storage of information
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/02—Identification, exchange or storage of information
- B01L2300/021—Identification, e.g. bar codes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/02—Identification, exchange or storage of information
- B01L2300/023—Sending and receiving of information, e.g. using bluetooth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/042—Caps; Plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0832—Geometry, shape and general structure cylindrical, tube shaped
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
- G01N2035/00821—Identification of carriers, materials or components in automatic analysers nature of coded information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
- G01N2035/00821—Identification of carriers, materials or components in automatic analysers nature of coded information
- G01N2035/00851—Identification of carriers, materials or components in automatic analysers nature of coded information process control parameters
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本发明涉及一种用于操作含有生物样品的样品管(212)的方法,管标签(210,306)附着于所述样品管,所述管标签携带管数据,所述管数据至少包含描述所述样品管的至少一种几何特性的几何管数据,所述方法包括:‑通过阅读器装置(202)从所述管标签(210,306)至少读取(102)所述几何管数据,‑至少将所述几何管数据从所述阅读器装置传送(104)到处理装置(218),‑控制(106)所述处理装置(218)以依照由所述阅读几何数据描述的所述至少一种几何特性操作所述样品管(212)。
Description
技术领域
本发明涉及体外诊断领域,更具体地,涉及一种用于自动操作生物样品的系统和方法。
背景技术
临床实验室面临着这样的挑战,即每天需要处理数量不断增加的样品管,而仍然要保证从所述样品得到的分析结果是可重复的和正确的。在可能高度复杂的样品处理工作流程中,分析前、分析和分析后阶段都可能出现误差。另外一个挑战是非常多种类的不同样品类型存在的事实,其进一步使样品的操作和自动处理复杂化。在一个方面,样品管的多样性起因于同时开发出来用于各种诊断、分析或其它目的的样品处理工作流程和试验的多样性。
在另一个方面,所述多样性起因于不同的样品制造厂家,这些厂家使用不同的材料、样品管尺度(dimension)和盖色码(cap color code)收集和处理不同种类的生物样品(如血液、尿、血清或血浆样品)和/或用于不同种类的分析试验(凝固试验、临床化学试验、血液学试验等)。
为了达到关于分析质量和成本效率的要求,需要自动化样品操作装置领域的智能解决方案。
为了正确操作和处理样品管,目前的分析前和分析后系统以及分析器(analyzer)需要管几何学、样品类型、靶体积、盖类型等的信息。在现有的系统中,该信息由照相机和/或传感器收集,或者只能由使用者手动设定。然而,任何手动执行的步骤都是易错且费时的,因此不适用于完成高质量的样品处理工作流程。基于图像分析的方法经常是费时的且可能是易错的。当需要处理其表面包含冰或凝结水的冷冻或强冷却样品时,可能会发生误差。冰和水可改变样品管的形状和光学参数,并且在从这样的样品取图像用于图像分析时,可能会导致误差。还可能会由于管不垂直而斜立于架(rack)上,由于光源太弱而不足以使照相机可靠地检测管或管盖的颜色,或可能由于管突出(protrude)管架,或其它误差来源而导致误差。例如,US6599476描述了一种包含照相机的样品容器操作设备。所述照相机对加载的样品照相,并将所拍的相片与图像库的样品管图像对比来确定负载的样品容器的管类型。
US7458483公开了一种测定试验诊断分析器系统,其包含用于加载多个担载器(carrier)的加载间(loading bay),所述担载器配置以用于放置容器,所述容器含有用于诊断过程的液体物质。在机器人装置使担载器经过系统中的条形码读取器时,该读取器读取附着于担载器和样品管或试剂瓶上的条形码标签。在运转中,机器臂从加载架上拾起担载器,并运动经过条形码阅读器以识别该担载器和样品。
发明内容
本发明实施方案的目的是提供一种改进的方法、样品管和样品管操作系统。该目的由独立权利要求的特征解决。在从属权利要求中给出了本发明的实施方案。
“样品”或“生物样品”涵盖已经从人或任何其它生物得到的任何种类的组织或体液。具体地,生物样品可以是全血、血清、血浆、尿、脑脊髓液或唾液样品或它们的任何衍生物。
“样品管”,本文中可互换称为“管”,依据本发明,是样品收集试管,亦称为“初级管”,其用于接收样品(如从病人接收血液样品),并将其中所含的样品运输到分析实验室以用于诊断目的;或是“次级管”,其可用于从初级管接收样品的等份(aliquot)。初级样品管通常由玻璃或塑料制成,其具有封闭端和开口端,其中封闭端由盖封闭。盖可以具有不同的材料、不同的形状和颜色。盖的形状和/或颜色和/或管的形状和/或颜色可以指示管的类型、其中含有的生物样品类型和/或将对所述样品执行的分析前、分析或分析后步骤。例如,有含抗凝血剂或诱凝血剂的管,含有促进血浆分离的凝胶的管,等等。不同类型的初级管经常只是不同初级管制造厂家定制(customization)的结果。具体地,有具有不同直径和/或不同高度以接收不同量样品的初级管。“次级管”通常由塑料制成,且相对初级管,可具有较低的尺寸和类型变化程度。具体地,次级管可比初级管小,并设计为以一种相似的闭合类型闭合,例如螺旋型。
如本文使用的术语“盖”涵盖包含螺旋型盖和橡皮塞(rubber stopper)的任何类型的闭合,其可分别通过拉/推和/或螺旋动作开放和/或闭合。
如本文使用的“机器人单元”是任何种类的装置或装置组件,其可操作而在样品管上自动执行样品工作流程步骤。
“管类型”的表述指一个类别的样品管,其特征是具有共同的几何学形式,特别是宽度、几何形状和/或盖和/或管的高度等。通常地,但不是必要地,样品管的共同学几何形式也对应于所述样品管类型将要携带的样品的共同类型,和/或对应于将要在所述管类型样品上执行的分析或分析前或分析后工作流程步骤的共同类型。不同的管类型通常与特定分析或工作流程步骤(如临床化学分析、血液学分析或凝血分析)的不同的分析前、分析后或分析要求相适应。混淆样品管类型可能导致样品无法用于预定的分析。为避免样品收集和操作中的误差,许多管制造厂家的样品盖已依据固定和统一的色彩方案编码。
“处理装置”或“工作单元”是在更大的仪器中协助使用者进行样品处理的独立设备或模块(module)。“样品处理”包含样品的检测,如用于诊断目的的对样品的定量和/或定量评估,和/或检测之前样品的分选(sorting)和/或制备,或者检测之后样品的存储和处置(disposal)。具体地,工作单元可以与分析和/或分析前和/或分析后样品处理步骤相关,所述步骤在本文中归入“体外”步骤。工作单元可互相连接且至少部分地互相依赖,如每个工作单元进行样品处理工作流程的一个专责(dedicated)任务,该任务可以是行进到下一工作单元的前提条件。或者,工作单元可以相互独立地工作,例如各自进行单独的任务,如不同类型的分析。“处理装置”可以是,例如加盖单元、脱盖单元、等分器(aliquoter)、离心机等等。
在一个方面,本发明涉及一种用于操作含有生物样品的样品管的方法。管标签附着于所述样品管上,该管标签携带管数据。管数据至少包含描述所述样品管的至少一种几何学特性的几何学数据。所述方法包括:通过阅读器装置从所述管标签读取至少所述几何学管数据;将至少所述几何学管数据从所述阅读器装置传送到处理装置;并控制所述处理装置以依照由所述读取的几何学数据描述的至少一种几何学特性来操作样品管。
这些特征可以是有利的,因为通过将生物样品管的几何学管数据置于样品管上,可以确保该几何学数据在整个样品处理工作流程中都可用。在现有技术的使用色彩编码盖来识别样品管类型的系统中,当对样品管脱盖时,可能会丢失关于管类型的信息。将几何学数据置于样品管上确保了样品的全自动处理,且脱盖管决不会丢失关于其几何学性质的信息。因此,提高了样品操作工作流程的速度和成本效率,且降低了样品操作过程的易错性。
换言之,几何学数据作为全自动处理实际所需要的数据,是管的固有部分且决不会丢失。依据进一步的实施方案,除了几何学数据之外,还将管类型标识(identifier)置于管标签上,和/或在第二步中从管标签阅读的几何学数据得到管类型标识。通过从几何学数据得出管类型(而不是如现有技术的系统中,通过从检测到的管类型得出几何学数据),还确保在如管脱盖时,关于管类型的信息不被丢失。由于依据一些所述实施方案,管类型是从几何学数据得到,而不是相反,给系统加入了更多一层安全性,其确保管的几何学数据始终可用,而无论管的加盖状态如何。
在一个进一步的有利方面,本发明的实施方案可允许跳过在第一步中识别特定样品类型(如基于色彩类型或基于印于样品管上的管类型标识),和在第二步中为经识别的样品管类型收集几何学数据的步骤。通过直接从管标签读取几何学性质,降低了样品操作单元需要的收集所述几何学数据所需的处理时间。此外,几何数据的获得是更误差鲁棒(error robust)的,因为几何学信息是直接从样品管得到的,而不是间接地来自存储有与样品类型标识关联的存储几何学数据的外部存储器。因此,本发明实施方案不需要维持存储有样品类型标识和相应几何学数据的数据库,或维持与所述数据库的连接。维持这样的数据库往往甚至是不可能的,因为取样和测试由不同的参与方依权在不同的地点进行。
在一个进一步的有利方面,本发明的实施方案远更灵活,因为其能动态地确定极大范围的样品管的几何学性质。因此,可使用通常的(generic)样品操作工作单元组件,其不限于特定类型或特定样品制造厂家的样品管。因此,可将通常的样品管操作组件与任何种类的分析前、分析和分析后样品操作工作单元或其组件组合,因为它们可以与任何种类的样品管类型一起操作,只要所述样品管包含指示样品管几何学数据的标签。
在一个进一步的有利方面,本发明实施方案保证在任何时候,当特定生物样品到达样品操作装置的输入部分时,所述装置操作样品所需的几何学数据都是可用的。在现有技术的系统中,如果错误的或未知的样品类型的样品被错误地放置到样品处理流水线(pipeline)上,由于无法为该未知样品类型的样品找到几何学数据,可能会造成复杂的自动化样品工作单元的运转中断。通过使用在其标签上包含各自几何学数据的样品管,确保决定是否和怎样通过特定样品操作装置操作所述样品管需要的所有信息是始终可用的。因此,处理工作流程中由未鉴定的管类型导致的瓶颈(bottleneck)得以避免。
可以避免基于照相机的系统的其他缺点,特别是管几何学的测定不准确,由于不知道管内部的几何学而导致的样品体积测定不准确,以及由于样品的不透明性而导致的经旋转或未旋转管状态的确定不准确。基于照相机确定盖的颜色以确定管类型,进而用管类型来确定管几何学,这样的做法已被证实易于产生误差,而且一旦移去盖就会丢失管类型信息。
在一个进一步的有利方面,本发明实施方案使得对管类型库的定期更新不再必要。例如,如果一个管制造厂家生产一种全新种类的管,其几何学性质(例如其直径)存储或编码于管标签中,则依据本发明的实施方案的处理装置不需要重编程(reprogram)以“识别”该新的管类型,因为直接从管标签得到实际用于样品管处理的几何学数据。因此,处理装置不需要访问管类型库以检索存储的与已识别的样品类型关联的几何学数据,相应地也不需要定期更新这样的管类型库。总之,本发明的实施方案允许创造和操作样品操作系统,该系统能自动确定所需的任何种类的管类型需要的几何学性质,而不需要维持和查询管类型库。只要管制造厂家或其他方已经附上包含几何学管数据的管标签,该数据以能够为读取器装置解释该数据的方式编码,则任何种类的新样品管类型都将可被样品操作系统立即且自动地识别和处理。不需要将管制造厂家创造的新管类型更新到样品管类型库中。
术语“几何学管数据”,如本文使用的,涵盖任何描述全管或其部分的几何学性质的数据,特别是描述管身(tube shaft)和/或管盖或它们的组合的几何学性质的数据。
依据实施方案,几何学性质以条形码编码标准如PDF417、Codebloc等编码。这可能是有利的,因为如果管类型制造厂家和样品处理装置制造厂家使用相同的编码/解码标准,则基于所述编码方案的工作单元即可运行处理所述管制造厂家或任何其它管制造厂家的任何种类的管类型。仅有的要求是管的几何学性质依照所述标准编码(且管的尺度在处理装置的物理可能性之内)。
依据实施方案,管数据包含样品管的下列一种或多种几何学性质:管外直径、管内直径、假底位置和形状、管长、管盖直径、管盖自由高度。
可以以不同的方式提供所述几何学性质。
依据一个实施方案,几何学性质可以,例如,以增量(incremental)的方式提供。几何学性质的上限或下限(即管类型可能具有的能被所述系统处理的所述几何学性质的最大或最小值,如管内直径或管长)是样品管处理系统的读取器已知的,该读取器可操作用于从管标签读取几何学性质。或者,所述界限是处理装置或计算单元已知的,所述处理装置或计算单元与所述样品处理系统连接,且从读取器接收包含几何学性质的管数据。如本文使用的,对于某个组件“是已知的”暗示所述数据存储于所述组件可访问且可读取的数据存储器中。几何学性质的增量编码于管标签中。然后通过读取器、计算单元或处理装置用所述界限加上(对于下限而言)或减去(对于上限而言)该增量,来确定单个管的几何学性质的值。
在另一个实施方案中,这样的几何学数据值以数值的形式存储于管标签上。有可能的是,在管数据中数值没有指定单位,且在由读取器读取所述数字后,将所述数字解释为具有特定单位(如毫米)的值。同样地,也可将所述数值的单位存储于管标签上。
此外,可以存在对于编码于管标签中的几何学性质类型的约定(convention)。几何学性质的类型可以,例如,基于数值在管标签内的位置和/或在管标签上含有的字符序列或数据模式内的位置。例如,数字序列的第一个位置可包含规定几何学性质值类型“内直径”的值,第二个位置可包含规定几何学性质类型“管长”的值等等。或者将几何学性质类型与几何学性质的值一起提供在管标签上。
表1显示了一个用于上述编码方案的实例。Var2是增量几何学性质,其已为一些几何学特征指定最小值和最大值。管标签携带其所附着的管的增量,且实际几何可由向最小值加上增量来确定。在所示实例中,增量为1,但也可以是1的倍数。Var3以简单数值提供几何学参数,且读取器基于数值在数字序列中的位置来确定数值代表的几何学性质类型。在Var4中除了数值之外,提供了字母数字标题(alphanumeric header),该字母数字标题描述其值由相应的数值指示的几何学性质的类型。表l还描述了编码分别的信息所需的比特(Bit)数。在标签上,对Var2需要21比特(3字节(Byte)),而对Var3需要10比特,且Var 4需要15字节。
表1:
表2显示了编码上面变量的数据所需二维条形码的标签大小。除了几何学数据外,还考虑独有的管ID所需的空间。可以看到产生的标签大小与样品管上可用的空间很好地符合。可以由常规2D条形码读取器读取这些大小的标签,即使在将标签施加到圆柱形样品管表面时也是如此。
表2
依据实施方案,处理装置包含夹具,其具有用于接收或释放样品管或样品盖的打开位置,以及用于夹持样品管或样品盖的夹持位置,其中依据至少一种几何学性质调整至少夹持位置。依据一些实施方案,所述夹具为管夹具或盖夹具。系统还可包含一或多个管夹具、盖夹具或其它形式的夹持装置的任何组合,它们依赖管标签规定的几何学数据受控制。例如,打开位置可以是机器人夹持臂(robotic gripper arm)的缺省位置。依据一些实施方案,打开和夹持两位置均依赖几何学性质来加以调整。可能有利的是使用这样的打开位置,其夹持臂直径仅稍大于管盖直径以便释放管:只要下一个处理的样品管具有与前一个处理的管相同或类似的盖直径,夹持臂就可以更快地调整其夹持直径。如本文使用的术语“位置”应认为是用于与样品管相互作用和/或处理样品管的机器人装置或装置组件的任何配置(configuration)或状态,其中“夹持位置”为允许执行所述处理步骤的状态或配置,而“打开位置”为允许释放所述样品管以用于由其它装置组件后续处理的状态或配置。
管数据可使夹具能够自动确定如何和在何处夹住(grap)管,且可使加盖器或脱盖器能够确定管上有何种盖并相应地调整加盖或脱盖机构(mechanics)。
依据实施方案,所述处理装置为脱盖器或再加盖器,其包含管夹具和盖夹具。依赖样品管形状的几何学性质控制管夹具,而按照管盖的几何学性质控制盖夹具。
依据实施方案,管夹具包含第一个管夹持工具和第二个管夹持工具,第一个管夹持工具相对所述第二种夹持工具是可偏置(biasable)的,并与该第二种管夹持工具协作,例如第一个管夹持工具将管(例如从传送带或架上)夹住并举起,然后第二个夹持工具将其夹持。通过这样的顺序,可以实现第二个夹具夹持的力和接触表面分别大于第一个夹持工具的夹持力和接触表面。这种双夹机构(double gripping mechanism)使得能够以更小的夹具装置在管担载器和闭合(closure)之间的空间(该空间往往狭窄)内夹住管侧壁,并将其举到一个高度,其中更大和更强的夹持工具可以夹住侧壁的更长部分以使夹持更稳固。
依据实施方案,处理装置是自动离心机,其包括用于将样品管加载到离心机中的加载台。该加载台包括夹具,夹具受控制以用于将样品管依据所读取的几何学管数据置于离心桶内。这可能是有利的,因为在若干情况下,可以将类似或相同的离心程序应用到不同管类型中含有的多种不同生物样品上。只要包含其各自样品的不同样品管的直径和重量大概相等,则基于共同的几何学管数据将它们一起加载到同一个离心机中可提高包括离心步骤的样品操作工作流程的效率。
依据本发明的实施方案,使用几何学数据来确定所加载的样品的重量。再利用所确定的重量,将约相等重量的样品装运到彼此相对放置的离心桶中。换言之,评估多种样品管的管标签规定的几何学数据,以将样品管以平衡的方式自动分配到离心机桶中。以平衡的方式给离心机加载,暗示插在离心机转子的相对桶中的样品管具有大致相等的重量,因此避免离心机的不平衡。依据实施方案,重量可以通过,例如,规定管内部尺度的几何学数据结合所测量的包括其样品在内的管重量来得出。
依据进一步的实施方案,甚至可不用天平辅助,通过执行下列步骤实现以平衡的方式给离心机加载:通过传感器或另一光学读取器装置确定样品管中样品的填充水平;通过读取器装置从所述样品管标签至少读取指示管的几何学性质的几何学数据,以允许计算管的内体积。所述性质可以是,例如,管直径,优选管内直径。外直径也可允许计算大致的管内体积。将确定的填充水平和所读取的指示所述几何学性质的几何学数据用作输入来计算所述样品管含有的样品实际体积。假设对于所有样品,所有样品的密度是相同或大致相同的,将大致相等体积的样品当作大致相等重量的样品来处理,并且自动加载到离心机转子中相对的桶中。如果有密度显著不同的样品预定用于集合离心,则在额外的步骤中将所述密度用作额外的输入参数,从样品各自的体积和密度来计算样品重量,并且将大致相等重量的样品加载到离心机中相对的桶中。依据一些实施方案,所述密度信息也可以规定在管标签中。所述特征可能是有利的,因为它们允许以平衡和全自动的方式装运离心机而不需要额外的设备组件(天平)且不用花费时间在实施物理称重的步骤上。
依据实施方案,样品管具有螺旋盖。管数据包含管盖数据,其指示将螺旋盖从样品管取下所需的转数。处理装置是脱盖器,其包括盖夹具,其中盖夹具受控制以按所读取的管盖数据指示的转数旋转螺旋盖。
依据实施方案,本方法进一步包括如下步骤:
-通过使用所读取的几何学性质或通过由读取器装置从管标签读取空样品管的重量,确定空样品管的大致重量;
-称重含有生物样品的样品管;并且
-确定空样品管和含有生物样品的样品管之间的重量差异。
通过使用所读取的几何学性质来确定空样品管的大致重量可包括计算制成样品管的玻璃或塑料材料的体积,例如通过使用样品管的内直径和外直径以及管高度作为输入。给定计算的体积且给定玻璃或使用的塑料制品的密度,可以计算出管重量。依据其它实施方案,样品管重量可以在管数据中规定。例如,从管数据读取指示空样品管重量的第一个重量信息。然后,称重包含全血样品的管并获得第二个重量信息。第一个和第二个重量信息之间的差异指示了样品的重量。
依据一些优选的实施方案,本方法进一步包括一个通过使用样品管的重量差异和几何学性质来确定样品管填充水平的步骤。例如,根据特定样品类型(如全血)的已知密度且根据已确定的样品重量,可以计算出全血样品的体积,如以“毫升”为单位。通过读取样品管的更多的几何学性质,特别是其内直径,可以计算所述样品管的填充水平。所述特征是有利的,因为其可允许自动且可靠地确定填充水平,甚至在样品管表面被水、冰或其它阻碍基于图像分析确定填充水平的物质覆盖的情况下也是如此。所确定的填充水平可允许其他的样品处理单元等分样品,而不会吸入离心沉淀的成分,也不会由于移液管头被错误地放置于样品弯月面(meniscus)之上而吸入空气。
依据实施方案,所述读取器为光学读取器或RFID读取器。
依据实施方案,管标签包括光学可读的模式,如条形码,特别是二维条形码。
“条形码”是数据的光学机器可读表示。条形码可以是,例如,一维(1D)或二维(2D)条形码。线性条形码可包含一组具有不同宽度和间距的平行线。二维条形码可包含矩形、多边形或其它以二维排列的几何模式。存储于条形码的数据由光学读取器装置读取,该读取器也被称为扫描器。
使用2D条形码可能是有利的,因为信息密度,即样品管单位表面面积的信息量,允许存储适当处理特定样品管类型所需的所有信息。例如,规定样品管的确切高度和壁厚度的2D条形码可允许极大降低死体积(dead volume)。在另一个有利方面,2D条形码对管制造厂家通常用来对制成的且通常已包装的样品管消毒的γ辐照特别鲁棒。依据实施方案,5mmx 5mm大小的条形码包含了脱盖或加盖单元对样品管自动且正确地脱盖或再加盖必需的所有几何学数据。
依据一些实施方案,2D条形码是数据矩阵码。数据矩阵码是正方形的2D条形码,其包含分散于正方形区域的多个正方形码元素(code elements),其中码元素的分散情况规定了数据矩阵码的数据内容。
依据实施方案,扫描器读取所述光学可读模式并将该模式以图像数据的形式,例如以jpg或其它图像格式,传送到图像分析组件。所述传送可以是基于推或拉的。图像分析组件可以是扫描器的部分(即读取器装置的部分)、处理装置的部分、或与扫描器和/或处理系统联接的软件组件的部分。所述软件组件可以是实验室的中间件组件(middlewarecomponent),或该实验室的实验室信息系统(LIS)的模块。所述图像分析评估所述模式来确定其中编码的几何学管特性。
依据实施方案,样品管上附有天线。管标签包括发送器,用于通过天线发送管数据。
依据实施方案,管标签包括RFID电路,特别是印刷聚合物电子电路。使用RFID电路可以是有利的,因为从所述芯片读取数据对光学失真影响特别鲁棒,所述光学失真影响如表面的冰或冷凝水,其起因于冷冻样品或将冷冻或冷却样品移动到温暖和潮湿的环境中。使用聚合物电子电路可以是特别有利的,因为这种电路对于光学失真影响是鲁棒的,并且对于样品管消毒时应用的γ辐照所导致的损害也是鲁棒的。
依据实施方案,在已完成制造过程后,且在管消毒之前,由管制造厂商将管数据印刷于或以其他方式附于样品管上。
依据实施方案,样品管为假底管且管几何学管数据还包含假底的几何学性质,特别是管身中假底的存在和/或其位置。当外管形状应与常规处理工具相容时,经常使用假底以实现更小的液体体积。将液体移入这种假底管或从所述假底管吸出液体的处理单元需要自动考虑该底的位置,以避免底穿孔且使死体积最小化。因此,规定该假底管的几何学性质可能是有利的,因为除“常规底的管”以外,所述数据还允许对假底管的全自动和稳固的操作。依据实施方案,读取器装置评估管数据对于假底几何学性质的任何规定。在读取器装置、控制器或任何其它系统组件自动从几何学数据确定填充水平的情况下,将所述假底的几何学性质作为额外信息用于正确地计算与假底有关的填充水平。
依据实施方案,管数据进一步包含如下方面的信息:分离胶层(separator gellayer)的存在及任选地其位置、盖设计(Hemogard、Sarstedt、螺旋盖等)和/或管类型标识。
依据进一步的实施方案,管标签还包括这样的图案(pattern):当施加引力(g-force)经过一段最小的时间(over a mininum period of time)和/或超过最小引力强度时,该图案改变。依据实施方案,已有的引力敏感图案,如管标签的其他的条形码区,可因施加引力而被破坏;或者,当施加引力时,在先前均匀着色(homogeneously colored)的管标签区域上有新图案变得可见,或者先前存在于所述区域中的图案可发生改变。例如,在欧洲专利申请EP12818404(其通过提述全部据此并入)中描述了这样的引力敏感管标签区域。引力敏感模式可同样代表其它形式的2D码,例如矩阵码。
所述特征可能是有利的,因为基于照相机来确定样品管的经旋转/未旋转状态往往容易出错。通过在管标签纳入引力敏感标签区域,将管的静态几何学性质与管状态的动态变化的信息(经旋转/未旋转)组合,并且使两种数据都可被读取器装置如条形码读取器所访问,以用于全自动的样品操作。这避免了现有技术系统中手动或基于照相机预分选经旋转和未旋转样品时导致的误差。在一个进一步的有利方面,已包括光学读取装置如条形码扫描器的系统不需要任何额外的硬件组件来确定经旋转/未旋转管状态。
依据实施方案,所述处理装置操作多个样品管,其中每个样品管的至少一种几何学性质具有在预先限定的范围内的任意值,而与预先限定的样品管类型无关。
这可能是有利的,因为若干样品管处理步骤可能仅依赖于某些几何学性质,而不依赖于预先安排的样品处理步骤(如特定分析)或样品类型。例如,样品分选单元可利用读取的样品几何学性质来确定特定样品管的管直径或盖直径是否处在能被特定加盖器或脱盖器处理的管直径或盖直径范围内。因此,可以依据直径范围将所有样品分选为样品组,使得每组中所有样品能够被特定加盖器或脱盖器处理。许多加盖器或脱盖器包括用于对样品管加盖和/或脱盖的机器人夹臂,并且以可能的最小和最大夹臂直径为特征。如描述的分选单元可用于依据可用的加盖器或脱盖器的要求,灵活地分选多种具有不同管直径或盖直径的样品管,由此允许全自动且同时高度灵活的样品处理。
在另一个方面,本发明涉及具有管标签的样品管。管标签携带管数据,管数据至少包含描述样品管的至少一种几何学性质的几何学管数据。
在另一个方面,本发明涉及用于处理样品管的系统,所述样品管含有生物样品。至少一个样品管具有附于样品管的管标签,管标签携带管数据。管数据至少包含描述样品管的至少一种几何学性质的几何学管数据。所述系统包括:用于从管标签读取至少几何学管数据的读取器装置;以及用于操作样品管的包括控制器的处理装置,其中所述读取器装置与所述处理装置偶联以将所述几何学管数据输入到所述控制器中,且其中所述控制器可依据所述几何学管数据操作以控制所述处理装置。
依据实施方案,所述处理装置是脱盖器、再加盖器、持盖器(cap holder)或自动离心机。
依据实施方案,系统进一步包括样品管。每一个样品管附有携带管数据的管标签,每个样品管的管数据至少包含描述样品管至少一种几何学性质的几何管数据。
附图说明
下面以示例方式更详细地解释本发明的实施方案,仅参照附图如下:
图1显示了用于自动操作含有生物样品的样品管的方法的流程图,
图2图示了一种系统,其包括多个样品管、读取器装置和处理装置,
图3a描述了包括条形码标签的样品管,
图3b描述了包括RFID电路的样品管,
图4描述了样品管的不同部分,以及
图5图示了一种系统,其包括多个样品管、读取器装置和另一种处理装置。
具体实施方式
图1显示了用于自动操作含有生物样品的样品管212的方法的流程图。在第一步102中,通过读取器装置202从管标签至少读取几何学管数据210。管标签附于样品管上。例如,管标签可以是在制造过程中已印于样品管表面的压印(imprint)。同样地,也可以在样品管已制成后将管标签附于样品管表面上,如借助粘附剂(adherent)。管标签携带管数据,该管数据至少包含描述样品管的至少一种几何学性质的几何学管数据。在进一步的步骤104中,将读取器装置所读取的几何学管数据从读取器装置传送到处理装置218。在步骤106中,处理装置按照所读取的几何学数据中描述的至少一种几何学性质受到控制。例如,控制步骤可以基于所读取的几何学数据中规定的盖直径来确定机器人夹具216应使用何种夹持位置来对样品管脱盖。
图2图示了一种用于操作样品的系统200,所述系统包括多个样品管214、读取器装置202和处理装置218。多个不同管类型的样品管包含不同样品类型的生物样品。相对于处理装置移动样品管。样品管优选担载在管担载器上,担载器可以是单管担载器即所谓的“puks”,或多管担载器即所谓的“管架”,多管担载器包含多个管插孔(receptacle)以用于接收(如多达5个或更多的)管,并且通常被改装以接收不同类型(即具有不同的直径和高度)的管。依据描述的实施方案,该处理系统(脱盖器)包含管传送带,其适于在单管担载器和/或管架(未显示)上移动样品管。传送带可包含运输单元,例如由电动机驱动的运输带(transportation band)或辅助导轨(guide to aid),并且如此安排使各管逐步移动,每次让一个管与脱盖台对准。然而也可改装运输单元以在特殊的担载器上移动管,以及依据处理装置的要求相反地定制(vice versa customized)。在一些实施方案(未显示)中,格式变换装置(reformatting device)可操作地与处理装置偶联,所述格式变换装置用于将puks和/或管架的样品管转移到这些特殊的担载器。
多个样品到达系统的输入位置且由传送带208运送到“读取位置”,在该读取位置各样品的标签可以被读取器装置202所读取。读取器装置202至少读取管标签中标示的几何管数据,并且将所读取的管数据传送到作为处理装置218的部分的控制器204。依据实施方案,读取器装置可以是扫描器,其可操作以从样品管212的管标签210中读取光学数据如2D码。依据其它实施方案,读取器装置202可以是RFID读取器,其可操作以从RFID电路308.2读取数据,所述电路为样品管标签210的部分。处理装置218包含了用于对样品管212执行工作流程步骤的机器人单元216。取决于实施方案,处理装置218可以是分析前、分析或分析后样品操作系统的一个单元,或一个完整的分析前、分析或分析后工作单元。机器人单元可以是由控制器204依据管数据控制的夹具,所述管数据是所述控制器从读取器装置202接收的。所述夹具可以是夹具单元的一部分。
依据该描述的实施方案,所述处理装置是脱盖器,其自动对加载的样品管脱盖。例如,夹具216可操作以对多个不同的管脱盖,这些管具有不同直径、盖高度、表面质地等的盖。
依据描述的实施方案,所述夹具为机械臂,其包含用于接收和/或释放样品管的打开位置220以及用于夹持样品管的夹持位置222。至少对夹持位置依据样品管的至少一种几何学性质而加以调整。
依据实施方案,夹具216为机械夹臂,其可操作而将夹臂直径动态地调整为接收到的管数据中规定的管盖直径。夹臂在其“打开位置”可具有特定缺省直径(defaultdiameter),并且可操作以增加或减少所述直径直到达到样品管的盖直径,条件是所述直径不超过夹具216的物理给定的最大或最小直径。通过将夹臂直径调整为所读取的盖直径,夹具216可操作以处理多个具有不同盖直径的不同样品管214中的每一个。取决于实施方案,夹具可操作以依据样品管的几何学数据地动态调整其在夹具单元206中的垂直和/或水平位置,并且因此可操作以动态地适应(adjust to)不同的管高度、管盖高度、盖质地(平滑的、开槽的等)、盖形状(圆形、多边形)等。
依据其中所述管标签包含对样品管加盖或脱盖所需的转数的信息的实施方案,夹具216可将该信息用于执行脱盖步骤,方法是通过将管标签的几何学管数据中规定的转数应用到所述管盖上。
图3a描述了样品管212,其包含具有条形码308.1的管标签306。样品管包含盖302,其可以是,例如按锁(press-lock)或螺旋盖。标签306除了条形码308.1之外还可包含人可阅读的标签部分。管标签306可以是样品管的表面304上的压印或附于样品管的表面304。条形码为2D码,其可由光学读取器装置如扫描器读取。所描述的样品管的管身包含管颈(tubeneck)312,所述管颈在其它管类型中可以缺失。
图3b描述了样品管212,其对应于图3a的样品管,但包含RFID电路308.2而不是条形码作为管标签。优选地,RFID电路308.2为无源RFID电路,其通过附于样品管和RFIC电路的天线314接收能量。相应的读取器装置为RFID读取器。RFID读取器或其他装置产生电磁场,该电磁场充当RFID电路的能量来源。当将RFID电路移动到电磁场中时,RFID电路可操作以通过其天线314获得充足的能量,来将RFID电路存储的管数据通过天线传送到RFID读取器装置。
图4描述了样品管的各部分:样品管具有管内直径404和管外直径406。从管外可见的管盖高度(其可覆盖管身的一些部分)称为管盖的自由高度408。盖可能不是每个管类型中都存在,但每个管都由特定管身长的管身组成或包含特定管身长的管身。从管底部到管盖顶部(或者在无盖管的情况下为管身顶部)的长度距离在本文中称为管长414。无盖管的管身长410与其管长相等。管盖的外直径,如俯视图中所见,称为“管盖直径”412。
图5图示了用于自动化样品操作的另一个系统500。该系统包含多个样品管214、读取器装置202和另一处理装置514。处理装置包含具有管夹具502的管夹持单元522、具有管盖夹具508的脱盖单元524、具有移液器516的移液单元和具有再加盖器518的再加盖单元528。处理装置514为全自动的样品工作单元,其可操作以通过传送带208或其它机器人运送设施运送多个样品214。管夹具502为机械臂,其依赖于所述样品管形状的几何学性质(如管外直径或管高)而非管盖的几何学性质(如果有的话)受控制。所述控制器可依据从读取器装置202接收的几何学管数据规定管夹具的夹臂的位置。夹臂的两个不同位置,打开位置506和夹持位置504,由两个虚箭头指明。脱盖单元522的盖夹具508以及再加盖单元528的盖夹具518分别为依赖于样品管盖的几何学性质(如盖直径或管盖自由高度)受控制的机械臂。盖夹具也可以利用管的一些几何学性质,特别是其高度,来将盖夹具的垂直位置动态地调整到管盖高度。依据实施方案,管夹具502将管定位,使得管夹具508能够对定位的样品管脱盖。一旦样品管的盖被成功移去,移液器516可从样品吸出等份或将试剂移到样品中。依据实施方案,控制器204使用由样品管标签210读取的至少一部分几何学数据,以计算出在既不接触管底部,又不对样品管加载过多液体的条件下,可从样品管212”吸出或向样品管212”加入的体积。然后自动地将样品管从移液单元526前递到再加盖单元528,其中可适应不同夹持直径530、532的盖夹具518给样品管212”加上新盖。最终样品管212”’可以由传送带传送到存储单元(未显示)。不同的样品处理单元522、524、526和528可以是同一个或多个不同的硬件模块或实验室装置的部分。在例如US6599476A和US5819508A(其通过提述全部附于此)中更详细地解释了管夹具和盖夹具之间的相互作用。在US5819508A图3和相应的说明书部分给出了管夹具的实例。前述文件中图5和相应的说明书部分给出了盖夹具的实例。
102-106 步骤
200 用于处理样品管的系统
202 读取器装置
204 控制器
206 夹具单元
208 传送带
210 管标签
212 样品管
214 多个样品管
216 夹具
218 处理装置I
220 打开位置
222 夹持位置
302 管盖
304 管表面
306 管标签
308.1 条形码
308.2 RFID电路
310 人可阅读数据部分
312 管颈
404 管内直径
406 管外直径
408 管盖自由高度
410 管身长
412 管盖直径
414 管长
500 用于处理样品管的系统
502 管夹具
504 管加盖单元的管夹具的夹持位置
506 管加盖单元的管夹具的打开位置
508 脱盖单元的盖夹具
510 脱盖单元的盖夹具的打开位置
512 脱盖单元的盖夹具的夹持位置
514 处理装置II
516 移液器
518 再加盖单元的盖夹具
522 管夹持单元
524 脱盖单元
526 移液单元
528 再加盖单元
530 脱盖单元的盖夹具的打开位置
532 脱盖单元的盖夹具的夹持位置
212’-212”’ 处于不同处理阶段的样品管212
Claims (17)
1.一种用于操作含有生物样品的样品管(212)的方法,其中管标签(210,306)附于所述样品管,所述管标签携带管数据,所述管数据至少包含描述所述样品管的至少一种几何学性质的几何学管数据,所述方法包括:
-通过读取器装置(202)从所述管标签(210,306)读取(102)至少所述几何学管数据,
-将至少所述几何学管数据从所述读取器装置传送(104)到处理装置(218),
-控制(106)所述处理装置(218)以依照由该读取的几何学数据描述的所述至少一种几何学性质操作所述样品管(212)。
2.权利要求1的方法,其中所述管数据包括所述样品管的下列一种或多种几何学性质:管外直径(406)、管内直径(404)、管长度(414)、管盖直径(412)、管盖(302)的自由高度(408)、假底的位置和/或形状。
3.权利要求1或2的方法,其中所述处理装置包含夹具(216;502,508;518),所述夹具具有用于接收或释放所述样品管或该样品管的盖的打开位置(220;506;510;530)和用于夹持所述样品管或该样品管的盖的夹持位置(222;504;512;532),其中依赖于所述至少一种几何学性质调节至少所述夹持位置。
4.权利要求1的方法,其中所述处理装置是包含管夹具(502)和盖夹具(508;518)的脱盖器或再加盖器,其中所述管夹具依赖于所述样品管形状的所述几何特性而受到控制,且所述盖夹具依照所述样品管的盖的几何学性质而受到控制。
5.权利要求1的方法,其中所述处理装置是自动化离心机,其包含用于将样品管加载到离心机中的加载台,该加载台包含夹具,该夹具受控制而依赖于所述读取的几何学管数据将所述样品管放置入离心桶中,由此使用所述几何学数据来确定所加载的样品的体积和/或重量,且其中使用所确定的体积或重量将相等重量或相等体积的样品加载到彼此相对放置的离心桶中。
6.权利要求1的方法,其中所述样品管具有螺旋盖,其中所述管数据包含指示从所述样品管脱去所述螺旋盖需要的转数的管盖数据;所述处理装置是包含盖夹具的脱盖器,其中所述盖夹具受到控制以将所述螺旋盖转动如所述读取的管盖数据所指示的转数。
7.权利要求1的方法,其进一步包括下列步骤:
-通过使用所述读取的几何学性质或通过读取器装置从所述管标签读取空样品管重量来确定所述空样品管的重量;
-对含有所述生物样品的所述样品管称重;并
-确定所述空样品管和含有所述生物样品的所述样品管之间的重量差异,
其中所述方法进一步包括使用所述重量差异和所述几何学性质确定所述样品管的填充水平的步骤。
8.权利要求1的方法,其中所述读取器是光学读取器或RFID读取器。
9.权利要求1的方法,其中所述管标签包含光学可读图案。
10.权利要求1的方法,其中所述管标签包含条形码。
11.权利要求1的方法,其中所述管标签包含二维条形码。
12.权利要求1的方法,其中天线(314)附于所述样品管,其中所述管标签包含发送器用于通过所述天线发送所述管数据。
13.权利要求12的方法,其中所述管标签包含RFID电路(310)。
14.权利要求12的方法,其中所述管标签包含印刷聚合物电子电路。
15.权利要求1的方法,其中所述处理装置操作多个所述样品管,每个所述样品管的所述至少一种几何学性质具有预先规定的范围内的任意值,与预先规定的样品管类型无关。
16.一种用于处理样品管(214,212)的系统(200;500),所述样品管含有生物样品,至少一个所述样品管具有附于所述样品管的管标签(306),所述管标签携带管数据,所述管数据至少包含描述所述样品管的至少一种几何学性质的几何学管数据,所述系统包含:
用于从所述管标签读取至少所述几何学管数据的读取器装置(202),
用于操作所述样品管的处理装置(218;514),所述处理装置包含控制器(204),
其中所述读取器装置与所述处理装置偶联以将所述几何学管数据输入到所述控制器中,且其中所述控制器可操作以依赖所述几何学管数据控制所述处理装置。
17.权利要求16的系统,其进一步包含所述样品管(214,212-212”’),所述样品管各自附有所述管标签,所述管标签携带所述管数据,每个样品管的所述管数据至少包含描述所述样品管的至少一种几何学性质的所述几何学管数据。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11183365.3 | 2011-09-29 | ||
EP20110183365 EP2574933A1 (en) | 2011-09-29 | 2011-09-29 | Handling of sample tubes comprising geometric tube data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103028452A CN103028452A (zh) | 2013-04-10 |
CN103028452B true CN103028452B (zh) | 2016-12-21 |
Family
ID=46642452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210366983.1A Active CN103028452B (zh) | 2011-09-29 | 2012-09-28 | 对包含几何学管数据的样品管的操作 |
Country Status (6)
Country | Link |
---|---|
US (4) | US8672219B2 (zh) |
EP (2) | EP2574933A1 (zh) |
JP (1) | JP6010409B2 (zh) |
CN (1) | CN103028452B (zh) |
CA (1) | CA2791433A1 (zh) |
HK (1) | HK1178484A1 (zh) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2574933A1 (en) * | 2011-09-29 | 2013-04-03 | F. Hoffmann-La Roche AG | Handling of sample tubes comprising geometric tube data |
DE102014105245A1 (de) * | 2013-12-05 | 2015-06-11 | Deutsche Post Ag | Verfahren zum Bewirken einer Änderung eines Betriebsmodus |
WO2015111526A1 (ja) * | 2014-01-27 | 2015-07-30 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
US20150268146A1 (en) * | 2014-03-21 | 2015-09-24 | Environmental Express, Inc. | Polymer total dissolved solids vessel |
CN107076732B (zh) | 2014-07-21 | 2020-02-28 | 贝克曼考尔特公司 | 用于管检查和液位检测的方法及系统 |
JP6720082B2 (ja) * | 2014-11-17 | 2020-07-08 | 株式会社アイカムス・ラボ | 分注装置、及び分注システム |
US20160238627A1 (en) | 2015-02-13 | 2016-08-18 | Abbott Laboratories | Decapping and capping apparatus, systems and methods for use in diagnostic analyzers |
JP6651537B2 (ja) * | 2015-02-18 | 2020-02-19 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | 視覚システムのための画像ベースチューブスロット円検出 |
WO2016164473A1 (en) * | 2015-04-07 | 2016-10-13 | Gen-Probe Incorporated | Systems and methods for reading machine-readable labels on sample receptacles |
EP3085453A1 (en) * | 2015-04-24 | 2016-10-26 | Roche Diagniostics GmbH | Method of loading sample containers into a centrifuge and laboratory automation system |
US10126380B2 (en) | 2015-06-15 | 2018-11-13 | Norell, Inc. | Closure and system for NMR sample containers with a secondary locking seal |
US10527635B1 (en) | 2015-12-31 | 2020-01-07 | Cerner Innovation, Inc. | Specimen integrity monitoring device for automated blood sample processing systems |
US10311569B1 (en) | 2015-12-31 | 2019-06-04 | Cerner Innovation, Inc. | Identifying liquid blood components from sensed data to monitor specimen integrity |
US10209267B1 (en) | 2015-12-31 | 2019-02-19 | Cerner Innovation, Inc. | Sample extraction and rotation device for automated blood sample processing systems |
US10267813B1 (en) * | 2015-12-31 | 2019-04-23 | Cerner Innovation, Inc. | Monitoring specimen integrity in automated blood sample processing system |
WO2017143182A2 (en) | 2016-02-17 | 2017-08-24 | Becton, Dickinson And Company | Automated sample preparation system for diagnostic testing of same |
EP3223019B1 (en) | 2016-03-22 | 2021-07-28 | Beckman Coulter, Inc. | Method, computer program product, and system for establishing a sample tube set |
EP3446129B1 (en) | 2016-04-22 | 2024-02-14 | Becton, Dickinson and Company | Automated diagnostic analyzer and method for its operation |
CN109073669B (zh) | 2016-04-22 | 2022-11-25 | 贝克顿·迪金森公司 | 自动化诊断分析仪和用于自动化诊断分析仪的操作的方法 |
AU2017313446B2 (en) * | 2016-08-19 | 2019-05-30 | Fluid Transfer Technology Pty Ltd | Fluid sampling system |
JP6768814B2 (ja) * | 2016-09-13 | 2020-10-14 | 富士フイルム株式会社 | Pcr用チューブ、rfid検体管理システム、および、rfid検体管理方法 |
EP3357842B1 (en) | 2017-02-03 | 2022-03-23 | Roche Diagnostics GmbH | Laboratory automation system |
CN107703317A (zh) * | 2017-05-01 | 2018-02-16 | 无锡迅杰光远科技有限公司 | 一种自动采样建模装置 |
CN109580494B (zh) * | 2018-11-21 | 2021-09-28 | 深圳达闼科技控股有限公司 | 一种检测方法、相关装置及存储介质 |
CN114585443B (zh) * | 2019-10-31 | 2023-11-03 | 美国西门子医学诊断股份有限公司 | 训练诊断分析仪模型的设备和方法 |
EP4102228A1 (en) * | 2021-06-11 | 2022-12-14 | F. Hoffmann-La Roche AG | Automated method for handling an in-vitro diagnostics container in an in-vitro diagnostics laboratory |
WO2023278819A1 (en) * | 2021-07-02 | 2023-01-05 | Invitae Corporation | Techniques for diagnosing sources of error in a sample processing workflow |
CN114935662A (zh) * | 2022-07-21 | 2022-08-23 | 湖南慧泽生物医药科技有限公司 | 一体化生物样品处理系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586255B1 (en) * | 1997-07-21 | 2003-07-01 | Quest Diagnostics Incorporated | Automated centrifuge loading device |
CN101126764A (zh) * | 2006-08-18 | 2008-02-20 | 希森美康株式会社 | 标本分析仪 |
TW201035553A (en) * | 2008-11-12 | 2010-10-01 | Qiagen Gaithersburg Inc | Automated assay and system |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5137260A (en) * | 1988-02-26 | 1992-08-11 | Pehr Harold T | Child resistant container with flush latched closure |
JPH0712969U (ja) | 1993-07-28 | 1995-03-03 | 株式会社島津製作所 | 自動化学分析装置 |
US5631165A (en) * | 1994-08-01 | 1997-05-20 | Abbott Laboratories | Method for performing automated hematology and cytometry analysis |
DE19512905A1 (de) | 1995-04-06 | 1996-10-10 | Boehringer Mannheim Gmbh | Vorrichtung zum Herausziehen oder Abdrehen von Verschlüssen von Gefäßen |
US5735387A (en) * | 1995-07-14 | 1998-04-07 | Chiron Diagnostics Corporation | Specimen rack handling system |
JP3579517B2 (ja) * | 1995-07-26 | 2004-10-20 | 株式会社エイアンドティー | 検体搬送システム |
JPH09211004A (ja) * | 1996-02-07 | 1997-08-15 | Hitachi Ltd | 自動分析装置 |
JPH10115620A (ja) | 1996-10-11 | 1998-05-06 | Hitachi Ltd | 臨床用自動分析装置 |
US7922073B2 (en) * | 1997-10-21 | 2011-04-12 | Carlos De La Huerga | Vial printing method and apparatus |
AUPP058197A0 (en) * | 1997-11-27 | 1997-12-18 | A.I. Scientific Pty Ltd | Pathology sample tube distributor |
US6929953B1 (en) * | 1998-03-07 | 2005-08-16 | Robert A. Levine | Apparatus for analyzing biologic fluids |
CH698240B1 (de) * | 1998-11-17 | 2009-06-30 | Tecan Trading Ag | Verfahren zum Wägen von Proberöhren, Zuführeinrichtung sowie Arbeitsstation. |
ATE390655T1 (de) * | 2000-04-20 | 2008-04-15 | Cogiscan Inc | Automatisches herstellungssteuerungssystem |
US20020030302A1 (en) * | 2000-09-08 | 2002-03-14 | Cleary James Paul | Handicraft kit and related process for creating displayable imprints |
US7458483B2 (en) | 2001-04-24 | 2008-12-02 | Abbott Laboratories, Inc. | Assay testing diagnostic analyzer |
JP2003014770A (ja) * | 2001-06-29 | 2003-01-15 | Aloka Co Ltd | 開栓装置及び分注装置 |
US6622694B2 (en) | 2001-07-30 | 2003-09-23 | Caterpillar Inc | Reduced noise engine compression release braking |
JP2005075395A (ja) | 2003-08-29 | 2005-03-24 | Teruaki Ito | 試験管栓取外し装置 |
JP3860178B2 (ja) * | 2004-04-05 | 2006-12-20 | 株式会社アイディエス | 試験管のバーコード読取り装置 |
US7948381B2 (en) * | 2004-04-30 | 2011-05-24 | Binforma Group Limited Liability Company | Reversibly deactivating a radio frequency identification data tag |
US7278328B2 (en) * | 2004-09-03 | 2007-10-09 | Protedyne Corporation | Method and apparatus for handling sample holders |
US7445152B2 (en) * | 2005-05-06 | 2008-11-04 | Becton, Dickinson And Company | Label system and method for label alignment and placement |
FI121831B (fi) * | 2005-07-07 | 2011-04-29 | M Real Oyj | Anturirakenne, menetelmä sen valmistamiseksi ja siitä valmistettava tuote |
ITMI20072254A1 (it) * | 2007-11-30 | 2009-06-01 | Dachi S R L | "impianto di identificazione, trasporto ed indirizzamento automatico di campioni di materiale biologico" |
US20090208409A1 (en) * | 2008-02-15 | 2009-08-20 | The Government Of The United States Of America, As Represented By The Secretary, Dhhs | Encapsulated nanoparticles for computed tomography imaging |
JP5033675B2 (ja) * | 2008-02-26 | 2012-09-26 | 日立アロカメディカル株式会社 | 検体容器判別装置 |
EP2282212B1 (en) * | 2008-05-22 | 2018-11-28 | Hitachi High-Technologies Corporation | System for pretreating sample |
US8170271B2 (en) * | 2008-06-25 | 2012-05-01 | Jadak Llc | System and method for test tube and cap identification |
ES2402225T3 (es) * | 2008-07-25 | 2013-04-29 | F. Hoffmann-La Roche Ag | Un método y un sistema de laboratorio para la manipulación de tubos de muestras y una unidad de análisis por imagen |
WO2010056287A1 (en) * | 2008-10-30 | 2010-05-20 | Tagent Corporation | Rfid tracking of patient specimen samples |
JP5481122B2 (ja) * | 2009-07-28 | 2014-04-23 | 株式会社日立ハイテクノロジーズ | 遠心分離装置 |
FR2957536A1 (fr) * | 2010-03-18 | 2011-09-23 | Sas Laboratoire | Tubes a essai et procede d'utilisation |
EP2752668A3 (en) * | 2010-07-23 | 2014-10-15 | Beckman Coulter, Inc. | System Or Method Of Including Analytical Units |
US9039992B2 (en) * | 2011-06-06 | 2015-05-26 | Abbott Laboratories | Apparatus for closed tube sampling and open tube sampling for automated clinical analyzers |
EP2574933A1 (en) * | 2011-09-29 | 2013-04-03 | F. Hoffmann-La Roche AG | Handling of sample tubes comprising geometric tube data |
WO2014110121A1 (en) * | 2013-01-08 | 2014-07-17 | Cidra Corporate Services Inc. | Smart proppant technology for fracking and well production performance monitoring |
CA2893672C (en) * | 2013-01-09 | 2019-06-25 | Cidra Corporate Services Inc. | Smart pipe concept based on embedded taggant-sensor and/or color-encoded elements to monitor liner wear in lined pipelines, including urethane lined pipe |
-
2011
- 2011-09-29 EP EP20110183365 patent/EP2574933A1/en not_active Withdrawn
-
2012
- 2012-08-20 EP EP12180956.0A patent/EP2574934B1/en active Active
- 2012-08-28 US US13/596,199 patent/US8672219B2/en active Active
- 2012-09-24 JP JP2012210011A patent/JP6010409B2/ja active Active
- 2012-09-28 CN CN201210366983.1A patent/CN103028452B/zh active Active
- 2012-10-01 CA CA 2791433 patent/CA2791433A1/en not_active Abandoned
-
2013
- 2013-05-27 HK HK13106204.4A patent/HK1178484A1/zh not_active IP Right Cessation
-
2014
- 2014-01-21 US US14/159,898 patent/US9140632B2/en active Active
-
2015
- 2015-08-19 US US14/829,790 patent/US9500571B2/en active Active
-
2016
- 2016-10-18 US US15/296,300 patent/US9855556B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6586255B1 (en) * | 1997-07-21 | 2003-07-01 | Quest Diagnostics Incorporated | Automated centrifuge loading device |
CN101126764A (zh) * | 2006-08-18 | 2008-02-20 | 希森美康株式会社 | 标本分析仪 |
TW201035553A (en) * | 2008-11-12 | 2010-10-01 | Qiagen Gaithersburg Inc | Automated assay and system |
Also Published As
Publication number | Publication date |
---|---|
EP2574934B1 (en) | 2019-09-25 |
US20150355206A1 (en) | 2015-12-10 |
US8672219B2 (en) | 2014-03-18 |
EP2574933A1 (en) | 2013-04-03 |
US20170036206A1 (en) | 2017-02-09 |
US20140141465A1 (en) | 2014-05-22 |
EP2574934A1 (en) | 2013-04-03 |
JP2013076697A (ja) | 2013-04-25 |
CA2791433A1 (en) | 2013-03-29 |
JP6010409B2 (ja) | 2016-10-19 |
CN103028452A (zh) | 2013-04-10 |
HK1178484A1 (zh) | 2013-09-13 |
US9500571B2 (en) | 2016-11-22 |
US9140632B2 (en) | 2015-09-22 |
US9855556B2 (en) | 2018-01-02 |
US20130082099A1 (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103028452B (zh) | 对包含几何学管数据的样品管的操作 | |
EP3700674B1 (en) | Base module for an automated processing system | |
JP6062449B2 (ja) | 標本コンテナ検出 | |
CN105637370A (zh) | 样本检查自动化系统和生物试样检验模块以及生物试样的检验方法 | |
CN102759630A (zh) | 用于操作自动化样本工作间的方法 | |
EP2172778B1 (en) | Specimen container | |
JP5695071B2 (ja) | 検体処理システム | |
MX2014010652A (es) | Metodo de analisis medico. | |
CA3094125C (en) | Sample processing system and method for automatically processing histological samples | |
CN113866431A (zh) | 一种样本分析系统及其质控方法和测试方法 | |
CA3017021C (en) | Apparatus and method for indicating at least one property related to an object | |
US11592454B2 (en) | Method of handling laboratory sample containers by a laboratory sample container handling system, a laboratory sample container handling system, and a laboratory automation system | |
CN112585437B (zh) | 液面探测装置 | |
EP3330713A1 (en) | Laboratory handling system and laboratory automation system | |
US20220397584A1 (en) | Automated method for handling an in-vitro diagnostics container in an in-vitro diagnostics laboratory | |
CN104040353B (zh) | 样本容器检测 | |
CN115083525A (zh) | 生物离体样本的质检控制方法及计算机存储介质 | |
JP2011027486A (ja) | 検体処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1178484 Country of ref document: HK |
|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1178484 Country of ref document: HK |