CN102994760A - 一种不含铼的高温合金废料的再生方法 - Google Patents

一种不含铼的高温合金废料的再生方法 Download PDF

Info

Publication number
CN102994760A
CN102994760A CN2012105456435A CN201210545643A CN102994760A CN 102994760 A CN102994760 A CN 102994760A CN 2012105456435 A CN2012105456435 A CN 2012105456435A CN 201210545643 A CN201210545643 A CN 201210545643A CN 102994760 A CN102994760 A CN 102994760A
Authority
CN
China
Prior art keywords
temperature alloy
waste material
rhenium
alloy waste
filter residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105456435A
Other languages
English (en)
Other versions
CN102994760B (zh
Inventor
杜明焕
马光
吴贤
李进
孟晗琪
操起高
王治钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN201210545643.5A priority Critical patent/CN102994760B/zh
Publication of CN102994760A publication Critical patent/CN102994760A/zh
Application granted granted Critical
Publication of CN102994760B publication Critical patent/CN102994760B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种不含铼的高温合金废料的再生方法,包括以下步骤:一、雾化处理;二、酸溶;三、固液分离,获得滤液a和滤渣b;四、对滤液a和滤渣b分别进行处理;其中,对滤液a进行处理时,采用溶剂萃取法自滤液a中分离出Ni和Co元素;滤渣b的处理过程如下:401、固相焙烧:在滤渣b中加入碱进行固相焙烧,再对焙烧物进行破碎水浸得混合液二进行过滤;402、W和Mo元素分离;403、酸溶;404、Ta和Hf元素分离。本发明方法步骤简单、实现方便、投入成本较低且所需时间较短、使用效果好,能有效解决现有高温合金废料回收方法存在的投入成本较大、操作过程繁琐、所需处理时间长、回收率低、不易工业化等问题。

Description

一种不含铼的高温合金废料的再生方法
技术领域
本发明涉及一种高温合金废料处理方法,尤其是涉及一种不含铼的高温合金废料的再生方法。 
背景技术
高温合金是制造航空航天发动机热端部件的关键材料,主要由镍、铬、钴、钼、铝、钛、钽、铌、钨、铼、钌、锆、铪、铂和铱等金属元素组成,同时也是大型动力设备,如工业燃气轮机、高温气冷核反应堆等装置的核心材料。 
在高温合金加工及使用过程中会产生大量的合金废料,由于高温合金具有极佳的耐蚀性、耐氧化性、极高的强度,这些废旧高温合金很难再循环利用,大部分废料被降级使用,大量战略性金属被浪费,并造成重金属污染。 
目前公知的有多种火法、湿法冶金以及电化学法用于回收高温合金废料中的有价金属元素,但是这些方法要么是投资密集型,要么需要复杂的实施方式,使得它们均不是一种切实可行的、经济的处理高温合金废料的方法。 
例如,采用火法精炼处理废旧高温合金,首先要对这些废料按照合金牌号进行归类,再通过超生波洗涤清理、然后通过喷砂处理等方法去除合金表面涂层,最后在进行火法精炼提纯。采用此种方法需要大量资金购买超声波清理设备、真空熔炼及提纯设备,是典型的投资密集型方法,且该方法存在能耗高、难以完全去除废料中的有害杂质而影响高温合金性能和使用寿命、不能处理种类混杂的高温合金废料等缺点。 
另外,一些电化学方法,如DE 10155791C1公开了一种电化学处理 废旧高温合金的方法,该方法首先将高温合金废料浇铸成片,然后在无氧无机酸中进行电化学处理。众所周知,电化学处理过程中常常发生阳极钝化,阻止电解的继续进行。虽然可通过向电解质溶液中加入一定量的水或者以一定频率转换电解电流极性来解决阳极钝化问题,但电化学法很难处理大尺寸的废料,即使处理一些较小的高温合金碎片也需要较长时间。如2003年05月21日公开的专利CN1418985A中所记载的内容,电化学处理10.4Kg的高温合金碎片,至少要25个小时以上的时间,可见电化学法处理高温合金废料在工业上是不可行的。 
2009年07月08日公告的专利CN101479394A中公开了一种借助于碱金属盐浴分解含铼高温合金废料,然后回收铼、钨等贵重金属的方法。该方法虽便于回收合金中的铼,但是铼仅占合金重量的1-6%,存在焙烧量过大(1千克高温合金至少使用1千克盐熔体)、焙烧温度高(800-1200℃)、污染严重、不适于处理不含铼的高温合金废料。 
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种不含铼的高温合金废料的再生方法,其方法步骤简单、实现方便、投入成本较低且所需时间较短、使用效果好,能有效解决现有高温合金废料回收方法存在的投入成本较大、操作过程繁琐、所需处理时间长、回收率低、不易工业化等问题。 
为解决上述技术问题,本发明采用的技术方案是:一种不含铼的高温合金废料的再生方法,其特征在于该方法包括以下步骤: 
步骤一、雾化处理:采用雾化方法,将被处理高温合金废料处理成粒径为30μm~300μm的高温合金粉末; 
步骤二、酸溶:采用无机酸一,对步骤一中所述高温合金粉末进行充分溶解,并获得混合液一; 
步骤三、固液分离:对步骤二中所述混合液一进行过滤,并相应获得 滤液a和滤渣b;其中,所述滤渣b中含有Mo、W、Ta、Hf、Zr、Nb和Ti元素中的多种元素,且所述滤液a中含有Ni、Co、Cr、Al和Mo元素中的多种元素; 
步骤四、对步骤三中所获得的滤液a和滤渣b分别进行处理; 
其中,对所述滤液a进行处理时,采用溶剂萃取法,自所述滤液a中分离出Ni和Co元素; 
所述滤渣b的处理过程如下: 
步骤401、固相焙烧:在所述滤渣b中加入碱且在400℃~900℃温度条件下进行固相焙烧,并相应获得焙烧物;之后,对所述焙烧物进行破碎水浸,并获得混合液二;然后,对所述混合液二进行过滤,并相应获得滤液c和滤渣d;其中,所述滤液c为Na2WO4溶液和Na2MoO4溶液组成的混合溶液,所述滤渣d中含有Ta、Hf、Zr、Nb和Ti元素中的多种元素; 
步骤402、W和Mo元素分离:采用离子交换法,自步骤401中所述的混合溶液中分离出W和Mo元素; 
步骤403、酸溶:采用无机酸二,对步骤402中所述滤渣d中进行充分溶解,并相应获得混合液三; 
步骤404、Ta和Hf元素分离:对所述混合液三中的Ta元素和Hf元素分别进行分离。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤一中所采用的雾化方法为水雾化法或气雾化法。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤二中采用无机酸一对步骤一中所述高温合金粉末进行充分溶解时,还需在所述无机酸一中添加氧化剂,且所添加的氧化剂为H2O2、硝酸、NaClO3、Cl2或O3,所述硝酸的质量百分比为10%~65%,所加入的H2O2和硝酸与所述无机酸一的体积比均为1∶(5~25);每1g所述NaClO3、Cl2和O3所对应的所述无机酸一的体积均为(5~25)ml。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤二中所 述无机酸一为盐酸和硫酸的一种或两种。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤401中所加入的碱为由组份A和组份B均匀混合而成的混合碱,所述组份A为NaOH,所述组份B为Na2SO4和/或Na2CO3,其中所述NaOH和Na2SO4的质量比为(75~90)∶(5~15),且所述NaOH和Na2CO3的质量比为(75~90)∶(5~15);所述NaOH、Na2SO4和Na2CO3均以固态形式加入。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤401中进行固相焙烧时,焙烧气氛为空气和氧气的一种或两种。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤401中进行固相焙烧时,焙烧时间为1h~3h。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤403中所述的无机酸二为氢氟酸。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤402中采用离子交换法自所述混合溶液中分离出W和Mo元素时,采用强碱性阴离子交换树脂进行分离。 
上述一种不含铼的高温合金废料的再生方法,其特征是:步骤一中所述被处理高温合金废料的主要组分为Ni、Co、Cr和Al元素中的一种或多种,且所述被处理高温合金废料的次要组分为Re、Mo、W、Ta、Hf、Zr和Nb元素中的一种或多种。 
本发明与现有技术相比具有以下优点: 
1、方法步骤简单、实现方便且投入成本较低。 
2、所需时间较短,只需几个小时便可完成不含铼高温合金废料的再生处理过程,易于实现工业化,具有良好的应用前景。 
3、设计合理,首先借助雾化方法将合金雾化成细小的金属粉末,然后采用无机酸溶解、分离等步骤,回收高温合金废料中镍、钴等战略金属、以及钨、钽、铪等非常贵重的稀有金属。 
4、使用效果好且实用价值高,能对各种含铼的高温合金废料进行高 效回收处理,包括由多个种类高温合金混杂后的高温合金废料,并且不会对高温合金性能和使用寿命等造成影响;同时,本发明的回收率高,被处理高温合金废料中钨、钽、铪等非常贵重的稀有金属元素的回收率均在98%以上,镍、钴等战略金属元素的回收率均在95%以上;另外,本发明所引入的杂质非常少。 
综上所述,本发明方法步骤简单、实现方便、投入成本较低且所需时间较短、使用效果好,能有效解决现有高温合金废料回收方法存在的投入成本较大、操作过程繁琐、所需处理时间长、回收率低、不易工业化等问题。 
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。 
附图说明
图1为本发明的方法流程框图。 
具体实施方式
如图1所示一种不含铼的高温合金废料的再生方法,包括以下步骤: 
步骤一、雾化处理:采用雾化方法,将被处理高温合金废料处理成粒径为30μm~300μm的高温合金粉末。 
步骤二、酸溶:采用无机酸一,对步骤一中所述高温合金粉末进行充分溶解,并获得混合液一。 
步骤三、固液分离:对步骤二中所述混合液一进行过滤,并相应获得滤液a和滤渣b;其中,所述滤渣b中含有Mo、W、Ta、Hf、Zr、Nb和Ti元素中的多种元素,且所述滤液a中含有Ni、Co、Cr、Al和Mo元素中的多种元素。 
步骤四、对步骤三中所获得的滤液a和滤渣b分别进行处理; 
其中,对所述滤液a进行处理时,采用溶剂萃取法,自所述滤液a中分离出Ni和Co元素。 
所述滤渣b的处理过程如下: 
步骤401、固相焙烧:在所述滤渣b中加入碱且在400℃~900℃温度条件下进行固相焙烧,并相应获得焙烧物;之后,对所述焙烧物进行破碎水浸,并获得混合液二;然后,对所述混合液二进行过滤,并相应获得滤液c和滤渣d;其中,所述滤液c为Na2WO4溶液和Na2MoO4溶液组成的混合溶液,所述滤渣d中含有Ta、Hf、Zr、Nb和Ti元素中的多种元素; 
步骤402、W和Mo元素分离:将步骤401中所述的混合溶液作为前驱液,且采用离子交换法自所述混合溶液中分离出W和Mo元素; 
步骤403、酸溶:采用无机酸二,对步骤402中所述滤渣d中进行充分溶解,并相应获得混合液三; 
步骤404、Ta和Hf元素分离:对所述混合液三中的Ta元素和Hf元素分别进行分离。 
实施例1 
本实施例中,不含铼的高温合金废料的再生方法包括以下步骤: 
步骤一、雾化处理:采用气雾化方法,将被处理高温合金废料处理成粒径为150μm~250μm的高温合金粉末。 
步骤二、酸溶:采用盐酸,对步骤一中所述高温合金粉末进行充分溶解,并获得混合液一。 
本实施例中,所采用盐酸的质量百分数为30%。实际使用时,可根据具体需要,将所采用盐酸的质量百分数在10%~36%的范围内进行相应调整。 
实际操作过程中,采用无机酸一对步骤一中所述高温合金粉末进行充分溶解时,还需在所述无机酸一中添加氧化剂,且所添加的氧化剂为H2O2、硝酸、NaClO3、Cl2或O3,,所加入的H2O2和硝酸与所述无机酸一的体积比均为1∶(5~25);每1g所述NaClO3、Cl2和O3所对应的所述无机酸一的体积均为(5~25)ml。 
本实施例中,所加入的氧化剂为H2O2,实际进行氧化处理时,也可以 其它类型的氧化剂。并且,所加入氧化剂与所述无机酸一的体积比为1∶10。 
实际进行酸溶时,也可以不在所述无机酸一中加入氧化剂。 
步骤三、固液分离:对步骤二中所述混合液一进行过滤,并相应获得滤液a和滤渣b;其中,所述滤渣b中含有Mo、W、Ta、Hf、Zr、Nb和Ti元素中的多种元素,且所述滤液a中含有Ni、Co、Cr、Al和Mo元素中的多种元素。 
步骤四、对步骤三中所获得的滤液a和滤渣b分别进行处理。 
其中,对所述滤液a进行处理时,采用溶剂萃取法,自所述滤液a中分离出Ni和Co元素。 
实际对Ni和Co元素进行分离时,所采用的溶剂萃取法均按常规萃取方法进行分离提纯。实际使用时,也可以采用其它常规分离方法,对Ni元素和Co元素进行分离。 
所述滤渣b的处理过程如下: 
步骤401、固相焙烧:在所述滤渣b中加入碱且在600℃温度条件下进行固相焙烧,并相应获得焙烧物;之后,对所述焙烧物进行破碎水浸,并获得混合液二;然后,对所述混合液二进行过滤,并相应获得滤液c和滤渣d;其中,所述滤液c为Na2WO4溶液和Na2MoO4溶液组成的混合溶液,所述滤渣d中含有Ta、Hf、Zr、Nb和Ti元素中的多种元素。 
实际进行固相焙烧时,所加入的碱为由组份A和组份B均匀混合而成的混合碱,所述组份A为NaOH,所述组份B为Na2SO4和/或Na2CO3,其中所述NaOH和Na2SO4的质量比为(75~90)∶(5~15),且所述NaOH和Na2CO3的质量比为(75~90)∶(5~15);所述NaOH、Na2SO4和Na2CO3均以固态形式加入。 
本实施例中,所述组份A为NaOH,所述组份B为Na2SO4,所述NaOH和Na2SO4的质量比为25∶1。实际进行固相焙烧时,可根据具体需要,将NaOH和Na2SO4的质量比在(75~90)∶(5~15)的范围内进行相应调整。 步骤401中进行固相焙烧时,在焙烧气氛为空气,焙烧时间为3h,可根据具体需要将焙烧时间在1h~3h的范围内进行相应调整。 
步骤402、W和Mo元素分离:采用离子交换法,自步骤401中所述的混合溶液中分离出W和Mo元素。 
本实施例中,采用离子交换法自所述混合溶液中分离出W和Mo元素时,均采用离子交换法进行分离,且均采用强碱性阴离子交换树脂进行分离。实际分离时,也可以采用其它的常用分离方法,分别对W元素和Mo元素进行分离。 
并且,所述强碱性阴离子交换树脂为苯乙烯系强碱性阴离子交换树脂。 
离子交换完成后,采用质量百分数为6%~20%的氨水对吸附在所述强碱性阴离子交换树脂上的W元素或Mo元素进行洗脱。 
步骤403、酸溶:采用无机酸二,对步骤402中所述滤渣d中进行充分溶解,并相应获得混合液三。 
本实施例中,所述无机酸二为氢氟酸。并且,所采用的氢氟酸为市售氢氟酸。 
实际使用时,也可以采用其它类型的无机酸。 
步骤404、Ta和Hf元素分离:对所述混合液三中的Ta元素和Hf元素分别进行分离。 
本实施例中,对所述混合液三中的Ta元素和Hf元素分别进行分离时,均采用溶剂萃取法进行分离。实际分离时,也可以采用其它的常用分离方法,对所述混合液三中的Ta元素和Hf元素进行分离。 
实施例2 
本实施例中,与实施例1不同的是:步骤一中采用水雾化方法,将被处理高温合金废料处理成粒径为150μm~250μm的高温合金粉末;步骤二中所采用的无机酸一为硫酸,所述硫酸的质量百分数为60%,实际使用时可根据具体需要,将所采用硫酸的质量百分数20%~98%的范围内进行相应 调整;步骤二中所加入的氧化剂为NaClO3(固态),每1g所述NaClO3所对应的所述无机酸一的体积为15ml;步骤401中所述NaOH和Na2SO4的质量比为25∶3,在900℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为氧气,且焙烧时间为1h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例3 
本实施例中,与实施例1不同的是:步骤一中采用气雾化方法,将被处理高温合金废料处理成粒径为30μm~80μm的高温合金粉末;步骤二中所采用的无机酸一为硫酸,所述硫酸的质量百分数为98%,实际使用时可根据具体需要,将所采用硫酸的质量百分数20%~98%的范围内进行相应调整;步骤二中所加入的氧化剂为硝酸,且所加入硝酸与所述无机酸一的体积比为1∶25;步骤401中所述NaOH和Na2SO4的质量比为85∶8,在500℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气与氧气混合而成的混合气体,且焙烧时间为2h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例4 
本实施例中,与实施例1不同的是:步骤一中采用气雾化方法,将被处理高温合金废料处理成粒径为80μm~180μm的高温合金粉末;步骤二中所采用的无机酸一为硫酸,所述硫酸的质量百分数为20%,所加入的氧化剂为Cl2,每1g所述Cl2所对应的所述无机酸一的体积为5ml;步骤401中所述NaOH和Na2SO4的质量比为18∶1,在400℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气与氧气混合而成的混合气体,且焙烧时间为2.5h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例5 
本实施例中,与实施例1不同的是:步骤一中采用水雾化方法,将被处理高温合金废料处理成粒径为200μm~300μm的高温合金粉末;步骤二中所采用的无机酸一为硫酸,所述硫酸的质量百分数为40%,所加入的氧 化剂为O3,且每1g所述O3所对应的所述无机酸一的体积为12ml;步骤401中所述NaOH和Na2SO4的质量比为18∶1,在700℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为氧气,且焙烧时间为1.5h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例6 
本实施例中,与实施例1不同的是:步骤一中采用水雾化方法,将被处理高温合金废料处理成粒径为100μm~200μm的高温合金粉末;步骤二中所采用的无机酸一为硫酸,所述硫酸的质量百分数为75%,所加入的氧化剂为O3,且每1g所述O3所对应的所述无机酸一的体积为18ml;步骤401中所述NaOH和Na2SO4的质量比为6∶1,在800℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气,且焙烧时间为2h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例7 
本实施例中,与实施例1不同的是:步骤一中采用水雾化方法,将被处理高温合金废料处理成粒径为100μm~200μm的高温合金粉末;步骤二中所采用的无机酸一为盐酸,所述盐酸的质量百分数为10%,所加入H2O2与所述无机酸一的体积比为1∶5;步骤401中所述NaOH和Na2SO4的质量比为80∶7,在750℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气,且焙烧时间为2h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例8 
本实施例中,与实施例7不同的是:步骤一中所述被处理高温合金废料的主要组分为Ni、Co、Cr和Al元素中的一种或多种,且所述被处理高温合金废料的次要组分为Re、Mo、W、Ta、Hf、Zr和Nb元素中的一种或多种;步骤二中所采用的无机酸一为盐酸,所述盐酸的质量百分数为20%,所加入H2O2与所述无机酸一的体积比为1∶25;步骤401中所述NaOH和Na2SO4的质量比为88∶7,在550℃温度条件下进行固相焙烧;进行固相焙 烧时,焙烧气氛为空气,且焙烧时间为1.5h。本实施例中,其余步骤和工艺参数均与实施例7相同。 
实施例9 
本实施例中,与实施例7不同的是:步骤二中所采用的无机酸一为盐酸,所述盐酸的质量百分数为36%,所加入H2O2与所述无机酸一的体积比为1∶15;步骤401中所述NaOH和Na2SO4的质量比为78∶11,在550℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气,且焙烧时间为1.5h。本实施例中,其余步骤和工艺参数均与实施例7相同。 
实施例10 
本实施例中,与实施例1不同的是:步骤二中采用无机酸一对所述高温合金粉末进行充分溶解时,所述无机酸一中未添加氧化剂,所加入H2O2与所述无机酸一的体积比为1∶20;步骤401中所述NaOH和Na2SO4的质量比为39∶7,在550℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气,且焙烧时间为1.5h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例11 
本实施例中,与实施例1不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为25∶1。实际进行固相焙烧时,可根据具体需要,将NaOH和Na2CO3的质量比在(75~90)∶(5~15)的范围内进行相应调整。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例12 
本实施例中,与实施例2不同的是:步骤二中每1g所述NaClO3所对应的所述无机酸一的体积为20ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为25∶3。本实施例中,其余步骤和工艺参数均与实施例2相同。 
实施例13 
本实施例中,与实施例3不同的是:步骤二中所加入硝酸与所述无机酸一的体积比为1∶5;步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为85∶8。本实施例中,其余步骤和工艺参数均与实施例3相同。 
实施例14 
本实施例中,与实施例4不同的是:步骤二中每1g所述Cl2所对应的所述无机酸一的体积为25ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为18∶1。本实施例中,其余步骤和工艺参数均与实施例4相同。 
实施例15 
本实施例中,与实施例5不同的是:步骤二中每1g所述O3所对应的所述无机酸一的体积为25ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为18∶1。本实施例中,其余步骤和工艺参数均与实施例5相同。 
实施例16 
本实施例中,与实施例6不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为6∶1。本实施例中,其余步骤和工艺参数均与实施例6相同。 
实施例17 
本实施例中,与实施例7不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为80∶7。本实施例中,其余步骤和工艺参数均与实施例7相同。 
实施例18 
本实施例中,与实施例8不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为88∶7。本实施例中,其余步骤和工艺参数均与实施例8相同。 
实施例19 
本实施例中,与实施例17不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为78∶11。本实施例中,其余步骤和工艺参数均与实施例17相同。 
实施例20 
本实施例中,与实施例1不同的是:步骤二中采用无机酸一对所述高温合金粉末进行充分溶解时,所述无机酸一中未添加氧化剂;步骤401中所述组份A为NaOH,所述组份B为Na2CO3,所述NaOH和Na2CO3的质量比为39∶7,在550℃温度条件下进行固相焙烧;进行固相焙烧时,焙烧气氛为空气,且焙烧时间为1.5h。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例21 
本实施例中,与实施例1不同的是:步骤二中所采用的无机酸一为盐酸和硫酸的混合物,所述盐酸和硫酸的体积比为1∶1,实际使用时,可根据具体需要,对所述盐酸和硫酸的体积比进行相应调整。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例22 
本实施例中,与实施例1不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为75∶15∶15。本实施例中,其余步骤和工艺参数均与实施例1相同。 
实施例23 
本实施例中,与实施例2不同的是:步骤二中每1g所述NaClO3所对应的所述无机酸一的体积为10ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为90∶5∶5。本实施例中,其余步骤和工艺参数均与实施例2相同。 
实施例24 
本实施例中,与实施例3不同的是:步骤二中所加入硝酸与所述无机酸一的体积比为1∶25;步骤401中所述组份A为NaOH,所述组份B为Na2CO3 和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为80∶10∶10。本实施例中,其余步骤和工艺参数均与实施例3相同。 
实施例25 
本实施例中,与实施例4不同的是:步骤二中每1g所述Cl2所对应的所述无机酸一的体积为10ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为80∶5∶15。本实施例中,其余步骤和工艺参数均与实施例4相同。 
实施例26 
本实施例中,与实施例4不同的是:步骤二中所加入每1g所述Cl2所对应的所述无机酸一的体积为20ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为80∶15∶5。本实施例中,其余步骤和工艺参数均与实施例4相同。 
实施例27 
本实施例中,与实施例5不同的是:步骤二中每1g所述O3所对应的所述无机酸一的体积为15ml;步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为85∶7∶8。本实施例中,其余步骤和工艺参数均与实施例5相同。 
实施例28 
本实施例中,与实施例6不同的是:步骤401中所述组份A为NaOH,所述组份B为Na2CO3和Na2SO4的混合物,所述NaOH、Na2SO4和Na2CO3的质量比为88︰7︰5。本实施例中,其余步骤和工艺参数均与实施例6相同。 
实施例29 
本实施例中,与实施例3不同的是:步骤二中所加入硝酸与所述无机酸一的体积比为1︰15。本实施例中,其余步骤和工艺参数均与实施例3相同。 
实施例30 
本实施例中,与实施例3不同的是:步骤二中所加入硝酸与所述无机 酸一的体积比为1︰10。本实施例中,其余步骤和工艺参数均与实施例3相同。 
实施例31 
本实施例中,与实施例3不同的是:步骤二中所加入硝酸与所述无机酸一的体积比为1︰20。本实施例中,其余步骤和工艺参数均与实施例3相同。 
实施例32 
本实施例中,与实施例2不同的是:步骤二中每1g所述NaClO3所对应的所述无机酸一的体积为25ml。本实施例中,其余步骤和工艺参数均与实施例2相同。 
实施例33 
本实施例中,与实施例2不同的是:步骤二中每1g所述NaClO3所对应的所述无机酸一的体积为5ml。本实施例中,其余步骤和工艺参数均与实施例2相同。 
实施例34 
本实施例中,与实施例5不同的是:步骤二中每1g所述O3所对应的所述无机酸一的体积为5ml。本实施例中,其余步骤和工艺参数均与实施例5相同。 
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。 

Claims (10)

1.一种不含铼的高温合金废料的再生方法,其特征在于该方法包括以下步骤:
步骤一、雾化处理:采用雾化方法,将被处理高温合金废料处理成粒径为30μm~300μm的高温合金粉末;
步骤二、酸溶:采用无机酸一,对步骤一中所述高温合金粉末进行充分溶解,并获得混合液一;
步骤三、固液分离:对步骤二中所述混合液一进行过滤,并相应获得滤液a和滤渣b;其中,所述滤渣b中含有Mo、W、Ta、Hf、Zr、Nb和Ti元素中的多种元素,且所述滤液a中含有Ni、Co、Cr、Al和Mo元素中的多种元素;
步骤四、对步骤三中所获得的滤液a和滤渣b分别进行处理;
其中,对所述滤液a进行处理时,采用溶剂萃取法,自所述滤液a中分离出Ni和Co元素;
所述滤渣b的处理过程如下:
步骤401、固相焙烧:在所述滤渣b中加入碱且在400℃~900℃温度条件下进行固相焙烧,并相应获得焙烧物;之后,对所述焙烧物进行破碎水浸,并获得混合液二;然后,对所述混合液二进行过滤,并相应获得滤液c和滤渣d;其中,所述滤液c为Na2WO4溶液和Na2MoO4溶液组成的混合溶液,所述滤渣d中含有Ta、Hf、Zr、Nb和Ti元素中的多种元素;
步骤402、W和Mo元素分离:采用离子交换法,自步骤401中所述的混合溶液中分离出W和Mo元素;
步骤403、酸溶:采用无机酸二,对步骤402中所述滤渣d中进行充分溶解,并相应获得混合液三;
步骤404、Ta和Hf元素分离:对所述混合液三中的Ta元素和Hf元素分别进行分离。
2.按照权利要求1所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤一中所采用的雾化方法为水雾化法或气雾化法。
3.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤二中采用无机酸一对步骤一中所述高温合金粉末进行充分溶解时,还需在所述无机酸一中添加氧化剂,且所添加的氧化剂为H2O2、硝酸、NaClO3、Cl2或O3,所述硝酸的质量百分比为10%~65%,所加入的H2O2和硝酸与所述无机酸一的体积比均为1∶(5~25);每1g所述NaClO3、Cl2和O3所对应的所述无机酸一的体积均为(5~25)ml。
4.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤二中所述无机酸一为盐酸和硫酸的一种或两种。
5.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤401中所加入的碱为由组份A和组份B均匀混合而成的混合碱,所述组份A为NaOH,所述组份B为Na2SO4和/或Na2CO3,其中所述NaOH和Na2SO4的质量比为(75~90)∶(5~15),且所述NaOH和Na2CO3的质量比为(75~90)∶(5~15);所述NaOH、Na2SO4和Na2CO3均以固态形式加入。
6.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤401中进行固相焙烧时,焙烧气氛为空气和氧气的一种或两种。
7.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤401中进行固相焙烧时,焙烧时间为1h~3h。
8.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤403中所述的无机酸二为氢氟酸。
9.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤402中采用离子交换法自所述混合溶液中分离出W和Mo元素时,采用强碱性阴离子交换树脂进行分离。
10.按照权利要求1或2所述的一种不含铼的高温合金废料的再生方法,其特征在于:步骤一中所述被处理高温合金废料的主要组分为Ni、Co、Cr和Al元素中的一种或多种,且所述被处理高温合金废料的次要组分为Re、Mo、W、Ta、Hf、Zr和Nb元素中的一种或多种。
CN201210545643.5A 2012-12-14 2012-12-14 一种不含铼的高温合金废料的再生方法 Expired - Fee Related CN102994760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210545643.5A CN102994760B (zh) 2012-12-14 2012-12-14 一种不含铼的高温合金废料的再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210545643.5A CN102994760B (zh) 2012-12-14 2012-12-14 一种不含铼的高温合金废料的再生方法

Publications (2)

Publication Number Publication Date
CN102994760A true CN102994760A (zh) 2013-03-27
CN102994760B CN102994760B (zh) 2014-03-12

Family

ID=47923865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210545643.5A Expired - Fee Related CN102994760B (zh) 2012-12-14 2012-12-14 一种不含铼的高温合金废料的再生方法

Country Status (1)

Country Link
CN (1) CN102994760B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233125A (zh) * 2013-04-22 2013-08-07 贵研铂业股份有限公司 一种从废旧高温合金中提取钨、钼、铼的方法
CN104164567A (zh) * 2014-08-06 2014-11-26 贵研铂业股份有限公司 一种从废旧高温合金中富集回收铌、钽的方法
CN104846206A (zh) * 2015-04-16 2015-08-19 西北有色金属研究院 一种分离钽铪合金渣中钽铪的方法
CN107142375A (zh) * 2016-03-01 2017-09-08 西安瑞鑫科金属材料有限责任公司 一种从合金废料中浸出镍钴的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668483A (en) * 1986-05-12 1987-05-26 Gte Products Corporation Process for recovery of chromium
CN1814382A (zh) * 2005-02-02 2006-08-09 杨斌 一种高温合金制品材料再生循环利用的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668483A (en) * 1986-05-12 1987-05-26 Gte Products Corporation Process for recovery of chromium
CN1814382A (zh) * 2005-02-02 2006-08-09 杨斌 一种高温合金制品材料再生循环利用的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233125A (zh) * 2013-04-22 2013-08-07 贵研铂业股份有限公司 一种从废旧高温合金中提取钨、钼、铼的方法
CN104164567A (zh) * 2014-08-06 2014-11-26 贵研铂业股份有限公司 一种从废旧高温合金中富集回收铌、钽的方法
CN104846206A (zh) * 2015-04-16 2015-08-19 西北有色金属研究院 一种分离钽铪合金渣中钽铪的方法
CN104846206B (zh) * 2015-04-16 2017-04-26 西北有色金属研究院 一种分离钽铪合金渣中钽铪的方法
CN107142375A (zh) * 2016-03-01 2017-09-08 西安瑞鑫科金属材料有限责任公司 一种从合金废料中浸出镍钴的方法

Also Published As

Publication number Publication date
CN102994760B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN102978406B (zh) 一种含铼的高温合金废料的再生方法
US10519556B2 (en) Process for recycling waste carbide
CN103451433B (zh) 一种从含贵金属废催化剂中提取贵金属的方法
CN103849775B (zh) 一种从高温合金废料中回收镍和钴的方法
CN103233125A (zh) 一种从废旧高温合金中提取钨、钼、铼的方法
EP2450312A1 (en) Recovery of tungsten from waste material by ammonium leaching
CN102994760B (zh) 一种不含铼的高温合金废料的再生方法
CN104928475B (zh) 一种含稀土的铝硅废料的回收方法
CN103173615B (zh) 高温合金废料回收工艺中金属铼富集的方法
CN103540756A (zh) 一种处理废旧钕铁硼料溶出稀土的方法
WANG et al. Dissolution behaviors of Ta2O5, Nb2O5 and their mixture in KOH and H2O system
CN103882234A (zh) 一种将钕铁硼油泥制备成再生钕铁硼磁粉的方法
CN103131859B (zh) 高温合金废料金属综合回收的方法
CN111334666A (zh) 一种超声浸出高温合金废料有价元素综合利用的方法
CN102154553B (zh) 一种含有高价值元素铁基废料自然氧化除铁铝的方法
CN103451432B (zh) 一种从含贵金属废催化剂中提取铅和贵金属的方法
KR101239861B1 (ko) 초경합금 스크랩으로부터 텅스텐 및 코발트 회수방법
CN111304446A (zh) 一种高温合金废料分段浸出综合利用的方法
CN104674298A (zh) 一种从镍基高温合金返回料中回收制备高纯镍的方法
CN104195591A (zh) 一种综合回收废弃铁基金刚石工具的方法
CN108359804A (zh) 一种从高温合金废料中富集钨钽铪的方法
CN106757156B (zh) 一种从含Re高温合金废料中回收Re的方法
CN108950218A (zh) 一种从废旧印刷线路板中回收金、银和铜的方法
CN111348653B (zh) 一种利用含钛渣和低纯硅物料制备高纯硅、钛白和高纯氟化物的方法
CN113846221B (zh) 一种钕铁硼合金废料的绿色回收方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20211214