CN102986010A - 多重直径纳米线场效晶体管的生成 - Google Patents

多重直径纳米线场效晶体管的生成 Download PDF

Info

Publication number
CN102986010A
CN102986010A CN201180023254XA CN201180023254A CN102986010A CN 102986010 A CN102986010 A CN 102986010A CN 201180023254X A CN201180023254X A CN 201180023254XA CN 201180023254 A CN201180023254 A CN 201180023254A CN 102986010 A CN102986010 A CN 102986010A
Authority
CN
China
Prior art keywords
nanowire channel
sidewall
area
semi
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180023254XA
Other languages
English (en)
Other versions
CN102986010B (zh
Inventor
J·斯雷特
S·邦萨伦提普
G·科恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN102986010A publication Critical patent/CN102986010A/zh
Application granted granted Critical
Publication of CN102986010B publication Critical patent/CN102986010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种修改具有设置在绝缘体上的半导体的晶片的方法,所述方法包括以下步骤:分别在第一和第二晶片区域处形成在每个端部处连接至半导体衬垫的第一和第二纳米线沟道,其中第二纳米线沟道侧壁比第一纳米线沟道侧壁相对于所述半导体的晶面更加错位;以及朝向所述侧壁与所述晶面之间的对准状态转移所述半导体,以使所述第一和第二纳米线沟道之间的厚度差反映所述第二纳米线沟道侧壁的更大错位。

Description

多重直径纳米线场效晶体管的生成
技术领域
本发明的方面涉及对生成多重直径纳米线场效晶体管的方法。
背景技术
作为未来互补金氧半导体(CMOS)部件设计的选择,纳米线FET正在引起人们相当大的关注。虽然正在取得进展,但仍将考虑若干关键问题。在这些问题中,一个特定问题为将要求纳米线FET器件提供具有不同驱动电流强度和/或不同阈值电压(Vt)的器件。
尽管当前存在对提供具有不同驱动电流强度和/或不同阈值电压的器件的问题的解决方案,但该解决方案通常依赖于通过相应地调制栅极功函数来调制器件的阈值电压。因此,此解决方案倾向于具有相对困难且成本高昂的工艺集成操作以及,附加地,该解决方案倾向于存在变化问题。
发明内容
根据本发明的方面,本发明提供一种修改具有设置在绝缘体上的半导体的晶片的方法,该方法包括以下步骤:分别在第一和第二晶片区域处形成在每个端部处连接至半导体衬垫的第一和第二纳米线沟道,其中第二纳米线沟道侧壁比第一纳米线沟道侧壁相对于所述半导体的晶面更大程度地错位(misaligned);以及朝向所述第一和第二纳米线沟道的侧壁与所述晶面之间的对准状态从所述第一和第二纳米线沟道转移半导体材料,以使在所述转移之后所述第一和第二纳米线沟道之间的厚度差反映所述第二纳米线沟道侧壁的更大错位。
根据本发明的方面,本发明提供一种修改具有设置在绝缘体上的半导体的晶片的方法,该方法包括以下步骤:分别在第一和第二晶片区域处形成在每个端部处连接至半导体衬垫的第一和第二纳米线沟道,其中第一纳米线沟道侧壁的特征在于具有相对于所述半导体的晶面的第一对准度,且第二纳米线沟道侧壁的特征在于具有相对于所述晶面的第二对准度,所述第二对准度不同于所述第一对准度,以及朝向所述侧壁与所述晶面之间的对准状态促使半导体材料从所述第一和第二纳米线沟道转移,以使在转移之后在所述第一和第二纳米线沟道之间的厚度差根据所述第一和第二对准度差异。
根据本发明的方面,本发明提供一种修改具有设置在绝缘体上的半导体的晶片的方法,该方法包括以下步骤:在所述晶片的第一区域中形成由纳米线沟道连接的半导体衬垫对,所述纳米线沟道具有沿所述半导体的{110}晶面定向的长轴以及基本上平行于所述半导体的{110}面中的一个的侧壁;在所述晶片的第二区域中形成由纳米线沟道连接的半导体衬垫对,所述纳米线沟道具有相对于所述半导体的{110}晶面成一角度的长轴以及相似地相对于所述半导体的{110}面成角度的侧壁;以及再定向所述第二区域的所述纳米线沟道,以通过将半导体材料从所述纳米线沟道扩散至所述衬垫,使得所述第二区域中的所述纳米线沟道与处于所述第一区域的纳米线沟道相比被减薄而形成平行于所述半导体的{110}面的侧壁。
根据本发明的另一方面,本发明提供一种晶片,该晶片包括衬底;掩埋氧化物(BOX)层,其设置在所述衬底上;以及绝缘体上硅(SOI)结构,其设置在第一和第二区域处的所述BOX层上,在每个区域处的所述SOI结构具有通过在其中形成的各纳米线沟道连接的各SOI衬垫对,处于所述区域中的一个的所述SOI衬垫和所述纳米线沟道比处于所述区域中的另一个的所述SOI衬垫和所述纳米线沟道相对于所述SOI的{110}面更加错位。
附图说明
被视为本发明的主题在本专利说明书结束处的权利要求中被特别指出且明确主张。结合附图,本发明的前述及其他方面、特征结构及优点将从以上详细描述显而易见,其中:
图1为在第一和第二区域处具有限定于其上的纳米线沟道的图1的晶片的透视图;
图2为图1的纳米线沟道的尺寸的平面图;
图3为具有限定于其上的再成形纳米线的图1的晶片的透视图;
图4为具有栅极结构的再成形纳米线的透视图;以及
图5包括具有不同厚度的纳米线的截面图。
具体实施方式
本文经由关于硅(Si)纳米线及Si处理的描述提供支撑例如环绕栅极(GAA)纳米线场效晶体管(FET)的结构以及用于制造该晶体管的方法。然而,本技术亦可由诸如例如锗(Ge)的其他半导体材料实施。当使用非含Si半导体时,本教导的处理步骤类似于且适合于所用的特定半导体。因此,诸如Si、硅锗(SiGe)、Si/SiGe、碳化硅(SiC)或碳化硅锗(SiGeC)的含Si半导体材料的使用仅理解为示例性的。
参看图1及图2,提供晶片1,且其包括Si衬底101、掩埋氧化物(BOX)层102及绝缘体上硅(SOI)层103。晶片1可使用诸如注氧隔离(SIMOX)或晶片接合(例如SmartCutTM)的方法制造。此晶片制造技术为本领域技术人员公知,因此本文不再进一步描述。亦可以本领域所已知的其他SOI衬底取代本文所述的BOX上SOI配置,且其将在本教导的范围内。
晶片1至少具有建立于其上的第一区域10及第二区域20。SOI衬垫对103A及将其连接的纳米线沟道104可被构图为处于第一区域10及第二区域20的SOI层103中,以在各区域中形成例如梯状结构。纳米线沟道104及SOI衬垫103A的构图可经由光刻(例如光或电子束)及随后的反应离子蚀刻(RIE)或经由侧壁转移技术达成。此构图技术为本领域技术人员公知。
处于第一区域10及第二区域20的SOI层103最初各自由具有相似厚度的相似部件形成。然而,如图1及图2所示,处于第一区域10的SOI衬垫103A及纳米线沟道104经形成为具有基本上平行于和/或对准于例如半导体的{110}晶面中的一者的侧壁,虽然其他平面参考坐标系是可能的。即,纳米线沟道104中的每一者的主(长)轴沿半导体的{110}晶面的方向定向。另一方面,处于第二区域20的SOI衬垫103A及纳米线沟道104经形成为具有相对于{110}晶面成角度α和/或以角度α错位的侧壁,其中纳米线沟道104的主(长)轴亦相对于{110}晶面以角度α错位。例如,第一区域10中的纳米线沟道104可经构图以具有平行于{110}面的侧壁及平行于{100}面的顶面,而第二区域20中的纳米线沟道104将具有相对于{110}晶面以一角度(诸如α=1度)错位的侧壁及平行于{100}面的顶面。
在第二区域20的纳米线沟道104成角度和/或错位的情况下,如上所述,对第一区域10及第二区域20两者进行的减薄操作(例如纳米线沟道104的退火)将倾向于在第二区域20处比在第一区域10处具有更大的减薄效果。此状况由于处于第二区域20的SOI层103的偏移结晶取向使得在第二区域20的SOI层103比第一区域10的SOI层103对减薄操作的效果更为敏感。该减薄操作倾向于通过将半导体材料自纳米线沟道104扩散至SOI衬垫103A再定向第二区域20的纳米线沟道104,以形成平行于{110}晶面的侧壁。此举具有第二区域20中的纳米线沟道104在再定向之后比第一区域10的沟道变得更薄的效果。
第二区域20的SOI层103被减薄超过第一区域10的SOI层103的程度可通过增加或减少第一区域10及第二区域20的侧壁的相对错位来控制。例如,处于第一区域10的纳米线沟道104的侧壁可相对于该半导体的{110}晶面对准,或仅以一小角度α错位。同时,处于第二区域20的纳米线沟道104的侧壁可相对于该半导体的{110}晶面以一相对大角度α有意错位。此处,第一区域10及第二区域20的侧壁的相对错位越大,则在该第二区域20处的减薄程度越大。
确实,参看图2,了解到该角度的倾斜越大,则产生的再成形纳米线108将越薄,纳米线沟道104相对于{110}晶面的角度α可为小于45°的任何角度(且实践上α不超过几度)。即,成更倾斜角度的纳米线沟道104将比更垂直的纳米线沟道104倾向于形成更薄的再成形纳米线108。因此,尽管纳米线沟道104的尺寸及其倾斜度可根据设计考虑而变化,但纳米线沟道104的轮廓(profile)应至少包括所要形成的再成形纳米线108的轮廓。
其中硅自纳米线沟道104扩散的再定向处理在G.M.Cohen等人的来自San Francisco,CA(2010)的Material Research Symposium的“Controlling the shape and dimensional variability of top-downfabricated silicon nanowires by hydrogen annealing”中有更充分的描述,其内容以引用的方式并入本文。晶面方向的规格遵循密勒指数(Millerindices)规定,其在例如Ashcroft及Mermin的固态物理学(1976)的第5章中有所描述,其内容以引用的方式并入本文。遵循此规定,晶面族(即,根据晶体的对称性等价的面)通常通过一对{}括号引用。例如,面(100)、(010)及(001)在立方晶体中全部等价。以{100}面代表其全体。当引用晶体中的方向时,使用[]方括号,例如[100]、[010]、[001]、[-100]、[0-10]、[00-1],且同样地,以<100>代表晶向族全体。
因此,处于第二区域20的纳米线沟道104可被形成为再成形纳米线108(见图3),再成形纳米线108比第一区域10的纳米线更薄,即使其中在各区域处以类似方式进行退火处理。具体而言,第一区域10的再成形纳米线108将具有厚度T1′,且第二区域20的再成形纳米线108将具有厚度T2',厚度T2'将不同于厚度T1'且通常比厚度T1′更薄。因此,在第一区域10及第二区域20处的再成形纳米线108的此相对厚度差异将导致再成形纳米线108显示相对彼此独特的物理特性。
纳米线沟道104的成角度化可以各种方式实现。例如,光刻掩模可包括用于区域10及区域20的绘制后的(as-drawn)对准图形和错位图形,或在成角度纳米线沟道104的构图期间,晶片1或构图掩模可相对于{110}晶面旋转。然而,纳米线沟道104的成角度化无须处于任何特定晶面中,且上述{110}晶面仅理解为示例性的。
参看图3,将纳米线沟道104再成形为纳米线108通常通过在惰性气氛中退火实现。此处理可为同时或顺序应用于区域10及区域20的无掩模处理。
例如,晶片1可在示例性H2气体中退火。在此H2退火之前不久,可自纳米线沟道104及SOI衬垫103A的侧壁蚀刻掉本征氧化物。该H2中的退火具有若干目的,包括但不限于经由Si的再分布平滑化纳米线沟道104的侧壁、将该侧壁重新对准至SOI衬垫103A的晶面、将纳米线沟道104截面从矩形再成形为更加圆柱形以及将纳米线沟道104体减薄。
根据示例性实施例,该惰性气体退火在以下条件下进行:自约30托(Torr)至约1000托的气体压力、自约摄氏600度(℃)至约1100℃的温度及从约1分钟至约120分钟的持续时间。基本而言,Si再分布的速率随温度而增大且随压力增大而减小。
如图3所示,纳米线沟道104经由该退火处理或经由BOX层102的进一步蚀刻及凹陷可再成形为纳米线108,且悬置于BOX层102上或自BOX层102释放。在第一区域10及第二区域20中,再成形纳米线108因此在SOI衬垫103A之间且在凹陷氧化物105之上形成悬置的桥。可达成BOX层102的凹陷,其由该退火处理所致,或使用稀氢氟酸(DHF)蚀刻以底切BOX层102。尽管SOI衬底提供限定及悬置纳米线沟道104和/或再成形纳米线108的便利途径,但有可能由其他衬底获得悬置。例如,在体Si晶片上外延生长的SiGe/Si叠层亦可经构图而形成纳米线沟道104和/或再成形纳米线108。SiGe层亦可用作被底切的牺牲层(类似于BOX层102)。
处于第一区域10且具有厚度T1'的再成形纳米线108及处于第二区域20且具有厚度T2'的再成形纳米线108可具有不同的驱动电流和/或阈值电压。以此方式,应当了解,可通过相应地控制部分决定最终厚度T1′及T2'的处于第一区域10及第二区域20的纳米线沟道104的成角度化来控制至少处于晶片1的第一区域10及第二区域20的电路特性。
现参看图4及图5,栅极结构402可围绕再成形纳米线108形成。首先,用第一及第二栅极电介质112A及112涂覆再成形纳米线108。第一(以及可选的)栅极电介质112A通常为SiO2。第二栅极电介质112可包括二氧化硅(SiO2)、氮氧化硅(SiON)、二氧化铪(HfO2)或任何其他合适的一种或多种高k电介质,且在SiO2和SiON的情况下,可利用化学气相沉积(CVD)、原子层沉积(ALD)或氧化炉进行沉积。然后,可形成例如TaN或TiN的薄栅极导体117的保形沉积。这之后可为掺杂多晶硅113的沉积,以在环绕再成形纳米线108的周边形成栅极叠层118。掩模115可用于促进经由例如RIE蚀刻栅极线。在栅极叠层118外部的薄栅极导体117的一部分可经由RIE移除,或在替代性实施例中,自栅极叠层外部表面移除薄栅极导体117可能需要附加的湿法蚀刻操作。
多晶锗或另一合适的组成可用作多晶硅113的替代物。另外,任何多晶SiGe合金亦可用于替代多晶硅113。更进一步,多晶硅113能够以多晶形式沉积或以非晶形式沉积,该非晶形式当曝露于高温时随后转变成多晶硅。
尽管已结合示例性实施例描述本公开,但本领域技术人员应理解,在不脱离本公开的范围的情况下,可进行各种修改,并且其元件可由等价物替代。此外,在不脱离其基本范围的情况下,可进行诸多修改以使特定情况或材料适合于本公开的教导。因此,希望本公开不限于作为所预期用于实施本公开的最佳方式而揭示的特定示例性实施例,但本公开将包括落入所附权利要求的范围内的全部实施例。

Claims (15)

1.一种修改具有设置在绝缘体上的半导体的晶片的方法,所述方法包括以下步骤:
分别在第一和第二晶片区域处形成在每个端部处连接至半导体衬垫的第一和第二纳米线沟道,其中第二纳米线沟道侧壁比第一纳米线沟道侧壁相对于所述半导体的晶面更大程度地错位;以及
朝向所述第一和第二纳米线沟道的侧壁与所述晶面之间的对准状态从所述第一和第二纳米线沟道转移半导体材料,以使在所述转移之后所述第一和第二纳米线沟道之间的厚度差反映所述第二纳米线沟道侧壁的更大错位。
2.一种修改具有设置在绝缘体上的半导体的晶片的方法,所述方法包括以下步骤:
在所述晶片的第一区域中形成由纳米线沟道连接的半导体衬垫对,所述纳米线沟道具有沿所述半导体的{110}晶面定向的长轴以及基本上平行于所述半导体的{110}面中的一个的侧壁;
在所述晶片的第二区域中形成由纳米线沟道连接的半导体衬垫对,所述纳米线沟道具有相对于所述半导体的{110}面成一角度的长轴以及相似地相对于所述半导体的{110}面成角度的侧壁;以及
再定向所述第二区域的所述纳米线沟道,以通过将半导体材料从所述纳米线沟道扩散至所述衬垫,使得所述第二区域中的所述纳米线沟道与处于所述第一区域的纳米线沟道相比被减薄而形成平行于所述半导体的{110}面的侧壁。
3.根据权利要求1或2所述的方法,其中所述形成包括:形成彼此平行的所述第一区域的所述纳米线沟道,以及形成彼此平行的所述第二区域的所述纳米线沟道。
4.根据权利要求1或2所述的方法,其中所述第一纳米线沟道侧壁相对于所述晶面对准,且所述第二纳米线沟道侧壁相对于所述晶面错位。
5.根据权利要求1或2所述的方法,其中所述第一和第二纳米线沟道侧壁均相对于所述晶面错位。
6.根据权利要求1或2所述的方法,其中转移所述半导体材料包括退火。
7.根据权利要求1或2所述的方法,进一步包括将所述纳米线沟道再成形为纳米线。
8.根据权利要求7所述的方法,进一步包括环绕每个所述纳米线形成各栅极。
9.根据权利要求8所述的方法,其中所述栅极均包括电介质、薄栅极导体以及掺杂导电材料。
10.根据权利要求8所述的方法,其中所述纳米线均具有各自的驱动电流和/或阈值电压,所述驱动电流和/或阈值电压根据所述第一和第二纳米线的厚度之间的差异而不同。
11.根据权利要求1或2所述的方法,其中所述形成包括构图处理。
12.根据权利要求1所述的方法,其中第一纳米线沟道侧壁的特征在于具有相对于所述半导体的晶面的第一对准度,且第二纳米线沟道侧壁的特征在于具有相对于所述晶面的第二对准度,所述第二对准度不同于所述第一对准度。
13.一种晶片,其包括:
衬底;
掩埋氧化物(BOX)层,其设置在所述衬底上;以及
绝缘体上硅(SOI)结构,其设置在第一和第二区域处的所述BOX层上,在每个区域处的所述SOI结构具有通过在其中形成的各纳米线沟道连接的各SOI衬垫对,
处于所述区域中的一个的所述SOI衬垫和所述纳米线沟道比处于所述区域中的另一个的所述SOI衬垫和所述纳米线沟道相对于所述SOI的{110}面更加错位。
14.根据权利要求13所述的晶片,其中错位纳米线沟道的轮廓包括可从其形成的再成形纳米线。
15.根据权利要求13所述的晶片,其中所述纳米线沟道分别在所述第一和第二区域中的每一个处彼此平行。
CN201180023254.XA 2010-05-12 2011-03-31 多重直径纳米线场效晶体管的生成 Active CN102986010B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/778,526 US8519479B2 (en) 2010-05-12 2010-05-12 Generation of multiple diameter nanowire field effect transistors
US12/778,526 2010-05-12
PCT/EP2011/055048 WO2011141229A1 (en) 2010-05-12 2011-03-31 Generation of multiple diameter nanowire field effect transistors

Publications (2)

Publication Number Publication Date
CN102986010A true CN102986010A (zh) 2013-03-20
CN102986010B CN102986010B (zh) 2016-02-17

Family

ID=44021920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180023254.XA Active CN102986010B (zh) 2010-05-12 2011-03-31 多重直径纳米线场效晶体管的生成

Country Status (6)

Country Link
US (2) US8519479B2 (zh)
CN (1) CN102986010B (zh)
DE (1) DE112011100532B4 (zh)
GB (1) GB2494947B (zh)
TW (1) TWI512836B (zh)
WO (1) WO2011141229A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425410A (zh) * 2013-08-26 2015-03-18 台湾积体电路制造股份有限公司 具有纳米线的集成电路
CN106990461A (zh) * 2016-01-20 2017-07-28 上海新微技术研发中心有限公司 一种直角顶角硅阶梯光栅及其制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067872A1 (ja) * 2009-12-01 2011-06-09 国立大学法人北海道大学 発光素子およびその製造方法
US8420455B2 (en) 2010-05-12 2013-04-16 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US8445337B2 (en) * 2010-05-12 2013-05-21 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
CN102496563B (zh) * 2011-12-16 2016-03-09 上海集成电路研发中心有限公司 一种单晶硅衬底上制备硅纳米线的方法
DE112011106006B4 (de) 2011-12-23 2021-01-14 Intel Corp. Nanodrahtstrukturen mit Rundumkontakten und zugehöriges Herstellungsverfahren
US8575009B2 (en) * 2012-03-08 2013-11-05 International Business Machines Corporation Two-step hydrogen annealing process for creating uniform non-planar semiconductor devices at aggressive pitch
GB201207463D0 (en) 2012-04-30 2012-06-13 Ibm Methods and apparatuses for positioning nano-objects with aspect ratios
US8823059B2 (en) * 2012-09-27 2014-09-02 Intel Corporation Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack
CN103915484B (zh) 2012-12-28 2018-08-07 瑞萨电子株式会社 具有被改造以用于背栅偏置的沟道芯部的场效应晶体管及制作方法
US8778768B1 (en) 2013-03-12 2014-07-15 International Business Machines Corporation Non-replacement gate nanomesh field effect transistor with epitixially grown source and drain
US10170315B2 (en) 2013-07-17 2019-01-01 Globalfoundries Inc. Semiconductor device having local buried oxide
US9252272B2 (en) 2013-11-18 2016-02-02 Globalfoundries Inc. FinFET semiconductor device having local buried oxide
KR102178828B1 (ko) 2014-02-21 2020-11-13 삼성전자 주식회사 멀티 나노와이어 트랜지스터를 포함하는 반도체 소자
US9917169B2 (en) * 2014-07-02 2018-03-13 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of formation
CN104505335A (zh) * 2014-12-16 2015-04-08 东南大学 一种二维平面内可控硅纳米线阵列的制作方法
US9720772B2 (en) * 2015-03-04 2017-08-01 Kabushiki Kaisha Toshiba Memory system, method for controlling magnetic memory, and device for controlling magnetic memory
US9627544B2 (en) * 2015-08-04 2017-04-18 United Microelectronics Corp. Method of forming semiconductor device
US9484267B1 (en) 2016-02-04 2016-11-01 International Business Machines Corporation Stacked nanowire devices
WO2018063300A1 (en) 2016-09-30 2018-04-05 Intel Corporation Nanowire transistors employing carbon-based layers
US10720503B2 (en) 2018-08-14 2020-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing semiconductor device
US11362001B2 (en) 2018-08-14 2022-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing nanostructures with various widths
US11569231B2 (en) * 2019-03-15 2023-01-31 Intel Corporation Non-planar transistors with channel regions having varying widths
TWI809959B (zh) * 2022-06-30 2023-07-21 南亞科技股份有限公司 偏移量測設備及其操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992274A (zh) * 2005-12-30 2007-07-04 国际商业机器公司 高性能cmos电路及其制造方法
US20070187682A1 (en) * 2003-08-28 2007-08-16 Nec Corporation Semiconductor device having fin-type effect transistor
US20080213956A1 (en) * 2005-05-06 2008-09-04 International Business Machines Corporation Field effect transistor device including an array of channel elements

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872378A (en) 1997-04-07 1999-02-16 International Business Machines Corporation Dual thin oxide ESD network for nonvolatile memory applications
KR100263645B1 (ko) 1997-10-17 2000-09-01 윤종용 이중산화막형성방법
US6181193B1 (en) 1999-10-08 2001-01-30 International Business Machines Corporation Using thick-oxide CMOS devices to interface high voltage integrated circuits
JP3878431B2 (ja) 2000-06-16 2007-02-07 株式会社ルネサステクノロジ 半導体集積回路装置
EP1314189B1 (en) 2000-08-22 2013-02-27 President and Fellows of Harvard College Electrical device comprising doped semiconductor nanowires and method for its production
US6392488B1 (en) 2000-09-12 2002-05-21 Silicon Laboratories, Inc. Dual oxide gate device and method for providing the same
US6549071B1 (en) 2000-09-12 2003-04-15 Silicon Laboratories, Inc. Power amplifier circuitry and method using an inductance coupled to power amplifier switching devices
US6362606B1 (en) 2000-09-12 2002-03-26 Silicon Laboratories, Inc Method and apparatus for regulating a voltage
KR20080005303A (ko) 2000-12-11 2008-01-10 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
US6656573B2 (en) 2001-06-26 2003-12-02 Hewlett-Packard Development Company, L.P. Method to grow self-assembled epitaxial nanowires
US6740944B1 (en) 2001-07-05 2004-05-25 Altera Corporation Dual-oxide transistors for the improvement of reliability and off-state leakage
US6551881B1 (en) 2001-10-01 2003-04-22 Koninklijke Philips Electronics N.V. Self-aligned dual-oxide umosfet device and a method of fabricating same
TW522512B (en) 2001-10-04 2003-03-01 Mosel Vitelic Inc Forming method of dual-oxide structure in trench bottom portion
US6620656B2 (en) 2001-12-19 2003-09-16 Motorola, Inc. Method of forming body-tied silicon on insulator semiconductor device
US7416927B2 (en) 2002-03-26 2008-08-26 Infineon Technologies Ag Method for producing an SOI field effect transistor
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6500728B1 (en) 2002-05-24 2002-12-31 Taiwan Semiconductor Manufacturing Company Shallow trench isolation (STI) module to improve contact etch process window
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
US6855606B2 (en) * 2003-02-20 2005-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor nano-rod devices
US7141459B2 (en) 2003-03-12 2006-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon-on-insulator ULSI devices with multiple silicon film thicknesses
US7224195B2 (en) 2003-12-11 2007-05-29 Integrated Device Technology, Inc. Output drive circuit that accommodates variable supply voltages
EP1700329A2 (en) * 2003-12-22 2006-09-13 Koninklijke Philips Electronics N.V. Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires
US7179719B2 (en) 2004-09-28 2007-02-20 Sharp Laboratories Of America, Inc. System and method for hydrogen exfoliation
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
EP1883952A2 (en) 2005-05-27 2008-02-06 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Method of forming conducting nanowires
WO2007105405A1 (ja) 2006-03-10 2007-09-20 Matsushita Electric Industrial Co., Ltd. 異方性形状部材のマウント方法およびマウント装置と、電子デバイスの製造方法と、電子デバイスと、表示装置
US7999251B2 (en) 2006-09-11 2011-08-16 International Business Machines Corporation Nanowire MOSFET with doped epitaxial contacts for source and drain
US8518767B2 (en) * 2007-02-28 2013-08-27 International Business Machines Corporation FinFET with reduced gate to fin overlay sensitivity
US7884004B2 (en) 2009-02-04 2011-02-08 International Business Machines Corporation Maskless process for suspending and thinning nanowires
US7943530B2 (en) * 2009-04-03 2011-05-17 International Business Machines Corporation Semiconductor nanowires having mobility-optimized orientations
US8008146B2 (en) 2009-12-04 2011-08-30 International Business Machines Corporation Different thickness oxide silicon nanowire field effect transistors
US8143113B2 (en) * 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8445337B2 (en) 2010-05-12 2013-05-21 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US8420455B2 (en) 2010-05-12 2013-04-16 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US8859316B2 (en) 2010-06-29 2014-10-14 International Business Machines Corporation Schottky junction si nanowire field-effect bio-sensor/molecule detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187682A1 (en) * 2003-08-28 2007-08-16 Nec Corporation Semiconductor device having fin-type effect transistor
US20080213956A1 (en) * 2005-05-06 2008-09-04 International Business Machines Corporation Field effect transistor device including an array of channel elements
CN1992274A (zh) * 2005-12-30 2007-07-04 国际商业机器公司 高性能cmos电路及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425410A (zh) * 2013-08-26 2015-03-18 台湾积体电路制造股份有限公司 具有纳米线的集成电路
CN104425410B (zh) * 2013-08-26 2017-03-01 台湾积体电路制造股份有限公司 具有纳米线的集成电路
CN106990461A (zh) * 2016-01-20 2017-07-28 上海新微技术研发中心有限公司 一种直角顶角硅阶梯光栅及其制造方法
CN106990461B (zh) * 2016-01-20 2020-05-15 安徽中科米微电子技术有限公司 一种直角顶角硅阶梯光栅及其制造方法

Also Published As

Publication number Publication date
GB2494947A (en) 2013-03-27
DE112011100532B4 (de) 2015-11-12
US20130017673A1 (en) 2013-01-17
CN102986010B (zh) 2016-02-17
TWI512836B (zh) 2015-12-11
US20110278539A1 (en) 2011-11-17
GB201208378D0 (en) 2012-06-27
GB2494947B (en) 2014-11-19
TW201209930A (en) 2012-03-01
WO2011141229A1 (en) 2011-11-17
DE112011100532T5 (de) 2012-12-13
US8519479B2 (en) 2013-08-27
US8673698B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
CN102986010B (zh) 多重直径纳米线场效晶体管的生成
US20230197781A1 (en) Bulk Nanosheet with Dielectric Isolation
US9728619B2 (en) Generation of multiple diameter nanowire field effect transistors
US8927968B2 (en) Accurate control of distance between suspended semiconductor nanowires and substrate surface
US9947743B2 (en) Structures and methods for long-channel devices in nanosheet technology
US8445337B2 (en) Generation of multiple diameter nanowire field effect transistors
US8536563B2 (en) Nanowire field effect transistors
US8936972B2 (en) Epitaxially thickened doped or undoped core nanowire FET structure and method for increasing effective device width
CN101233606B (zh) 用于制造受应力的mos器件的方法
CN102422401B (zh) 用保形氮化物形成耐用由上至下硅纳米线结构的方法和该结构
US6787423B1 (en) Strained-silicon semiconductor device
US7985632B2 (en) Method for forming microwires and/or nanowires
JP2007158329A (ja) 多層に応力が加えられたゲート電極を有するfinFET構造体
US9536794B2 (en) Techniques for dual dielectric thickness for a nanowire CMOS technology using oxygen growth
US9564502B2 (en) Techniques for multiple gate workfunctions for a nanowire CMOS technology
WO2013119342A1 (en) Tapered nanowire structure with reduced off current
US6010934A (en) Method of making nanometer Si islands for single electron transistors
JP2006278632A (ja) 半導体基板、半導体装置、半導体基板の製造方法および半導体装置の製造方法
KR20080074176A (ko) 반도체 장치 및 그 제조 방법
JP2006148019A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171027

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171027

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right