CN102947944A - 纳米复合材料及其在光电学中的应用 - Google Patents

纳米复合材料及其在光电学中的应用 Download PDF

Info

Publication number
CN102947944A
CN102947944A CN2011800283823A CN201180028382A CN102947944A CN 102947944 A CN102947944 A CN 102947944A CN 2011800283823 A CN2011800283823 A CN 2011800283823A CN 201180028382 A CN201180028382 A CN 201180028382A CN 102947944 A CN102947944 A CN 102947944A
Authority
CN
China
Prior art keywords
nano particle
nuclear
semiconductor
shell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800283823A
Other languages
English (en)
Inventor
艾蒂安·凯内尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of CN102947944A publication Critical patent/CN102947944A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

材料包括由其中分散有核/壳型的纳米颗粒的半导体或绝缘体透明材料制成的基体。纳米颗粒的核由半导体组成,且纳米颗粒的壳由选自氧化物TiO2和/或CeO2的材料形成。这些纳米复合材料尤其可以用作光电吸收器。

Description

纳米复合材料及其在光电学中的应用
技术领域
本发明涉及新的纳米复合材料,用于制造该纳米复合材料的方法和该纳米复合材料的应用,特别是作为光电吸收器的应用。具体地,本发明的材料可以用于制造使用吸收剂材料以将光子转换成电流的光伏电池或者任何类型的光电系统。
本发明涉及光电元件领域,即涉及发光或与光相互作用的电子元件。
背景技术
光伏电池是暴露于光(光子)时产生电的电子元件。得到的电流取决于入射光。所产生的电取决于照明条件。
光伏电池常常结合在太阳能光伏模组或太阳能面板,它们的数量基于所需的电功率而变化。
光伏电池最常用地由半导体,主要基于硅(Si)的半导体以及有时诸如硒化铜铟(CuIn(Se)2或CuInGa(Se)2)或者碲化镉(CdTe)的其他半导体构成。这些电池一般采用放置在两个金属触点之间的薄片形式,电池的宽度为每个侧边约10厘米,所得装置的厚度大约是1毫米。光伏电池可由以各种配置结合的众多材料构成。“活性材料”的表述将用来表示将光转变成电子/空穴载流子的吸收剂材料。
目前,已知道三代光伏电池是已知的:
第一代的活性材料基于单晶硅或多晶硅;第二代基于薄膜(活性材料:无定形的、多晶形、微晶硅;CIGS;CdTe,等等)而开发;且第三代直接从第二代中衍生,但包括用于收集光的先进概念。
这些概念目标在于提高通过如下分类的各种方法收集的光量:
(i)提高入射光的光学散射;
(ii)通过在此材料的膜中产生等离子体效应来提高活性材料的光学吸收;
(iii)使活性材料与太阳光谱相匹配。
在该第三方法中,活性材料常常使用多结与太阳光谱匹配,每个结用于吸收太阳光谱的特定部分。这是例如III-V族的双结或三结的情况(King等人,应用物理快报,90,(2007),第183516页(King et al.,Applied Physics Letters,90,(2007),p 183516)),这些结的组合致使太阳光谱的大部分被吸收。多结的每种材料具有特定的带隙并且在给定的光谱范围内吸收。
为了满足使活性材料与太阳光谱相匹配的同样目的,另一种方法在于使用半导体纳米颗粒,半导体纳米颗粒的带隙取决于它们的尺寸以调节所吸收的光谱范围。直径小于5nm的半导体纳米颗粒一般具有这种性质。这尤其是对于硅纳米颗粒的情况,当微晶的尺寸从5nm降低到3nm的时候,硅纳米颗粒的带隙从1.1eV增加到2.5eV。通常,为了它们能用于制造光电元件,这些纳米颗粒嵌入电介质基体以形成纳米复合材料。如果使用包括各种纳米材料(每种复合材料包含给定尺寸的纳米颗粒)的多层,则制造与太阳光谱中的所有光子(无论它们的能量如何)相互作用的多结光伏电池。
将硅纳米颗粒用于光伏应用在几年前由M.Green等人提出,“在介电基体中中的基于使用硅量子点的“人造的”合成的半导体的全硅串联电池”,第20届欧洲光伏太阳能会议,巴塞罗那,2005.6,第3页”(“All-silicon tandem cells basedon“artificial”semiconductors synthesized using silicon quantum dots in a dielectricmatrix”,Proceedings of the 20th European Photovoltaic Solar Energy Conference,Barcelona,June 2005,p.3”)。这些硅纳米粒子被称为“量子点”。一般地,用于制造这些纳米复合材料的技术包括:真空沉积包含过量硅的膜,诸如SiOx(其中x<2),SiCy(其中y<1)或甚至SiNz(其中z<4/3)。在高温(1100℃)下使这些化合物退火致使过量的硅沉积并形成硅纳米晶体。该技术的一个变体在于,交替沉积非常薄(通常1-5nm厚)的电介质与纯硅膜(A.K.Dutta,应用物理快报,68,9,(1996),第1189页(A.K.Dutta,Applied Physics Letters;68,9,(1996),p.1189))或SiO膜(Zacharias等人,应用物理快报,80,(1996),第661页(Zacharias et al.Applied Physics Letters,80(2002),p.661))的多层并且使所生产的多层退火。因此,这些技术可以生产基于硅纳米颗粒或纳米晶体(称为通用术语硅量子点)的纳米复合材料,这些纳米颗粒或纳米晶体嵌入到二氧化硅基体中。
相似的技术已经用于生产锗纳米晶体,大多往往通过使用CVD或PVD(J.Skov Jensen等人,应用物理A,83,(2006),第41-8页(J.Skov Jensen et al.,Applied Physics A,83,(2006),p 41-8))技术共沉积Si(1-x)Gex化合物(A.K.Dutta,应用物理快报,68,9,(1996),第1189页;T.P.Leervad Pedersen等人,应用物理A,81,(2005),第1591-93页(A.K.Dutta,Applied Physics Letters,68,9,(1996),p 1189;T.P.Leervad Pedersen et al.,Applied Physics A,81,(2005),p1591-93)),随后进行退火步骤,通常在温度800和1000℃之间保持0.5到2个小时。这种复合材料的光电行为是在纳米颗粒中光产生电荷载流子(电子或空穴)并通过基体传导的结果。
如果基体由二氧化硅制成,此传导仅在纳米颗粒彼此接触或者与彼此非常接近时发生。为了提高电荷转移这个方面,最近提出的解决方案之一在于,将纳米颗粒嵌入到半导体(SiC)或导电氧化物(ZnO,ITO,In2O3)基体中。目前正在研究这些解决方案,而且它们的可行性有待证明。除使用的沉积技术之外,还可通过分析该系统的热力学性质预测在使用导电氧化物的情况下难以控制纳米颗粒和基体之间的界面。
这些材料基于由无论掺杂与否的导电氧化物如In2O3、ITO(In、Sn、O)或ZnO)制成的透明基体。半导体量子点或纳米颗粒被插入此基体中,这些量子点或纳米颗粒吸收太阳光并产生电子/空穴对。为了保持量子局限效应,这些纳米颗粒的直径在1到30nm之间变化,而且优选在1到15nm之间变化。由这些纳米颗粒制成的材料是最普通的共价半导体,如Si或Ge或它们的合金Si(1-x)Gex。还可使用被称作“II-VI族”的离子型材料如CdTe、CdSe、ZnTe和ZnSe,或甚至“III-V族”材料,如GaP、GaAs和InSb等。在任何情况下,将期望生成的理想结构是图1中示出的结构,其中(1.1)代表透明导电基体,(1.2)代表硅纳米晶体。
如果仅考虑共价半导体的使用,在氧化物基体中沉淀Si、Ge或SiGe纳米颗粒的传统技术中,需要在几百度的温度下退火。而且,该退火是不可缺少的,如果要生产无电子缺陷(引起电荷载流子再结合的阱)且具有光伏应用可接受的载流子迁移率的半导体纳米晶体。在这些条件下,而且由于由此形成的纳米复合材料的组成的热力学性质,不可避免地将沉积被分别为SiO2、GeO2或二者的混合物的自然氧化物的绝缘障壁环绕的由Si或Ge或Ge or Si(1-x)Gex形成的纳米晶体。这个结果在图2中示出。在图2中,(2.1)代表透明导电基体,(2.2)代表硅纳米晶体,(2.3)代表SiO2
该氧化由相之间的热力学平衡造成,此氧化的存在经常使用埃灵罕姆图来评价。图3示出Si、Ge、In和Zn这些元素的图。该图可以如下方式解释:如果将锗置于ZnO中或氧化铟或ITO中,以牺牲其他氧化物为代价,锗将不会氧化(Ge的氧化曲线在铟和锌的氧化曲线之上)。如果所述温度超过700-800℃,锗可以在ITO基体中氧化。
相比之下,如果将硅置于基于In2O3、ITO(In、Sn、O)或ZnO的导电氧化物中,无论退火过程的温度如何,硅都将会氧化。
除它们能引起电运输问题之外,当前的解决方案的主要缺点是:当消耗氧化半导体材料的量子点时,量子点的尺寸由此下降。然而,如上所述,正是通过控制纳米颗粒或纳米晶体的尺寸,才获得所需的性质。
控制量子点的结晶温度(其取决于本身尺寸)并控制其尺寸,已知后者取决于氧化动力学且因而取决于温度,因此控制其尺寸是非常难的。
发明内容
通过使用基于分散在基体中表面功能化的纳米颗粒的新型材料,本发明克服这些问题,此功能化允许稳定所述纳米颗粒的氧化态,同时促进在所述纳米颗粒中光产生的电荷转移到所述导电基体中。本发明更具体涉及基于这些纳米颗粒的材料和制备该材料的方法。
本发明的第一主题是一种材料,所述材料包括由其中分散有核/壳纳米颗粒的透明半导体或绝缘材料制成的基体,纳米颗粒的核由选自共价半导体Si、Ge和SiGe以及II-VI族或III-V族离子型半导体(ionic II-VI or III-V semiconductor)的半导体制成,且纳米颗粒的壳由选自氧化物TiO2和/或CeO2的材料制成。
理解“II-VI族或III-V族离子型半导体”的表述是指一种合金,所述合金的组分是分别地选自元素周期表中的II族和VI族或者III族和V族的原子。
理解“半导体或绝缘材料”的表述也包括透明导电氧化物。
所述基体可以特别地由选自无论掺杂与否的氧化物、半导体或绝缘体制成,所述氧化物、半导体或绝缘体为SiO2、SiC、SiNx(x≤4/3)、In2O3、ITO(In、Sn、O)或者ZnO。优选地,所述基体由选自ITO和ZnO的材料制成。
所述纳米颗粒的尺寸在1和30nm之间,优选尺寸在1和15nm之间。所述纳米颗粒由尺寸在1和25nm之间的核和壳构成。所述纳米颗粒或它的核的尺寸是该物体的最大直径。所述壳的厚度优选在2和4nm之间。
优选地,在本发明的材料中,每个所述纳米颗粒具有核,这些核都基本上是同样尺寸,也就是,所述纳米颗粒的核的平均直径选择为,所述材料中至少90%的颗粒的直径在该直径的±20%以内。
有利地,所述核由选自:Si;Ge;Si(1-x)Gex,其中x是个数字,且0.1≤x≤0.9;称为“II-VI族”的离子型材料,诸如CdTe、CdSe、ZnTe或ZnSe;或者称为“III-V族”的离子型材料,诸如GaP、GaAs或InSb的半导体构成。优选地,所述核基于Si、Ge或Si(1-x)Gex
所述壳由选自TiO2、CeO2和它们的合金的材料制成。
本发明的所述材料被称为纳米复合材料,意味着该材料具有复合材料结构(它至少由两种单独的材料组成,一种形成所述基体且另一种形成纳米颗粒),所述材料之一是以纳米级结构的形式存在。
正如在传统的量子点体系中,通过选择所述颗粒的尺寸来调节所述带隙。因此,可制造材料的带隙精确固定的材料,而且层叠本发明的具有不同的预设带隙的材料的膜,可获得与所述太阳光谱中的所有光子(无论它们的能量如何)相互作用的多结元件。
有利地,所述基体中的所述纳米颗粒的浓度在1×1016cm-3和1×1019cm-3之间。
因此,本发明的另一个主题是通过层叠本发明的所述材料的膜而形成的制品,材料如上所述。
有利地,这种制品包含1到10层的本发明的所述材料的膜。
更有利地,所述材料的层叠膜都包括由相同材料制成的基体。
甚至更有利地,所述材料的层叠膜都基于由相同材料制成的纳米颗粒。
有利地,材料的每层膜包含尺寸与其他膜中的颗粒尺寸不同的颗粒。
以氧化物TiO2和CeO2(壳材料)包覆所述核阻止所述核纳米颗粒氧化,无论核纳米颗粒是否由Si、Ge、SiGe或另一种材料构成。
本发明的材料具有在图4中所示的结构。在图4中,(4.1)代表透明导电基体,(4.3)代表形成纳米颗粒核的硅或锗纳米晶体,且(4.2)代表TiO2 or或CeO2壳。
如在图5中所示的图中可以看出,所述氧化物TiO2和CeO2在非常高的温度(至少1200℃)下相对于半导体Si、Ge和SiGe是稳定的。这对于Ge来说特别正确。它相对于II-VI族和III-V族半导体的主要组成金属元素也是正确的。
而且,这些TiO2和/或CeO2层相对于所述透明导电基体(基于In或Zn的氧化物)也是完全稳定的。同样也适用于相对于基于Si的基体,诸如SiO2、SiC或SiNx基体。
因此,在用于使所述纳米颗粒结晶的所述退火阶段期间,所述TiO2或CeO2层抽吸在所述纳米颗粒的核中捕获的剩余氧气,并且保护所述核在所述基体中免受任何随后的氧化。
从它们的电学性质的观点来看,虽然非常依赖于用于生产薄氧化物膜的方法,但电导率数据允许以降低电阻率的顺序分类所述氧化物,也就是:SiO2、CeO2、TiO2、随后的ITO和ZnO。换句话说,在带有基于硅的核的纳米颗粒的情况下,如图4所示,根据本发明的结构具有比例如图2所示的现有技术结构更好的电荷传输性质。
从它们的光学性质的观点来看,所述氧化物TiO2和CeO2例如与SiO2相比具有更小的带隙(3eV)。在蓝光或紫外线波长的照明下,这些材料变得相对导电,从而促进由所述纳米颗粒光产生的电荷载流子的传输并且防止它们再结合。
表1:氧化物的电学性质和光学性质
基体 SiO2 TiO2 CeO2 ITO ZnO
电阻率(Ω.cm) 1×1014 1×102~1×105 1×109 2×10-4 2×10-4
带隙 9eV 3.26eV 3.1eV 3.8eV* 3.3eV*
本发明另一个主题是制造上述材料的方法。
所述制造方法允许制造核/壳半导体颗粒,所述壳由TiO2和/或CeO2制成。
为了防止所述核氧化,尽管也可以使用湿处理,但是优选真空合成技术。提供具有下述的操作模式的三种不同的真空方法。
根据第一种方法,执行下面的步骤:
在纳米颗粒源中生产由核原子和较少量(相对于核原子的摩尔数的5到30mol%的壳原子)的所述壳的组成原子,即Ti和/或Ce原子组成的双成分(binary)蒸汽;
通过冷却所述蒸汽使所述气相原子凝结来形成纳米颗粒;
将所形成的所述纳米颗粒转移到沉积腔室内;
喷射到衬底上;
在100℃至700℃的温度范围内退火;且
在同一真空沉积腔室内用所述纳米颗粒同时或交替沉积绝缘体或半导体形成所述基体。
根据一个变形例,另一个方法获得本发明的所述材料,包括以下步骤:
按照以下顺序交替沉积非常薄的0.2至5nm厚的材料的膜:基体材料/壳材料/核材料/壳材料/基体材料;
依照上述顺序用保持相同或改变的每个种类的所述材料(每种材料的厚度,特别是核材料的厚度可选地改变)重复所述交替沉积10至100次,直到获得具有所需厚度的材料;且
在800℃至1000℃的温度范围内退火。
所述壳材料的膜具有减少所述腔室内的沉积大气的作用。所述退火引起核材料以完全控制颗粒长度的伸长颗粒的形式沉积。该核材料通过所述壳材料的氧化被保护并且保持半导体状态。获得诸如图7所示的产物。在图7中,ZnO基体(7.1)包括被TiO2壳(7.3)包覆的硅纳米颗粒的膜(7.2)。
根据另一个变形例,本发明的所述材料可使用包括以下步骤的方法生产:
在纳米颗粒源中生产由核原子组成的双成分蒸汽;
通过冷却所述蒸汽使气相原子凝结来形成纳米颗粒;
将所形成的所述纳米颗粒转移到沉积腔室内;
按照以下顺序交替沉积非常薄的0.2至5nm厚的材料的膜:基体材料/壳材料/核纳米颗粒/壳材料/基体材料;而且
在100℃至700℃的温度范围内退火。
这个解决方案允许更好地控制纳米颗粒的尺寸。
最后两个变形例可以通过化学气相沉积(CVD)法进行。
本发明的复合材料优于现有技术材料的优势如下:
嵌入所述基体的量子点的尺寸被更好地控制,因此所述纳米复合材料吸收器的吸收特性被更好地控制;而且
嵌入所述基体的量子点的界面被更好地控制,因此所述用作光电发生器的纳米复合材料吸收器的电学性能被更好地控制。
本发明的所述工业应用如下:制造光伏电池;制造光电检测器或成像器;以及制造用于数据存储的光学和/或磁性衬底。
附图说明
图1示出了包括透明导电基体和硅纳米晶体的复合材料的示意图。
图2示出了包括透明导电基体和被SiO2包围的硅纳米晶体的复合材料的示意图。
图3示出了元素Si、Ge、In和Zn的埃灵罕姆图(化学物理手册,74版之后(after the Handbook of Chemistry and Physics,74th edition))。
图4示出了包括透明导电材料以及被TiO2或CeO2壳包覆的硅纳米晶体或锗纳米晶体的复合材料的示意图。
图5示出了说明材料Ti、Ce、Si、Ge、Zn和In的氧化焓作为温度的函数的图(化学物理手册,74版之后)。
图6示出通过溅射操作纳米颗粒源的示意图。
图7示出了根据本发明的多层材料的示意图。
具体实施方式
实施例:
操作模式1:使纳米晶体功能化后在100-700℃下退火的直接合成。
此操作模式下的原理在于,在纳米颗粒源中产生由硅原子和少量Ti和/或Ce原子组成的双成分蒸汽。该蒸汽可以通过两个单独的源(硅源和Ti(和/或Ce)源)的共蒸发或共溅射,或者通过仅蒸发或溅射由两种或三种元素(Si+Ti、Si+Ce和Si+Ti+Ce)构成的源来生产。随后通过冷却该蒸汽,使原子由气相凝结,并将由此形成的纳米颗粒转移到邻接的沉积腔室内,以喷射到将被处理的衬底上。图6示出了通过溅射操作纳米颗粒源的一个实例。
在图6中,纳米颗粒(6.11)的流(6.12)沉积在衬底(6.13)上。该源包括等离子气体(6.1)引入其内的真空腔室(6.6)。当在靶(6.2)和常规磁控管阴极(6.4)之间施加直流电压时,该气体在靶(6.2)的表面离子化。由此形成的离子向靶(6.2)加速并且溅射靶,反过来生成蒸汽(6.8),后者具有与靶相同的组成。因为腔室(6.3)的壁被流动水(6.6)冷却,该蒸汽凝结并形成纳米颗粒,在通过抽吸(6.7)外腔室(6.5)而产生的真空的作用下,该纳米颗粒随着向上述源的出口行进而逐渐变大。在腔室(6.5)中,压力通常约为1×10-4mbar,然而腔室(6.6)内的压力约为1×10-1mbar。这种类型的源的操作在E.Quesnel等人的论文中被详细说明(E.Quesnel等,应用物理学,107,4,(2010),第054309页(E.Quesnel et al.,Journal of Applied Physics,107,4,(2010),p054309))。
如果沉积腔室中的大气有轻微的氧化性,则纳米颗粒具有被氧化的倾向。因为钛和铈与氧气反应比硅强烈,所以Ti或Ce的氧化物表面层形成。这个技术允许沉积非常小的颗粒,通常具有在1和10nm之间的直径。在所使用的合成条件下,纳米颗粒一般地是无定形的,但是由于它们的尺寸小,它们能通过在700℃或更低的温度下退火而再结晶。为了形成包括嵌入半导体基体或绝缘体基体中的硅纳米晶体的最终纳米复合材料,在同一个真空沉积腔室中,同时或交替沉积二者。
该原始技术方案允许更好地控制纳米颗粒的尺寸。
实施例1a:使锗纳米晶体功能化后在400-500℃下退火的直接合成
该方法与上述实施例1的方法相同,但用Ge代替Si。
实施例2:在800和1000℃之间退火的ZnO/Ti/Si/Ti/ZnO多层。
这次,这是更常规的方法,包括交替沉积非常薄的膜:[ZnO(3nm)/Ti(1nm)/Si(3nm)/Ti(1nm)/ZnO(3nm)]重复30次。简单起见,图7中仅示出了四层膜的交替。Ti膜具有减少沉积腔室内大气的作用。重复基础的多层30次,从而生产大约330nm厚的吸收器。
退火引起Si以伸长颗粒的形式沉积,从而完美地控制其高度。上述硅通过钛的氧化而被保护并且保持半导体状态。
实施例2a:在800和1000℃之间退火的ZnO/Ti/Ge/Ti/ZnO多层。
该方法与上述实施例2的方法相同,但用Ge代替Si。
实施例3:
与实施例1中一样,在纳米颗粒源中产生双成分蒸汽,该蒸汽由硅原子组成。该蒸汽通过蒸发或溅射Si来产生。随后通过冷却该蒸汽,使原子由气相凝结,而且将由此形成的纳米颗粒转移到邻接的沉积腔室内并喷射在将被处理的衬底上。
利用这些硅纳米颗粒,获得交替沉积的非常薄的膜:[ZnO(3nm)/Ti(1nm)/Si(3nm)/Ti(1nm)/ZnO(3nm)]。
在100和700℃之间的温度下退火,该方法结束。
相对实施例2的方法,更好地控制了纳米颗粒的尺寸。

Claims (16)

1.一种材料,所述材料包括由其中分散有核/壳纳米颗粒的透明半导体或绝缘材料制成的基体,纳米颗粒的核由选自共价半导体Si、Ge和SiGe以及II-VI族或III-V族离子型半导体的半导体制成,且纳米颗粒的壳由选自氧化物TiO2和/或CeO2的材料制成。
2.根据权利要求1所述的材料,其中,所述基体由选自无论掺杂与否的SiO2、SiC、SiNx(x≤4/3)、In2O3、ITO和ZnO的材料制成。
3.根据权利要求1或2所述的材料,其中,所述纳米颗粒的尺寸在1和30nm之间。
4.根据权利要求1至3中任意一项所述的材料,其中,每个所述纳米颗粒具有尺寸在1和25nm之间的核。
5.根据权利要求1至4中任意一项所述的材料,其中,每个所述纳米颗粒具有核,这些核都具有基本相同的尺寸。
6.根据权利要求1至5中任意一项所述的材料,其中,所述核由选自Si;Ge;和Si(1-x)Gex,其中x是数字且0.1≤x≤0.9的半导体制成。
7.根据权利要求1至6中任意一项所述的材料,其中,所述基体中的纳米颗粒的浓度在1×1016cm-3和1×1019cm-3之间。
8.一种制品,所述制品通过层叠根据权利要求1至7中任意一项所述的材料的膜而形成。
9.根据权利要求8所述的制品,所述制品包括1至10层的根据权利要求1至7中所述的材料的膜。
10.根据权利要求8或9所述的制品,其中,层叠的材料的膜都包括由相同材料制成的基体。
11.根据权利要求8至10中任意一项所述的制品,其中,所述层叠的材料的膜都基于由相同材料制成的纳米颗粒。
12.一种用于制造根据权利要求1至7中任意一项所述的材料的方法,所述方法包括以下步骤:
在纳米颗粒源中生产由核原子和所述壳的组成原子,即Ti和/或Ce原子组成的双成分蒸汽;
通过冷却蒸汽使气相原子凝结形成纳米颗粒;
将所形成的所述纳米颗粒转移到沉积腔室内;
喷射到衬底上;
在100℃至700℃的温度范围内退火;且
在同一真空沉积腔室内用所述纳米颗粒同时或交替沉积绝缘体或半导体形成所述基体。
13.一种用于制造根据权利要求1至7中任意一项所述的材料的方法,所述方法包括以下步骤:
按照以下顺序交替沉积非常薄的0.2至5nm厚的材料的膜:基体材料/壳材料/核材料/壳材料/基体材料;
依照上述顺序重复所述交替沉积10至100次,直到获得具有所需厚度的材料;且
在800℃至1000℃的温度范围内退火。
14.一种用于制造根据权利要求1至7中任意一项所述的材料的方法,所述方法包括以下步骤:
在纳米颗粒源中生产由核原子组成的双成分蒸汽;
通过冷却蒸汽使气相原子凝结来形成纳米颗粒;
将所形成的所述纳米颗粒转移到沉积腔室内;
按照以下顺序交替沉积非常薄的0.2至5nm厚的材料的膜:基体材料/壳材料/核纳米颗粒/壳材料/基体材料;且
在100℃至700℃的温度范围内退火。
15.根据权利要求13或14所述的方法,其中,所述材料的膜通过化学气相沉积法沉积。
16.根据权利要求1至7中的一项所述的材料或根据权利要求8至11中的一项所述的制品在以下应用之一中的应用:制造光伏电池;制造光电检测器或成像器;以及制造用于数据储存的光学和/或磁性衬底。
CN2011800283823A 2010-06-08 2011-06-07 纳米复合材料及其在光电学中的应用 Pending CN102947944A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1002410 2010-06-08
FR1002410A FR2961011B1 (fr) 2010-06-08 2010-06-08 Materiau nanocomposite et son utilisation en opto-electronique
PCT/IB2011/052476 WO2011154896A1 (fr) 2010-06-08 2011-06-07 Matériau nanocomposite et son utilisation en opto-électronique

Publications (1)

Publication Number Publication Date
CN102947944A true CN102947944A (zh) 2013-02-27

Family

ID=43414714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800283823A Pending CN102947944A (zh) 2010-06-08 2011-06-07 纳米复合材料及其在光电学中的应用

Country Status (7)

Country Link
US (1) US20130207070A1 (zh)
EP (1) EP2580785B1 (zh)
JP (1) JP2013536565A (zh)
KR (1) KR20130118753A (zh)
CN (1) CN102947944A (zh)
FR (1) FR2961011B1 (zh)
WO (1) WO2011154896A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073449A (zh) * 2014-09-24 2017-08-18 原子能和替代能源委员会 在老化时具有改进的效率的催化组件
CN108269892A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 具有量子阱能级结构的合金材料、制备方法及半导体器件
TWI687756B (zh) * 2014-11-26 2020-03-11 蘇普利亞 傑西瓦爾 使用遠紫外線輻射光刻的材料、組件和方法,及其它應用
CN111033328A (zh) * 2017-09-28 2020-04-17 松下知识产权经营株式会社 波长转换构件及光源
CN113045211A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 复合材料及其制备方法、应用、发光二极管及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026964B1 (fr) * 2014-10-14 2019-10-25 IFP Energies Nouvelles Composition photocatalytique comprenant des particules metalliques et deux semi-conducteurs dont un en oxyde de cerium
GB201513366D0 (en) * 2015-07-29 2015-09-09 Univ Ulster Photovoltaic device
FR3057475B1 (fr) 2016-10-17 2022-01-21 Commissariat Energie Atomique Procede de generation d'un jet de nanoparticules
JP2021009171A (ja) * 2017-09-28 2021-01-28 パナソニックIpマネジメント株式会社 波長変換部材、光源、蛍光体粒子及び波長変換部材の製造方法
DE102018126355B4 (de) * 2018-10-23 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierendes bauelement und verwendung eines lichtemittierenden bauelements zur minimierung von stokesverlusten durch photonmultiplikationsprozesse für ir-anwendungen
DE102020119279A1 (de) 2020-07-22 2022-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Verfahren und Vorrichtung zur Nanopartikelsynthese

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017242A1 (en) * 2006-04-21 2008-01-24 Sanjai Sinha Group iv nanoparticles in an oxide matrix and devices made therefrom
US20090117161A1 (en) * 2007-06-05 2009-05-07 Giapis Konstantinos P Semiconductor-based core-shell particles for blocking electromagnetic radiation
US20100029036A1 (en) * 2006-06-12 2010-02-04 Robinson Matthew R Thin-film devices formed from solid group iiia particles
US20100237323A1 (en) * 2007-09-28 2010-09-23 Dai Nippon Printing Co., Ltd. Electroluminescent device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150910B2 (en) * 2001-11-16 2006-12-19 Massachusetts Institute Of Technology Nanocrystal structures
DE10204471C1 (de) * 2002-02-05 2003-07-03 Degussa Wässerige Dispersion enthaltend mit Ceroxid umhülltes Siliciumdioxidpulver, Verfahren zu deren Herstellung und Verwendung
JP2006508793A (ja) * 2002-12-09 2006-03-16 イーテーエン ナノヴェイション ゲゼルシャフト ミット ベシュレンクテル ハフツング ナノスケールのコア/シェル粒子およびその製造
DE112004000328T5 (de) * 2003-02-25 2006-06-22 Manfred R. Lincoln Kuehnle Eingekapselte Nanopartikel zur Absorption elektromagnetischer Energie im Ultraviolettbereich
KR100886084B1 (ko) * 2005-12-06 2009-02-26 주식회사 엘지화학 코어-쉘 형태의 나노입자 및 그 제조방법
US20080078441A1 (en) * 2006-09-28 2008-04-03 Dmitry Poplavskyy Semiconductor devices and methods from group iv nanoparticle materials
KR20120018165A (ko) * 2009-04-24 2012-02-29 나노시스, 인크. 광기전력 전지를 위한 나노파티클 플라즈몬 산란층
US8252412B2 (en) * 2009-06-16 2012-08-28 Ppg Industries Ohio, Inc Angle switchable crystalline colloidal array films
US8323772B2 (en) * 2010-01-27 2012-12-04 S.A.W. Green Technology Corporation Photon-alignment optical film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017242A1 (en) * 2006-04-21 2008-01-24 Sanjai Sinha Group iv nanoparticles in an oxide matrix and devices made therefrom
US20100029036A1 (en) * 2006-06-12 2010-02-04 Robinson Matthew R Thin-film devices formed from solid group iiia particles
US20090117161A1 (en) * 2007-06-05 2009-05-07 Giapis Konstantinos P Semiconductor-based core-shell particles for blocking electromagnetic radiation
US20100237323A1 (en) * 2007-09-28 2010-09-23 Dai Nippon Printing Co., Ltd. Electroluminescent device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073449A (zh) * 2014-09-24 2017-08-18 原子能和替代能源委员会 在老化时具有改进的效率的催化组件
US10906027B2 (en) 2014-09-24 2021-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Catalytic module
CN107073449B (zh) * 2014-09-24 2021-03-12 原子能和替代能源委员会 在老化时具有改进的效率的催化组件
TWI687756B (zh) * 2014-11-26 2020-03-11 蘇普利亞 傑西瓦爾 使用遠紫外線輻射光刻的材料、組件和方法,及其它應用
CN108269892A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 具有量子阱能级结构的合金材料、制备方法及半导体器件
CN108269892B (zh) * 2016-12-30 2021-06-22 Tcl科技集团股份有限公司 具有量子阱能级结构的合金材料、制备方法及半导体器件
CN111033328A (zh) * 2017-09-28 2020-04-17 松下知识产权经营株式会社 波长转换构件及光源
CN113045211A (zh) * 2019-12-28 2021-06-29 Tcl集团股份有限公司 复合材料及其制备方法、应用、发光二极管及其制备方法
CN113045211B (zh) * 2019-12-28 2022-04-19 Tcl科技集团股份有限公司 复合材料及其制备方法、应用、发光二极管及其制备方法

Also Published As

Publication number Publication date
KR20130118753A (ko) 2013-10-30
EP2580785A1 (fr) 2013-04-17
US20130207070A1 (en) 2013-08-15
EP2580785B1 (fr) 2014-05-21
JP2013536565A (ja) 2013-09-19
WO2011154896A1 (fr) 2011-12-15
FR2961011B1 (fr) 2012-07-20
FR2961011A1 (fr) 2011-12-09

Similar Documents

Publication Publication Date Title
CN102947944A (zh) 纳米复合材料及其在光电学中的应用
Zhang et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S) 2 solar cells
US9123844B2 (en) Semiconductor grain and oxide layer for photovoltaic cells
US8373060B2 (en) Semiconductor grain microstructures for photovoltaic cells
CN104937722B (zh) 利用处理量子点溶液制造的中间带半导体、异质结和光电设备,及其相关方法
US8158880B1 (en) Thin-film photovoltaic structures including semiconductor grain and oxide layers
CN101411001A (zh) 纳米颗粒敏化的纳米结构的太阳能电池
Jalalah et al. One‐pot gram‐scale, eco‐friendly, and cost‐effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV‐harvesting down‐converter for photovoltaics
US20100236614A1 (en) Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon
Rakshit et al. Combining perovskites and quantum dots: synthesis, characterization, and applications in solar cells, LEDs, and photodetectors
US20100200059A1 (en) Dual-side light-absorbing thin film solar cell
US11557689B2 (en) Integrated tandem solar cell and manufacturing method thereof
Aftab et al. Quantum junction solar cells: Development and prospects
US20210151701A1 (en) HIGHLY EFFICIENT PEROVSKITE/Cu(In, Ga)Se2 TANDEM SOLAR CELL
Song et al. Enhancement of photoconversion efficiency of CdSe quantum dots sensitized Al doped ZnO/Si heterojunction device decorated with Ag nanostructures
WO2008052067A2 (en) Semiconductor grain and oxide layer for photovoltaic cells
Varadharajaperumal et al. Effect of CuPc and PEDOT: PSS as hole transport layers in planar heterojunction CdS/CdTe solar cell
JP5287380B2 (ja) 太陽電池、及び太陽電池の製造方法
US20190341506A1 (en) Doping and passivation for high efficiency solar cells
US20220336687A1 (en) Doping and passivation for high efficiency solar cells
Mehrabian et al. Experimental optimization of molar concentration to fabricate PbS quantum dots for solar cell applications
Zhang et al. Development and prospect of nanoarchitectured solar cells
Bapathi et al. Enhancing silicon photodetector performance through spectral downshifting using core-shell CdZnS/ZnS and perovskite CsPbBr3 quantum dots
Guchhait et al. Absorber-buffer interface engineering for kesterite CZTS (Se) solar cells: Wide bandgap buffer layers and postsulfurization treatment
Friedlmeier et al. Thin-Film Tandem Partners based on Inline-Processed (Ag, Cu)(In, Ga) Se2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130227