CN102946807B - X射线ct装置及其控制方法 - Google Patents

X射线ct装置及其控制方法 Download PDF

Info

Publication number
CN102946807B
CN102946807B CN201180029701.2A CN201180029701A CN102946807B CN 102946807 B CN102946807 B CN 102946807B CN 201180029701 A CN201180029701 A CN 201180029701A CN 102946807 B CN102946807 B CN 102946807B
Authority
CN
China
Prior art keywords
filter
ray
data
projection
convolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180029701.2A
Other languages
English (en)
Other versions
CN102946807A (zh
Inventor
冈部正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Publication of CN102946807A publication Critical patent/CN102946807A/zh
Application granted granted Critical
Publication of CN102946807B publication Critical patent/CN102946807B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/421Filtered back projection [FBP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S378/00X-ray or gamma ray systems or devices
    • Y10S378/901Computer tomography program or processor

Abstract

在用面检测器扫描跨越多个部位的被检体时,为了针对被检体的各部位、各区域生成最佳画质的X射线CT像,特征在于,具备:产生X射线的X射线源(11);X射线检测器(12);使X射线源(11)和X射线检测器(12)在保持相对配置的状态下旋转移动的旋转单元(13);基于从X射线检测器(12)输出的投影数据的特征量生成卷积滤波器,并在投影数据上叠加卷积滤波器的平滑化单元(230)以及滤波单元(250);进行叠加了卷积滤波器的投影数据的重构运算,生成被检体的X射线CT像的重构单元(200);显示由重构单元(200)生成的图像的图像显示单元(280)。

Description

X射线CT装置及其控制方法
技术领域
本发明涉及X射线CT装置,尤其涉及在用面检测器扫描跨越多个部位的被检体时,针对被检体的各部位、各区域生成最佳画质的X射线CT像的X射线CT装置及其控制方法。
背景技术
一般,X射线检测器的输出值,身体厚度大的部位的扫描程度减小,误差增大。因此,身体厚度越大的区域,重构的X射线CT像的噪声越大。另一方面,现有的X射线CT装置,通常对于一次CT扫描使用一个重构滤波器来生成被检体的X射线CT像。因此,即使对被检体的某个部位能够提供最佳的X射线CT像,有时在其他区域达不到最佳的画质。
在这种情况下,已知计算叠加了平滑化滤波器、清晰化滤波器等多个重构滤波器后的多个重构像,对各个重构像在各点设定与其CT值对应的加法运算系数并相加,由此输出合成多个重构像所得的X射线CT像的X射线CT装置。
现有技术文献 
专利文献
专利文献1:日本特开2006-34785号公报
发明内容
发明要解决的课题
但是,上述的X射线CT装置,针对多个重构滤波器预先计算其重构像,因此存在需要运算时间的课题。另外,特别是在X射线检测器中使用平板探测器的情况下,由于摄影数据的噪声量大,因此,如果不是不仅考虑各重构点的X射线吸收系数(所谓的CT值),还考虑重构图像的画质(噪声)来决定是否应该使用平滑化滤波器或者清晰化滤波器,则存在无法得到良好的重构 CT像的问题。
鉴于上述问题,本发明的目的在于提供抑制运算时间的增大,并且针对各部位生成最佳画质的X射线CT像的X射线CT装置。
用于解决课题的手段
本发明实现一种X射线CT装置,其生成基于投影数据的值而连续变化的图像处理滤波器,并且进行图像重构运算,由此抑制运算时间的增大,并且针对各部位生成最佳画质的X射线CT像。
更详细来说,本发明的X射线CT装置的特征在于,具备:产生X射线的X射线源;与所述X射线源相对配置,检测透过被检体的所述X射线,输出所述被检体的投影数据的X射线检测器;使所述X射线源和所述X射线检测器在维持相对配置的状态下旋转的旋转单元;生成根据在所述投影数据中包含的像素值的特征量而变化的图像处理滤波器的滤波器生成单元;对于所述投影数据,使用所述生成的图像处理滤波器进行重构运算,生成所述被检体的X射线CT像的重构单元;以及显示所述X射线CT像的图像显示单元。
发明的效果 
根据本发明,可以提供一种X射线CT装置,其在用面检测器扫描跨越多个部位的被检体的锥束CT摄影中,抑制运算时间的增大,针对被检体的各部位、各区域生成最佳画质的X射线CT像。
例如可以实现一种X射线CT装置,其在从胸部跨越到腹部的锥束CT摄影中,在X射线吸收量小的胸部区域可以生成高空间分辨率的X射线CT像,在X射线吸收量大、X射线检测器的输出值小的腹部区域可以生成低对比度分辨率出色的X射线CT像。
附图说明
图1-1是表示应用本发明的锥束X射线CT装置(C臂方式)1的概要结构图。
图1-2是表示在应用本发明的移动型X射线装置中搭载的C臂方式锥束X射线CT装置1a的概要结构图。
图2是表示滤波器变换信息生成单元220的结构要素的框图。
图3是表示平滑化单元230的结构要素的框图。
图4是表示滤波单元250的结构要素的框图。
图5是表示卷积滤波器设定画面30的一例的示意图。
图6是表示输入滤波器设定画面40的一例的示意图。
图7是表示通过重构单元200执行的重构处理(S200)的流程的流程图。
图8是表示卷积滤波器变换信息生成处理(S220)的流程的流程图。
图9是表示特征量的计算区域和投影数据上的坐标点的说明图。
图10是表示投影数据的值和摄影部位的关系的概念图。
图11-1是说明卷积滤波器尺寸为3×3时的卷积运算的说明图。
图11-2是说明卷积滤波器尺寸为1×3时的卷积运算的说明图。
图11-3是说明卷积滤波器尺寸为3×5时的卷积运算的说明图。
图12是表示投影数据211的标准偏差σc和平滑化参数Wa的函数所示的曲线的说明图。
图13是表示平滑化处理(S230)的流程的流程图。
图14是表示FFT滤波器变换信息生成处理(S240)的处理的流程的流程图。
图15是表示滤波处理的说明图。
图16是表示通过FFT滤波器输入单元340输入的FFT滤波器函数、FFT滤波器生成单元253生成的FFT滤波器函数的例子的说明图。
图17是表示标准偏差σ和高空间分辨率区域用滤波器函数含有率的函数所示的曲线的说明图。
图18是表示滤波处理(S250)的处理的流程的流程图。
具体实施方式
以下,使用附图详细说明本发明的X射线CT装置的实施方式。在说明本发明的实施方式的全部附图中,对于具有相同功能的部分赋予相同符号并省略其重复的说明。
<概要结构>
首先,基于图1-1以及图1-2说明应用本发明的锥束X射线CT装置的概 要结构。图1-1是表示应用本发明的锥束X射线CT装置(C臂方式)1的概要结构图。图1-2是表示应用本发明的移动型X射线装置中搭载的C臂方式锥束X射线CT装置1a的概要结构图。
图1-1所示的锥束X射线CT装置1具备:对被检体2照射X射线,拍摄被检体2的X射线透过像111的摄影部10;控制摄影部10的各构成要素或者基于X射线透过像111重构被检体2的3维CT像的控制运算部20。另外,具备:显示图像的显示装置80;用于输入在显示装置80上显示的图像的位置或参数的由鼠标、键盘或者轨迹球等构成的信息输入装置70。
图1-2所示的移动型X射线装置中搭载的C臂方式锥束X射线CT装置1a具备摄影部10a、控制摄影部10a的各构成要素或者重构3维CT像的控制运算部20a。锥束X射线CT装置1a中搭载了车轮5,能够在检查室、手术室中移动。
图1-1描绘了在与纸面平行的方向具有旋转中心轴4,X射线源11和2维X射线检测器12以旋转中心轴4为中心旋转的情况,与之相对,图1-2描绘了在与纸面垂直的方向具有旋转中心轴4,X射线源11和2维X射线检测器12在与纸面平行的面内滑动旋转的情况,但是,图1-1的锥束X射线CT装置1也可以在与纸面平行的面内滑动旋转,图1-2的移动型X射线装置中搭载的锥束X射线CT装置1a也可以旋转。
以下,主要说明图1-1所示的各构成要素,根据需要,说明图1-2所示的构成要素。
(摄影部10)
摄影部10具备:床17;对横卧在该床17上的被检体2照射X射线的X射线源11;与该X射线源11相对设置,通过检测透过被检体2的X射线来输出X射线透过像111的2维X射线检测器12;将X射线源11以及2维X射线检测器12机械连接的C型臂13;保持该C型臂13的C型臂保持体14;将该C型臂保持体14安装在顶棚上的顶棚支持体15;在图示的状态下能够在前后左右的2维方向上移动地支持该顶棚支持体15的顶棚导轨16;将造影剂注入被检体2的注射器18。
X射线源11具备:产生X射线的X射线管11t、将来自X射线管11t的 X射线照射的方向控制为圆锥、四角锥形或者多边锥形的准直仪11c。
在2维X射线检测器12中使用例如使用了TFT元件的平板探测器((flatpanel detector)以下称为“FPD”)。另外,作为2维X射线检测器12的另一例,可以使用由将X射线透过像变换为可见光像的X射线影像增强器、对X射线影像增强器的像进行成像的光学透镜、以及拍摄通过光学透镜成像的X射线影像增强器的可见光像的CCD电视摄像机等的组合而构成的2维X射线检测器。并且,2维X射线检测器12的摄影视野可以是圆形、方形等任意形状。
上述C型臂13在被检体2的摄影时以旋转中心轴4为中心,每次旋转移动预定的摄影角度。由此,上述X射线源11和2维X射线检测器12维持相对配置的状态下在大致同一平面上的圆轨道上旋转移动,进行X射线摄影。针对该旋转移动,存在在图像重构运算中使用的摄影几何学参数。在摄影几何学参数中具有:包含X射线源11由于C型臂13旋转移动而描绘的圆轨道的面即旋转轨道面(中间平面)3、和旋转中心轴4。
(控制运算部20)
控制运算部20具备:控制摄影部10的摄影部控制单元110;收集由摄影部10输出的X射线透过像111并存储的图像收集单元110;基于收集到的X射线透过像111重构3维CT像的重构单元200;显示重构单元200生成的3维CT像的图像显示单元280;输入重构单元200为了生成卷积滤波器而使用的生成条件的卷积滤波器输入单元320;输入重构单元200为了生成傅立叶变换(以下将Fast Fourier Transform简称为FFT)滤波器而使用的生成条件的FFT滤波器输入单元340。另外,所述卷积滤波器,是在图像空间上使用卷积运算进行平滑化或清晰化等图像处理时对该像素值及其周边的像素值叠加的系数。另外,所谓FFT滤波器,是对2维图像空间每1行(1维)进行FFT变换,在通过该FFT变换而生成的行数据中针对每个频率叠加的系数。另外,使用图5、图6等在后面详细说明为了生成所述卷积滤波器而使用的生成条件、以及为了生成所述FFT滤波器而使用的生成条件。
(摄影部控制单元100)
摄影部控制单元100具备:控制C型臂13的绕旋转中心轴4的旋转移动 的摄影系统旋转控制单元101;控制顶棚支持体15在顶棚导轨16上的位置,对C型臂13相对于被检体2的位置进行2维控制的摄影系统位置控制单元102;控制X射线管11t中流过的管电流的开、关(ON、OFF)等的X射线照射控制单元103;控制注射器18注入被检体2的造影剂的注入量以及注入时刻的注射器控制单元104;用于控制床17的位置来调整被检体2的位置的床控制单元105;控制2维X射线检测器12的X射线透过像111的摄影的检测系统控制单元107。此外,C型臂13的旋转方向如前所述,可以在与纸面平行的方向上存在旋转中心轴4,X射线源11和2维X射线检测器12以旋转中心轴4为中心来旋转(图1-1),也可以在与纸面垂直的方向上存在旋转中心轴4,X射线源11和2维X射线检测器12在与纸面平行的面内滑动旋转(图1-2),或者可以具备这两种旋转动作。
(重构单元200)
重构单元200具备预处理单元210、滤波器变换信息生成单元220、平滑化单元230、滤波单元250和逆投影单元260。
预处理单元210将图像收集单元110收集的X射线透过像111变换为X射线吸收系数的分布像(以下称为“投影数据211”)。在本实施方式中,首先对在不将被检体2以及床17配置在摄影视野内的状态下预先拍摄的空气的X射线透过像的各像素数据实施自然对数变换运算。接着,对将被检体2放置在床17上的状态下拍摄的X射线透过像的各像素数据实施自然对数变换运算。然后,从实施了上述自然对数变换运算的空气的X射线透过像中减去实施了自然对数变换运算的被检体2(以及床17)的X射线透过像,由此得到投影数据211。
接着,根据图2说明图1-1的锥束X射线CT装置(C臂方式)1以及图1-2的C臂方式锥束X射线CT装置1a中包含的滤波器变换信息生成单元220的构成要素。图2是表示本发明中的滤波器变换信息生成单元220的构成要素的框图。
滤波器变换信息生成单元220是作为本发明的特征的单元,生成平滑化单元230以及滤波单元250使用的、用于生成卷积滤波器以及频率空间上的FFT滤波器作为图像处理滤波器的滤波器变换参数。滤波器变换信息生成单元220 由投影数据读入单元221、ROI设定单元222、特征量计算单元223、特征量拟合单元224、滤波器变换信息计算单元225以及滤波器变换信息保存单元226构成。这些各构成要素由通过实现各构成要素的功能的软件、和执行该软件的运算/控制装置、输入输出装置以及存储装置构成的硬件构成,通过上述软件和硬件的协作,实现各构成要素的功能。
投影数据读入单元221读入由预处理单元210生成的投影数据211。ROI设定单元222设定投影数据211的计算区域。特征量计算单元223在ROI设定单元222设定的计算区域中计算投影数据211的各点附近的像素值的特征量(平均值、标准偏差等)。特征量拟合单元224将特征量计算单元223计算出的投影数据211各点的特征量拟合为投影数据的坐标值的函数。滤波器变换信息计算单元225将特征量拟合单元224的拟合结果变换为卷积滤波器的参数。滤波器变换信息保存单元226将滤波器变换参数作为投影数据的坐标值的函数来保存。此外,上述特征量的计算不需要在投影数据211的图像上的全部点进行计算,只要关于在纵横方向适当间隔的点设定计算区域并计算特征量即可,通过特征量拟合单元224以及滤波器变换信息计算单元225可以求出投影数据211全部点的滤波器变换参数。
接着,基于图3说明图1-1的锥束X射线CT装置(C臂方式)1以及图1-2的C臂方式锥束X射线CT装置1a中包含的平滑化单元230的构成要素。图3是表示平滑化单元230的构成要素的框图。
平滑化单元230使用通过卷积滤波器输入单元320输入的卷积滤波器的生成条件、和滤波器变换信息生成单元220生成并保存在滤波器变换信息保存单元226中的滤波器变换参数,针对投影数据211的各点生成卷积滤波器,并对投影数据211实施2维的卷积运算。如图3所示,平滑化单元230由卷积滤波器变换信息读入单元231、像素扫描单元232、卷积滤波器生成单元233、周边像素读入单元234、卷积单元235以及卷积运算处理后投影数据保存单元236构成。这些各构成要素由实现各构成要素的功能的软件、和执行该软件的运算/控制装置、输入输出装置以及存储装置组成的硬件构成,通过上述软件和硬件的协作,实现各构成要素的功能。
卷积滤波器变换信息读入单元231读入由滤波器变换信息生成单元220 生成的滤波器变换参数。像素扫描单元232扫描投影数据211的坐标值(坐标以及该坐标的像素值),卷积滤波器生成单元233根据卷积滤波器的生成条件和滤波器变换参数,生成与投影数据的各点对应的卷积滤波器。像素扫描单元232对投影数据211进行扫描,读入投影数据的各点的坐标值(坐标和该坐标的像素值)。
周边像素读入单元234基于由像素扫描单元232扫描的坐标值,读入成为卷积滤波器的生成对象的点(以下称为“投影像素”)的附近的点(以下称为“周边像素”)的投影数据的值(像素值)。卷积单元235关于投影像素,对于投影像素的值(像素值)以及周边像素读入单元234读入的投影像素的值以及周边像素的值,应用由卷积滤波器生成单元233生成的卷积滤波器来进行卷积运算。卷积运算处理后投影数据保存单元236保存卷积运算结果。
接着,基于图4以及图15说明图1-1的锥束X射线CT装置(C臂方式)1以及图1-2的C臂方式锥束X射线CT装置1a中包含的滤波单元250的构成要素。图4是表示滤波单元250的构成要素的框图。图15是表示滤波处理的说明图。
滤波单元250使用通过FFT滤波器输入单元340输入的FFT滤波器的生成条件、和滤波器变换信息生成单元220生成的滤波器变换参数,生成与实施了卷积运算的投影数据(以下称为“卷积运算处理后投影数据”)212的各横行对应的FFT滤波器,实施FFT滤波器处理。如图4所示,滤波单元250由FFT滤波器变换信息读入单元251、行数据读入单元252、FFT滤波器生成单元253、FFT单元254、FFT滤波器积算单元255、逆FFT单元256以及滤波器处理后投影数据保存单元257构成。这些各构成要素通过实现各构成要素的功能的软件、和执行该软件的运算/控制装置、输入输出装置以及存储装置所组成的硬件构成,通过上述软件和硬件协作,实现各构成要素的功能。
FFT滤波器变换信息读入单元251读入由滤波器变换信息生成单元220生成并保存在滤波器变换信息保存单元226中的滤波器变换参数。行数据读入单元252从投影数据212一次读入进行滤波处理的横行数据、例如图15中的横行数据352。FFT滤波器生成单元253根据FFT滤波器的生成条件和滤波器变换参数,针对每行生成FFT滤波器。FFT单元254将横行数据352变换为频 率数据,FFT滤波器积算单元255对频率数据积算FFT滤波器生成单元253生成的FFT滤波器。逆FFT单元256将频率数据恢复为实际空间数据,通过滤波器处理后投影数据保存单元257保存滤波器处理结果。
逆投影单元260进行滤波器处理后投影数据的逆投影运算,生成被检体2的3维CT像。
(卷积滤波器输入单元320)
卷积滤波器输入单元320设定由卷积滤波器生成单元233生成的2维卷积滤波器的生成条件。以下,基于图5说明卷积滤波器输入单元320使用的GUI的一例。图5是表示卷积滤波器设定画面30的一例的示意图。
图5的标签41~44是摄影部位选择标签,可以对头部、胸部、腹部、腰部等各种摄影部位分别设定卷积滤波器生成条件,图5表示选择了胸部条件设定标签42的情况。按钮45是摄影部位追加按钮,可以追加颈部、四肢等其他摄影部位的条件。列表框31是选择横向的卷积滤波器尺寸的列表框,可以选择“1”、“3”或“5”的值。
列表框32是选择纵向的卷积滤波器尺寸的列表框,可以选择“1”、“3”或“5”的值。但是,在列表框31、32中选择了卷积滤波器尺寸“1”的情况下表示不进行横向或纵向的卷积运算(设定关(OFF))。
图5的点33以及35是横向或者纵向的卷积滤波器函数阈值设定点,可以向左右拖动来使横向的滤波器函数阈值μa或者纵向的滤波器函数阈值μb变化。在此所说的“滤波器函数阈值”,是规定以怎样的程度进行平滑化处理(换言之,以怎样的程度进行清晰化处理)的值。当用户希望相对低噪声的图像时,需要相对大地执行平滑化处理(换言之,相对小地执行清晰化处理)。在这种情况下,将滤波器函数阈值设定为相对小的值。另一方面,当用户希望相对高分辨率的图像时,需要相对小地执行平滑化处理(换言之,相对大地执行清晰化处理)。在这种情况下,将滤波器函数阈值设定为相对大的值。
另外,点34以及36是横向或者纵向的卷积滤波器函数变化量设定点,通过改变滤波器函数阈值边界线的斜率,可以改变横向的滤波器函数变化量βa或者纵向的滤波器函数变化量βb。在此所说的“滤波器函数变化量”,是规定在相对大地进行平滑化处理的情况下应用的滤波器函数、和相对小地进行平滑化处理的情况下使用的滤波器函数的变化量的值。关于滤波器函数阈值的大小和平滑化处理的大小的关系、以及滤波器函数变化量的大小和平滑化处理的大小的关系,在后述的“费米分布函数的参数”中进一步说明。在后面说明卷积滤波器生成单元223使用上述的滤波器函数阈值μa、μb以及滤波器函数变化量βa、βb生成卷积滤波器的处理的细节。
(FFT滤波器输入单元340)
FFT滤波器输入单元340设定FFT滤波器生成单元253生成的FFT滤波器的生成条件。以下,基于图6说明FFT滤波器输入单元340使用的GUI的一例。图6是表示FFT滤波器设定画面40的一例的示意图。与图5相同,标签41~44是摄影部位选择标签,按钮45是摄影部位追加按钮。图6表示选择了胸部条件设定标签42的情况。
列表框51是选择高空间分辨率区域用滤波器函数的列表框,列表框52是选择低对比度区域用滤波器函数的列表框,选择FFT滤波器生成单元253使用的生成条件。点53是FFT滤波器函数阈值设定点,点54是FFT滤波器函数变化量设定点,通过向左右拖动使FFT滤波器函数阈值μF、或者阈值边界线的斜率变化,由此可以改变FFT滤波器函数变化量βF。在此所说的“FFT滤波器函数阈值μF”,是规定使用FFT滤波器的平滑化处理的大小的值。另外,所谓“FFT滤波器函数变化量βF”是规定在FFT滤波器处理中使用的两个滤波器函数(图6中的滤波器函数1和滤波器函数2)的变化的比例的值。在后面说明FFT滤波器生成单元253使用上述的滤波器函数阈值μF、滤波器函数变化量βF、以及所选择的高空间分辨率区域用滤波器函数、低对比度区域用滤波器函数生成FFT滤波器的处理的细节。
上述的锥束X射线CT装置1以及1a的规格例如下。X射线源11和旋转中心轴4的距离为800mm、旋转中心轴4和2维X射线检测器12(FPD)的X射线入射面的距离为400mm、X射线入射面为400×300mm大小的长方形,TFT元件数为2048×1536,元件间隔为0.2mm。当X射线入射到FDP时,首先在X射线入射面通过CsI等发光体变换为光,光信号通过光电二级管被变换为电荷。积蓄的电荷针对每一定的帧率通过TFT元件被变换为数字信号并被读出。在旋转摄影模式下,成块2×2的TFT元件,以图像尺寸1024×768、像素间距0.4mm、每秒30帧读出X射线透过像111。摄影系统旋转控制单元101使2维X射线检测器12从被检体2的左手的方向(-100度)通过顶棚方向(0度)移动到被检体2的右手方向(+100度)。由此,拍摄跨越200度的投影角度的被检体2的X射线透过像111。C型臂13的旋转速度例如为每1秒40度,扫描时间为5秒。
<动作的概要>
接着,说明锥束X射线CT装置1的摄影中的动作的概要。
在锥束X射线CT装置1中,首先,摄影系统旋转控制单元101以旋转中心轴4为中心开始C型臂13的旋转。在经过旋转加速期间后,X射线照射控制单元103从X射线管11t照射X射线,检测系统控制单元107开始2维X射线检测器12的摄像。从X射线管11t照射的X射线在透过被检体2后被取入到2维X射线检测器12。2维X射线检测器12的信号在经过A/D变换后作为由数字信号构成的X射线透过像111记录在图像收集单元110中。2维X射线检测器FDP的标准扫描模式为每秒30帧,旋转摄影中的投影角度间隔为1.33度,5秒间取得150枚X射线透过像111。200度的旋转摄影完成时,X射线照射控制单元103结束X射线管11t的X射线照射,摄影系统旋转控制单元101在经过旋转减速期间后停止旋转。
另外,例如作为2维X射线检测器12而使用X射线影像增强器、光学透镜以及CCD电视摄像机的组合的情况下的规格例,X射线影像增强器的直径为300mm、CCD电视摄像机的标准扫描模式为每秒60帧、扫描线数为512条,或者为每秒30帧、扫描线数1024条,CCD电视摄像机对通过光学透镜成像的X射线影像增强器的可见光像进行摄影。CCD电视摄像机拍摄的X射线透过像在被变换为视频信号后被进行A/D变换,作为512×512或者1024×1024的数字图像被图像收集单元110收集。
重构单元200在以上的旋转摄影动作中或者在旋转摄影动作结束后立即从图像收集单元110读出X射线透过像111,基于该X射线透过像111进行重构运算,生成被检体2的3维CT像。图像显示单元280将3维CT像显示在由CRT装置或液晶显示器装置等构成的显示装置80中。此外,图像显示单元280也被用于显示在图像收集单元110中记录的X射线透过像111。重构单元 200对通过图像收集单元110收集的X射线透过像111进行重构,由此生成被检体的重构图像,图像显示单元280在显示装置80中显示重构图像。
<重构处理>
接着,基于图7说明通过重构单元200执行的重构处理(S200)的流程。图7是表示通过重构单元200执行的重构处理(S200)的流程的流程图。以下,按照图7的步骤顺序来说明。
(步骤S210)
预处理单元210对图像收集单元110收集的被检体2和空气的X射线透过像111实施自然对数变换运算,变换为投影数据211(S210)。
(步骤S220)
滤波器变换信息生成单元220计算投影数据211的各点附近的特征量(例如各点附近的像素的像素值的平均值Ac或标准偏差σc),生成用于在步骤S230中生成卷积滤波器的卷积滤波器变换参数(S220)。
(步骤S230)
平滑化单元230使用步骤S220生成的卷积滤波器变换参数、用户预先使用卷积滤波器输入单元320设定的卷积滤波器的生成条件,针对投影数据211的每个点生成卷积滤波器,针对各点实施2维的卷积运算(S230)。
(步骤S240)
滤波器变换信息生成单元220计算实施了卷积运算处理的投影数据212的各横行数据的像素值的特征量(平均值AF、标准偏差σF),生成用于在步骤S250中生成FFT滤波器的FFT滤波器变换参数(S240)。
(步骤S250)
滤波单元250使用步骤S240生成的FFT滤波器变换参数、和用户预先使用FFT滤波器输入单元340设定的FFT滤波器的生成条件,生成与实施了卷积运算处理的投影数据212的各横行对应的FFT滤波器,实施FFT滤波器处理(S250)。
(步骤S260)
逆投影单元260使用步骤S250的FFT滤波器处理后的投影数据进行逆投影运算(S260)。
(步骤S270)
判别是否针对全部投影数据执行了从步骤S210到步骤S260的处理。在未对全部投影数据进行处理(否)的情况下返回步骤S210,针对下一投影数据执行从步骤S210到步骤S260的处理。在“是”的情况下结束重构处理(S220),输出被检体2的3维CT像(S70)。
以下,使用图8、图9、图10以及图12说明作为本发明的特征的、上述步骤S220、S230、S240以及步骤S250的各自的处理的细节。图8是表示卷积滤波器变换信息生成处理(S220)的流程的流程图,图9是表示特征量的计算区域和投影数据上的坐标点的说明图,图10是表示投影数据的值(以下也称为“投影级别”)和摄影部位的关系的概念图,图12是表示投影数据211的标准偏差σc和平滑化参数Wa的函数所示的曲线的说明图。
首先,按照图8的各步骤说明卷积滤波器变换信息生成处理。
(步骤S221)
投影数据读入单元221读入在步骤S210中生成的投影数据211(S221)。
(步骤S222)
如图9所示,ROI设定单元222设定用于计算投影数据211的特征量的长方形或正方性的ROI(计算区域239)的大小。ROI尺寸以坐标点238为中心,例如设为15×15~25×25像素(S222)。
(步骤S223)
特征量计算单元223扫描投影数据211上的坐标点,计算在步骤S222中指定的ROI区域(计算区域239)内的像素值的平均值Ac以及标准偏差σc,由此求出投影数据211的各点的特征量。此时,为了抑制标准偏差的计算值由于从平均值大幅度偏离的数据受到影响,一次针对每ROI做成以该ROI内的像素值的平均值、最大值、最小值设为横轴的柱状图。并且,可以从ROI内的像素值的平均值中仅使用在例如±1/10的度数分布内的数据来求出标准偏差值(S223)。此外,在本实施方式中,针对投影数据211的各点求出了特征量,但是也可以不针对全部点求出特征量,而仅针对适当剔除后的点求出特征量。在这种情况下,被剔除的投影数据211的点的特征量可以利用从包含该点的计算区域得到的像素值的特征量。
图10概念性地表示从胸部跨越到腹部的部位的摄影中的、投影数据的值的变化。在胸部区域中,X射线吸收量小,因此,对数变换后的投影数据的平均值小,误差(标准偏差)也小。另一方面,在腹部区域中对数变换后的投影数据平均值大,并且X射线检测器的输出值小,因此成为误差大的数据。
本发明实现一种X射线CT装置,其可以在投影数据的平均值小、标准偏差小的摄影部位实施清晰化滤波器并生成高空间分辨率的X射线CT像,并且在投影数据的误差大的摄影部位实施平滑化滤波器抑制噪声,生成低对比度分辨率出色的X射线CT像。
(步骤S224)
特征量拟合单元224将在步骤S223中计算的投影数据211各点的特征量拟合为投影数据的坐标值的函数(即,投影数据211的各点的横向以及纵向的位置信息(坐标值)和该位置的像素值的特征量的对应)(S224)。此外,也能够省略步骤S223以及S224。在这种情况下,例如可以根据摄影部位或摄影条件由用户输入像素值的特征量(或特征量的范围)的预测值,使用该输入的像素值的特征量计算下述的滤波器变换信息。
(步骤S225)
滤波器变换信息计算单元225将步骤S224的拟合结果变换为卷积滤波器的参数,即使用拟合结果中包含的像素值的特征量生成卷积滤波器的参数(S225)。以下基于图12说明该卷积滤波器的参数及其处理的细节。图12是表示投影数据211的标准偏差σc和参数Wa的函数所示的曲线的说明图。
一般来说,对卷积滤波器进行标准化,以使其合计成为1。并且,可以导入在卷积滤波器的合计为1的条件下可以变化的参数,例如横向(后述的图11-1~图11-3中的u方向)的参数Wa以及纵向(后述的图11-1~图11-3中的v方向)的参数Wb。横向的参数Wa以及纵向的参数Wb通常取超过-0.5的实数值,将1.0设为最大值。
参数Wa或参数Wb取负值时的卷积运算成为取得与邻接像素的差分的运算,在这种情况下作为清晰化滤波器来发挥作用。在本实施方式的说明中,以下假定参数Wa以及参数Wb取正值(0.0~1.0),卷积运算作为平滑化滤波器来发挥作用,在后面的FFT滤波器运算过程中进行清晰化处理来说明。因此, 在以下的平滑化处理的说明中,将参数Wa或参数Wb记载为平滑化参数Wa或平滑化参数Wb。
以下,举出步骤S225的滤波器变换信息计算单元225根据所述步骤S223的特征量计算单元223计算出的投影数据211的特征量(ROI平均值Ac、标准偏差σc)决定参数Wa以及Wb的函数式的一例来说明。如上所述,假定平滑化参数Wa以及Wb取0.0~1.0的值。另一方面,投影数据的特征量(ROI平均值Ac、标准偏差σc),典型地Ac取0.02/mm(水的X射线吸收系数)×200mm(身体厚度)=4.0,σc取0.2左右的值,但是假定取任意的实数值。作为输入为任意的实数值、输出为0~1的函数的一例,可以导入以下举例的“费米分布函数”f(x),
[数学式1]
f ( x ) = 1 1 + e x , x = &mu; a - &sigma; c A C &CenterDot; &beta; a - - - ( 1 )
Wa=f(x),或者同样地导入函数f(y),
[数学式2]
f ( y ) = 1 1 + e y , y = &mu; b - &sigma; C A C &CenterDot; &beta; b - - - ( 2 )
Wb=f(y)。式(1)以及式(2)的μa以及μb是通过卷积滤波器输入单元320输入的横向以及纵向的滤波器函数阈值,βa以及βb是滤波器函数变化量。根据以下说明的事项,βa以及βb标准地可以取10左右的值。式(1)以及式(2)的“费米分布函数”具有f(x)+f(-x)=1这样的性质,在计算后述的图11-1~图11-3中举例表示的卷积滤波器的运算中可以利用1-Wa=f(-x)或者1-Wb=f(-y)。
图12的曲线(1)(在图12中用实线描绘)表示“费米分布函数”f(x),当x=0即标准偏差σc=滤波器函数阈值μa时f(0)=0.5。f(x)当x=-1.0时约为0.73,当x=0时为0.5,当x=+1.0时约为0.27的值。通过函数f(x)决定的平滑化参数Wa,当投影数据的ROI平均值Ac、滤波器函数阈值μa以及滤波器函数变化量βa不变化时,投影数据的标准偏差σc(即噪声量)越大,x变得越 小,平滑化参数Wa变得越大。即,一般来说,“费米分布函数”f(x)中,当滤波器函数阈值μ=标准偏差σ时平滑化参数Wa=0.5、当μ<σ时Wa>0.5,当μ>σ时Wa<0.5,在Wa>0.5时相对较大地进行平滑化处理,当Wa<0.5时相对较小地进行平滑化处理。另外,在μ>σ的条件下使滤波器函数变化量β(β>0)相对较大时x相对增大,因此,平滑化参数W相对减小,设定了更强的高分辨率处理。另一方面,在μ<σ的条件下使滤波器函数变化量β(β>0)相对较大时,x相对减小,因此,平滑化参数W相对增大,设定更强的低噪声处理。
图12的曲线(2)(在图12中用虚线描绘)表示当平均值Ac以及滤波器函数变化量βa为标准值Ac=0.4、βa=10时,将滤波器函数阈值μa分别±0.2时的f(x)的变化。在Ac=4.0、βa=10时,将滤波器函数阈值μa+0.2时,式(1)的x增大1.0,对于相同标准偏差σc,平滑化参数Wa减小,设定了高分辨率处理。
反之,当将滤波器函数阈值μa-0.2时,式(1)的x减小1.0,平滑化参数Wa增大,设定了低噪声处理。其结果,与标准设定的曲线(1)相比进行了低噪声设定,在图12中相当于曲线(3)(在图12中用虚线描绘)。
以上是根据滤波器函数阈值μa、滤波器函数变化量βa以及ROI平均值Ac、标准偏差σc计算横向的平滑化参数Wa的情况的说明,但是通过将上述的记载中的a替换为b,在图12中将a替换为b,计算纵向的平滑化参数Wb。
另外,如前所述,将横向的平滑化参数Wa抑制为小的值,增大纵向的平滑化参数Wb,从CT像的空间分辨率的观点出发是理想的。在上述图5中表示了点33表示的横向的滤波器函数阈值μa被设定为相对大的值,点35表示的纵向的滤波器函数阈值μb被设定为相对小的值的情况。
针对投影数据211的各点进行本步骤的处理,生成将各点的坐标值和平滑化参数Wa以及Wb对应起来的信息。
(步骤S226)
滤波器变换信息保存单元226保存步骤S225求出的滤波器变换信息(将卷积滤波器变换参数设为投影数据的坐标值的函数的信息)(S226)。
接着,使用图11-1、图11-2、图11-3以及图13说明平滑化处理(S230)的细节。图11-1是说明卷积滤波器尺寸为3×3时的卷积运算的说明图,图11-2 是说明卷积滤波器尺寸为1×3时的卷积运算的说明图,图11-3是说明卷积滤波器尺寸为3×5时的卷积运算的说明图,图13是表示平滑化处理(S230)的流程的流程图。
以下,按照图13的步骤顺序进行说明。
(步骤S231)
卷积滤波器变换信息读入单元231读入卷积滤波器变换信息生成处理(S220)生成的卷积滤波器变换信息(具体来说,通过步骤S226作为投影数据的坐标值的函数而保存的平滑化参数Wa以及Wb)(S231)。
(步骤S232)
像素扫描单元232扫描投影数据211的各点(以下称为投影像素)的坐标值(与像素的坐标和像素值相当)(S232)。
(步骤S233)
卷积滤波器生成单元233使用卷积滤波器变换信息读出与各投影像素的坐标值对应的平滑化参数Wa、Wb,使用它们生成与各投影像素对应的卷积滤波器(S233)。
在此,使用图11-1~图11-3以及图12举例对本实施方式中的卷积运算以及卷积滤波器生成单元233的处理进行说明。此外,卷积运算以及卷积滤波器生成方法不限于以下内容,在不脱离本发明的技术思想的范围内可以适当变更。
图11-1是示意地表示横向、纵向的卷积滤波器尺寸都为“3”时执行的卷积运算的图,图11-2是示意地表示横向的卷积滤波器尺寸为“1”(即,横向的卷积运算关(OFF)),纵向的卷积滤波器尺寸为“3”时执行的卷积运算的图,图11-3是示意地表示横向的卷积滤波器尺寸为“3”、纵向的卷积滤波器尺寸为“5”时执行的卷积运算的图。图11-1的矩阵61、63以及65表示实施卷积运算的像素的值P(u,v)和其附近点的像素值。矩阵62、64以及66表示卷积滤波器。并且,针对图11-1,基于以下(3)式计算与卷积运算前的像素值P(u,v)对应的卷积运算后的像素值P’(u,v),针对图11-2,基于以下(4)式计算与卷积运算前的像素值P(u,v)对应的卷积运算后的像素值P’(u,v)。
[数学式3]
P &prime; ( u , v ) = P ( u - 1 , v - 1 ) &times; Wa &CenterDot; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u , v - 1 ) &times; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u + 1 , v - 1 ) &times; Wa &CenterDot; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb )
+ P ( u - 1 , v ) &times; Wa ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u , v ) &times; 1 ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u + 1 , v ) &times; Wa ( 1 + 2 Wa ) ( 1 + 2 Wb )
+ P ( u - 1 , v + 1 ) &times; Wa &CenterDot; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u , v - 1 ) &times; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb ) + P ( u + 1 , v - 1 ) &times; Wa &CenterDot; Wb ( 1 + 2 Wa ) ( 1 + 2 Wb ) - - - ( 3 )
[数学式4]
P &prime; ( u , v ) = P ( u , v - 1 ) &times; Wb ( 1 + 2 Wb ) + P ( u , v ) &times; 1 ( 1 + 2 Wb ) + P ( u , v + 1 ) &times; Wb ( 1 + 2 Wb ) - - - ( 4 )
此外,针对图11-3,也与图11-1的式(3)以及图11-3的式(4)同样,通过在矩阵65的像素值上乘以与在该像素值的矩阵65内的位置相同位置的矩阵66内的权重,计算卷积运算后的像素值P’(u,v)。
矩阵62、64以及66中记载的卷积滤波器,是通过滤波器变换信息生成单元220生成的平滑化参数Wa、使用平滑化参数Wb的卷积滤波器,以其合计为1的方式被标准化。
重构CT像的空间分辨率很大程度依存于横向(u方向)的投影数据211的分辨率。因此,横向(u方向)的平滑化参数Wa被抑制为0或小的值,可以增大纵向(v方向)的平滑化参数Wb。另外,卷积滤波器的尺寸如图11-1至图11-3中举例表示那样,可以以3×3作为标准,取1×3或者3×5的尺寸。在本实施方式中,在图5的卷积滤波器设定画面30的列表框31、32中,当横向的卷积滤波器尺寸输入3、以及纵向的卷积滤波器尺寸输入3时,针对投影数据211的各点生成3×3尺寸的卷积滤波器。
(步骤S234)
周边像素读入单元234读取位于成为卷积运算的对象的投影像素的周边的投影像素(也称为周边像素)的像素值(S234)。位于周边的投影像素在以下的卷积运算中被使用。
(步骤S235)
卷积单元235使用在步骤S233中生成的卷积滤波器和步骤S232、S234中读入的投影像素以及周边像素的像素值进行卷积运算(S235)。卷积单元235例如当在图5的卷积滤波器设定画面中设定3×3的滤波器尺寸时,根据式(3)进行卷积运算。
(步骤S236)
卷积运算处理后投影数据保存单元236保存步骤S236的卷积运算结果(S236)。
(步骤S237)
判别是否针对全部的投影像素执行了步骤S232到步骤S236的处理。在未处理全部的投影像素时(否)的情况下返回步骤S232,针对下一投影像素执行从步骤S232到步骤S236的处理。在“是”的情况下结束平滑化处理(S230),前进到FFT滤波器变换信息生成处理(S240)。
接着,基于图14以及图15说明FFT滤波器变换信息生成处理(S240)的细节。图14是表示FFT滤波器变换信息生成处理(S240)的处理的细节的流程图,图15是表示滤波处理的说明图。此外,图15的纵线24是表示旋转中心轴4的向2维X射线检测器12的投影的线,针对沿着旋转方向(与旋转中心轴4垂直的方向)的横行数据352进行滤波处理。以下,按照图14的步骤顺序进行说明。
(步骤S241)
投影数据读入单元221读入在步骤S230中生成的卷积运算处理后投影数据212(S241)。
(步骤S242)
ROI设定单元222设定图15所示的横长的长方形ROI(计算区域342)的大小(S242)。
(步骤S243)
特征量计算单元223在卷积运算处理后投影数据212上,在上下方向(或者也称为纵向)上扫描长方型ROI(计算区域342),计算特征量(例如ROI内的像素的像素值的平均值AF、标准偏差σF)。此时,与步骤S223的计算时相同,为了抑制由于从平均值大幅度偏离的数据而使标准偏差的计算值受到影响,可以一度生成以ROI内的像素值的平均值、最大值、最小值作为横轴的柱状图,仅从ROI内的像素值的平均值中使用例如±1/10的度数分布内的数据,求出标准偏差值(S243)。
(步骤S244)
特征量拟合单元224将步骤S243计算出的特征量拟合为与投影数据的上下方向相关的坐标值的函数(即,投影数据的上下方向的位置信息和其位置的特征量的对应)(S244)。
(步骤S245)
滤波器变换信息计算单元245将步骤S244的拟合结果变换为FFT滤波器的参数。以下说明该FFT滤波器的参数及其处理的细节(S245)。
在此,使用图16以及图17举例说明本实施方式中的FFT滤波器函数及其合成方法。图16是表示通过FFT滤波器输入单元340输入的FFT滤波器函数和FFT滤波器生成单元253生成的FFT滤波器函数的例子的说明图。图17是表示标准偏差σ和高空间分辨率区域用滤波器函数含有率的函数所示的曲线的说明图。此外,FFT滤波器函数及其合成方法不限于以下情况,在不脱离本发明的技术思想的范围内可以适当变更。
图16表示通过FFT滤波器输入单元340输入的FFT滤波器函数和FFT滤波器生成单元253生成的FFT滤波器函数的例子。图16的最上方的曲线(a)和最下方的曲线(b)是通过FFT滤波器输入单元340输入的高空间分辨率区域用的FFT滤波器函数、以及低对比度区域用的FFT滤波器函数的例子。正中的3曲线(用虚线描绘)是通过FFT滤波器生成单元253根据投影数据的特征量从两个输入FFT滤波器函数的线性和生成的FFT滤波器函数的例子。纵轴是FFT滤波器积算单元255中执行的频率空间上的积算强度,横轴表示频率,单位是“1/Pixel”。
本实施方式的输入图像是通过2×2的成块(binning)收集的1024×768图像,在FFT运算中是公知的事实,但是为了不产生所谓折返导致的混淆,假定以输入图像的横向宽度1024的2倍的2048点进行FFT滤波器运算。此时,从标本间隔中取上限频率(被称为“乃奎斯特频率”)的绝对值为1024、频率为-1024~+1024的值。FFT滤波器函数被设定为以绝对值相等的正负频率取相同值,在图16中表示了仅正频率的FFT滤波器函数。此外,图16的例子中表示了作为高空间分辨率区域用FFT滤波器函数使用Shepp-Logan函数,作为低对比度区域用的FFT滤波器函数使用其1/2周期的sin函数的情况。生成 的FFT滤波器函数作为两个函数的线性和来表示,在投影数据的平均值小、标准偏差小的高空间分辨率区域中,生成直到高频率为止值较大的FFT滤波器,在X射线吸收系数大、投影数据的误差大的低对比度区域中,生成高频率的值小、平滑化度大的FFT滤波器。此外,在全部FFT滤波器函数中使原点的斜率(微分系数)成为相等的值,以使重构CT像的平均值相等。
接着,使用图17举出决定高空间分辨率区域用FFT滤波器函数的含有率的函数式的一例,说明根据在所述步骤S243中计算出的卷积运算处理后投影数据212的特征量(ROI平均值AF、标准偏差σF),FFT滤波器生成单元253使用高空间分辨率区域用FFT滤波器函数和低对比度区域用的FFT滤波器函数的线性和来生成FFT滤波器的处理。在生成的FFT滤波器中的两个输入FFT滤波器函数(高空间分辨率区域用、低对比度区域用)的含有率相加为1。另一方面,投影数据的特征量(ROI平均值AF、标准偏差σF)如前所述,典型地AF为0.02/mm(水的X射线吸收系数)×200mm(身体厚度)=4.0,σF取0.2左右的值,但是假定取任意的实数值。作为输入为任意的实数值、输出为0~1的函数的例子,与式(1)相同,可以应用“费米分布函数”f(x),
[数学式5]
f ( x ) = 1 1 + e x , x = &sigma; F - &mu; F A F &CenterDot; &beta; F - - - ( 5 )
(变量x的定义式与式(1)不同),将f(x)设定为高空间分辨率区域用FFT滤波器函数的含有率。μF是通过FFT滤波器输入单元340输入的FFT滤波器函数阈值,βF是滤波器函数变化量。如前所述,将βF标准地设定为10左右的值。“费米分布函数”具有f(x)+f(-x)=1的性质,可以将f(-x)设为低对比度区域用FFT滤波器函数的含有率。
以下,在与图12同样的讨论(其中,变量x的定义式与式(1)不同)中,图17的实线是“费米分布函数”f(x),高空间分辨率区域用FFT滤波器函数的含有率f(x),当投影数据的ROI平均值AF、滤波器函数阈值μF以及滤波器函数变化量βF不变化时,投影数据的标准偏差σF(即噪声量)越大,x越增大,f(x)越减小。图17的虚线表示当平均值AF以及滤波器函数变化量βF为标准的值AF=4.0、βF=10时,将滤波器函数阈值μF分别±0.2时的f(x)的变化。当AF=4.0、βF=10时,当将滤波器函数阈值μF+0.2时,式(5)的x减小1.0,针对相同标准偏差σF,高空间分辨率区域用FFT滤波器函数的含有率f(x)增大,设定了高分辨率处理。反之,当将滤波器函数阈值μF-0.2时,式(5)的x增大1.0,高空间分辨率区域用FFT滤波器函数的含有率f(x)减小,设定了低噪声处理。f(x)当x=-1.0时约为0.73,当x=0时为0.5,当x=+1.0时约为0.27的值,以该数值生成的FFT滤波器函数是图16中举例表示的3条曲线。针对每个行数据进行该处理,生成由行数据的上下方向(纵方向)的位置信息(坐标值)和高空间分辨率区域用FFT滤波器函数的含有率f(x)对应的数据构成的FFT滤波器变换信息。FFT滤波器变换信息可以将FFT滤波器函数的含有率定义为与投影数据的上下方向相关的坐标值的函数。
(步骤S246)
滤波器变换信息保存单元226保存在步骤S245中求出的FFT滤波器变换信息(S246)。
接着,使用图15以及图18说明滤波处理(S250)的细节。图15是表示滤波处理的说明图,图18是表示滤波处理(S250)的处理的流程的流程图。以下,按照图18的步骤顺序来说明。
(步骤S251)
FFT滤波器变换信息读入单元251读入由FFT滤波器变换信息生成处理(S240)生成的FFT滤波器变换信息(具体来说,通过步骤S246作为与投影数据的上下方向相关的坐标值的函数来保存的高空间分辨率区域用FFT滤波器函数含有率)(S251)。
(步骤S252)
行数据读入单元252从卷积运算处理后投影数据212中一次读出进行滤波处理的横行数据,例如图15中的横行数据252(S252)。
(步骤S253)
FFT滤波器生成单元253对于各行数据,使用该行数据的上下方向的坐标值和步骤S251中读入的FFT滤波器变换信息,生成与行数据的上下坐标对应的FFT滤波器(S253)。FFT滤波器生成单元253基于FFT滤波器变换信息计算与行数据的上下方向的坐标值对应的高空间分辨率区域用FFT滤波器函数含有率。并且,生成按照计算出的含有率包含通过图6的GUI画面由用户设定输入的高空间分辨率区域用FFT滤波器函数的FFT滤波器,同样,生成按照(1-上述含有率)包含通过图6的GUI画面由用户设定输入的低对比度区域用的FFT滤波器函数的FFT滤波器(S253)。
(步骤S254)
FFT单元254将横行数据352变换为频率数据(S254)。
(步骤S255)
FFT滤波器乘法单元255对频率数据积算步骤S253生成的FFT滤波器(S255)。
(步骤S256)
逆FFT单元256将频率数据变换为实际空间的滤波器处理后投影数据(S256)。
(步骤S257)
滤波器处理后投影数据保存单元257保存步骤S256生成的滤波器处理后投影数据(S257)。
(步骤S258)
判别是否针对全部横行数据执行了从步骤S252到步骤S257的处理。未对全部行数据进行处理时(否)的情况下返回步骤S252,针对下一行数据执行从步骤S252到步骤S257的处理。在“是”的情况下结束滤波处理(S250),前进到逆投影处理(S260)。
以上,说明了本发明的实施方式,但是以上说明的结构只不过是一例,例如通过省略平滑化单元230以及卷积滤波器变换信息生成处理(S220),仅进行本实施方式的FFT滤波器变换信息生成处理以及使用该处理的FFT滤波器处理,或者仅进行平滑化单元230以及卷积滤波器变换信息生成处理(S220)来简化运算处理等,在不脱离本发明的技术思想的范围内能够适当变更。在前者的情况下,通过将上述实施方式中的卷积运算处理后投影数据212替换为投影数据211能够实现。另外,作为像素值的特征量,使用了计算区域内的像素值的平均值或标准偏差,但是特征量不限于平均值或标准偏差,例如可以代替 平均值而使用最频值、中央值,代替标准偏差而使用方差。并且,通过在式(1)到式(5)的平均值、标准偏差的值中使用代替它们的值,能够起到与上述实施方式相同的作用效果。
根据本发明,针对投影数据的各点生成卷积滤波器,由此,生成沿着投影数据的纵向以及横向连续变化的卷积滤波器。通过对应于投影数据或卷积运算处理后投影数据的各横行数据来生成FFT滤波器,生成沿着投影数据或卷积运算处理后投影数据的纵向连续变化的FFT滤波器。并且,可以提供一种X射线CT装置,其通过应用这些连续变化的滤波器来进行卷积运算处理以及滤波处理,能够在投影数据的平均值小、标准偏差小的摄影部位实施清晰化滤波器并生成高空间分辨率的X射线CT像,并且在投影数据的误差大的摄影部位实施平滑化滤波器,抑制噪声,生成低对比度分辨率出色的X射线CT像,可以期待提高头部、腹部等的造影摄影、以及齿颚、腰椎、四肢的整形外科摄影的诊断性能。
另外,关于投影数据的值以及坐标值,应用了其参数连续变化的卷积滤波器以及FFT滤波器,因此能够生成在高空间分辨率CT像重构区域和低对比度CT像重构区域之间不产生不自然的边界线的X射线CT像。
符号说明
1:锥束X射线CT装置;1a:移动型X射线装置中搭载的C臂方式锥束X射线CT装置;2:被检体;3:旋转轨道面(中间平面);4:旋转中心轴;5:车轮;10:摄影部;10a:移动型X射线装置中搭载的C臂方式锥束X射线CT装置1a的摄影部;11:X射线源;11t:X射线管;11c:准直仪;12:2维X射线检测器;13:C型臂;14:C型臂保持体;15:顶棚支持体;16:顶棚导轨;17:床;18:注射器;20控制运算部;20a:移动型X射线装置中搭载的C臂方式锥束X射线CT1a的控制运算部;24:旋转中心轴4的向2维X射线检测器12的投影;30:卷积滤波器设定画面;31:横向卷积滤波器尺寸选择列表框;32:纵向卷积滤波器尺寸选择列表框;33:横向卷积滤波器函数阈值设定点;34:横向卷积滤波器函数变化量设定点;35:纵向卷积滤波器函数阈值设定点;36:纵向卷积滤波器函数变化量设定点;40:FFT滤波器设定画面;41:头部条件设定标签;42:胸部条件设定标签;43:腹部条件设 定标签;44:腰部条件设定标签;45:摄影部位追加按钮;51:高空间分辨率区域用滤波器函数选择列表框;52:低对比度区域用滤波器函数选择列表框;53:FFT滤波器函数阈值设定点;54:FFT滤波器函数变化量设定点;61:实施卷积滤波器尺寸为3×3时的卷积运算的像素及其附近点的像素值;62:3×3的卷积滤波器;63实施卷积滤波器尺寸为1×3时的卷积运算的像素及其附近点的像素值;64:1×3的卷积滤波器;65:实施卷积滤波器尺寸为3×5时的卷积运算的像素及其附近点的像素值;66:3×5的卷积滤波器;70:信息输入装置;80:显示装置;100:摄影部控制单元;100a:移动型X射线装置中搭载的C臂方式锥束X线CT装置1a的摄影部控制单元;101:摄影系统旋转控制单元;102:摄影系统位置控制单元;103:X射线照射控制单元;104:注射器控制单元;105:床控制单元;107:检测系统控制单元;110:图像收集单元;111:X射线透过像;200:重构单元;210:预处理单元;211:投影数据;212:卷积运算处理后投影数据;220:滤波器变换信息生成单元;221:投影数据读入单元;222:ROI设定单元;223:特征量计算单元;224:特征量拟合单元;225:滤波器变换信息计算单元;226:滤波器变换信息保存单元;230:平滑化单元;231:卷积滤波器变换信息读入单元;232:像素扫描单元;233:卷积滤波器生成单元;234:周边像素读入单元;235:卷积单元;236:卷积运算处理后投影数据保存单元;238:投影数据上的坐标点;239:特征量计算ROI;250:滤波单元;251:FFT滤波器变换信息读入单元;252:行数据读入单元;253:FFT滤波器生成单元;254:FFT单元;255:FFT滤波器积算单元;256:逆FFT单元;257:滤波器处理后投影数据保存单元;260:逆投影单元;280:图像显示单元;320:卷积滤波器输入单元;340:FFT滤波器输入单元;342:特征量计算ROI;352:横行数据。

Claims (7)

1.一种X射线CT装置,其特征在于,具备:
产生X射线的X射线源;
与所述X射线源相对配置,检测透过被检体的所述X射线,输出所述被检体的投影数据的X射线检测器;
使所述X射线源和所述X射线检测器在维持相对配置的状态下旋转的旋转单元;
生成与包含在所述投影数据中的像素值的特征量对应地变化的图像处理滤波器的滤波器生成单元;
重构单元,对所述投影数据,使用所述生成的图像处理滤波器进行重构运算,生成所述被检体的X射线CT像;以及
显示所述X射线CT像的图像显示单元,
所述滤波器生成单元对于所述投影数据的各点,生成卷积滤波器作为与该点附近的像素值的特征量对应的所述图像处理滤波器,
所述重构单元具备针对所述各点的每个点叠加所述卷积滤波器的卷积单元,
所述X射线CT装置还具备:
输入所述卷积滤波器的生成条件的第一输入单元;以及
生成包含与所述投影数据的像素值的特征量对应地变化的参数的第一滤波器变换信息的第一滤波器变换信息生成单元,
所述滤波器生成单元使用所述输入的生成条件以及所述第一滤波器变换信息,生成所述卷积滤波器,
作为所述生成条件,所述第一输入单元接受所述卷积滤波器的横向的卷积尺寸、规定横向的平滑化处理的大小的横向滤波器函数阈值、以及规定横向的平滑化滤波器函数的变化量的横向滤波器函数变化量、以及所述卷积滤波器的纵向的卷积尺寸、规定纵向的平滑化处理的大小的纵向滤波器函数阈值、以及规定纵向的平滑化滤波器函数的变化量的纵向滤波器函数变化量的输入,
所述第一滤波器变换信息生成单元使用所述投影数据的像素值的特征量和所述横向滤波器函数阈值以及横向滤波器函数变化量来计算横向平滑化参数,并且使用所述投影数据的像素值的特征量、所述纵向滤波器函数阈值以及纵向滤波器函数变化量来计算纵向平滑化参数,
所述滤波器生成单元对所述投影数据的各点,使用该点附近的像素值的特征量和与该特征量对应的横向平滑化参数以及所述纵向平滑化参数,生成由所述输入的横向卷积尺寸以及纵向卷积尺寸构成的所述卷积滤波器。
2.根据权利要求1所述的X射线CT装置,其特征在于,
所述第一滤波器变换信息生成单元具备:设定包含所述投影数据的各点的第一计算区域的第一区域设定单元;计算在所述第一计算区域中包含的像素的像素值的特征量的第一特征量计算单元;将所述各点的坐标值和所述像素值的特征量对应起来的第一特征量拟合单元,生成将使用与所述坐标值对应的像素值的特征量计算出的所述横向平滑化参数以及所述纵向平滑化参数与所述坐标值对应起来的所述第一滤波器变换信息,
所述滤波器生成单元使用所述投影数据的各点的坐标值和所述第一滤波器变换信息,生成所述卷积滤波器。
3.根据权利要求1所述的X射线CT装置,其特征在于,
所述滤波器生成单元,对于所述投影数据或叠加了所述卷积滤波器的卷积运算处理后投影数据的成为1维傅里叶变换处理的对象的各行数据,基于该行数据的像素值的特征量生成与频率对应的FFT滤波器,作为所述图像处理滤波器,
所述重构单元具备针对所述投影数据的各行数据、或所述卷积运算处理后投影数据的各行数据的每个数据进行使用所述FFT滤波器的滤波处理的滤波单元。
4.根据权利要求3所述的X射线CT装置,其特征在于,
所述X射线CT装置还具备:
输入所述FFT滤波器的生成条件的第二输入单元;以及
生成包含与所述投影数据的行数据的像素值的特征量对应地变化的参数的第二滤波器变换信息的第二滤波器变换信息生成单元,
所述滤波器生成单元使用所述输入的生成条件以及所述第二滤波器变换信息,针对所述投影数据的各行数据或所述卷积运算处理后投影数据的各行数据,生成所述FFT滤波器。
5.根据权利要求4所述的X射线CT装置,其特征在于,
所述第二滤波器变换信息生成单元具备:
设定由所述投影数据或所述卷积运算处理后投影数据的行数据构成的第二计算区域的第二区域设定单元;
计算包含在所述第二计算区域中的像素的像素值的特征量的第二特征量计算单元;以及
将与所述行数据的长度方向垂直的方向的坐标值、和所述像素值的特征量对应起来的第二特征量拟合单元,
生成将使用与所述坐标值对应的像素值的特征量计算出的参数、与所述坐标值对应起来的第二滤波器变换信息,
所述滤波器生成单元使用所述各行数据的坐标值和所述第二滤波器变换信息,生成所述FFT滤波器。
6.根据权利要求5所述的X射线CT装置,其特征在于,
作为所述生成条件,所述第二输入单元接受在相对高空间分辨率的区域中使用的第一滤波器函数、在相对低对比度区域中使用的第二滤波器函数、规定所述第一滤波器函数或第二滤波器函数的含有率的大小的滤波器函数阈值、表示所述含有率的变化量的滤波器函数变化量的输入,
所述第二滤波器变换信息生成单元计算由与所述第二计算区域的像素值的特征量对应的所述含有率构成的所述参数,
所述滤波器生成单元基于所述第二滤波器变换信息,计算所述各行数据的所述第一滤波器函数或所述第二滤波器函数的含有率,按照该含有率对所述第一滤波器函数和所述第二滤波器函数进行积算,由此生成所述FFT滤波器。
7.一种X射线CT装置的控制方法,所述X射线CT装置具备:产生X射线的X射线源;与所述X射线源相对配置,检测透过被检体的所述X射线来输出所述被检体的投影数据的X射线检测器;以及使所述X射线源和所述X射线检测器在维持相对配置的状态下旋转的旋转单元,
所述X射线CT装置的控制方法的特征在于,
具备以下步骤:
生成根据在所述投影数据中包含的像素值的特征量变化的图像处理滤波器的滤波器生成步骤;
对于所述投影数据,使用所述生成的图像处理滤波器进行重构运算,生成所述被检体的X射线CT像的重构步骤;以及
显示所述X射线CT像的图像显示步骤,
在所述滤波器生成步骤中,对于所述投影数据的各点,生成卷积滤波器作为与该点附近的像素值的特征量对应的所述图像处理滤波器,
在所述重构步骤中,包括针对所述各点的每个点叠加所述卷积滤波器的卷积步骤,
所述X射线CT装置的控制方法还具备:
输入所述卷积滤波器的生成条件的第一输入步骤;以及
生成包含与所述投影数据的像素值的特征量对应地变化的参数的第一滤波器变换信息的第一滤波器变换信息生成步骤,
在所述滤波器生成步骤中,使用所述输入的生成条件以及所述第一滤波器变换信息,生成所述卷积滤波器,
作为所述生成条件,在所述第一输入步骤中接受所述卷积滤波器的横向的卷积尺寸、规定横向的平滑化处理的大小的横向滤波器函数阈值、以及规定横向的平滑化滤波器函数的变化量的横向滤波器函数变化量、以及所述卷积滤波器的纵向的卷积尺寸、规定纵向的平滑化处理的大小的纵向滤波器函数阈值、以及规定纵向的平滑化滤波器函数的变化量的纵向滤波器函数变化量的输入,
在所述第一滤波器变换信息生成步骤中,使用所述投影数据的像素值的特征量和所述横向滤波器函数阈值以及横向滤波器函数变化量来计算横向平滑化参数,并且使用所述投影数据的像素值的特征量、所述纵向滤波器函数阈值以及纵向滤波器函数变化量来计算纵向平滑化参数,
在所述滤波器生成步骤中,对所述投影数据的各点,使用该点附近的像素值的特征量和与该特征量对应的横向平滑化参数以及所述纵向平滑化参数,生成由所述输入的横向卷积尺寸以及纵向卷积尺寸构成的所述卷积滤波器。
CN201180029701.2A 2010-06-17 2011-06-16 X射线ct装置及其控制方法 Expired - Fee Related CN102946807B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010138576 2010-06-17
JP2010-138576 2010-06-17
PCT/JP2011/063766 WO2011158893A1 (ja) 2010-06-17 2011-06-16 X線ct装置、及びその制御方法

Publications (2)

Publication Number Publication Date
CN102946807A CN102946807A (zh) 2013-02-27
CN102946807B true CN102946807B (zh) 2015-10-14

Family

ID=45348286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180029701.2A Expired - Fee Related CN102946807B (zh) 2010-06-17 2011-06-16 X射线ct装置及其控制方法

Country Status (4)

Country Link
US (1) US9025848B2 (zh)
JP (1) JP5878119B2 (zh)
CN (1) CN102946807B (zh)
WO (1) WO2011158893A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025848B2 (en) 2010-06-17 2015-05-05 Hitachi Medical Corporation X-ray CT apparatus and control method for reconstructing X-ray CT images from filtered projection data
WO2012176088A1 (en) * 2011-06-21 2012-12-27 Koninklijke Philips Electronics N.V. Imaging apparatus
JP6122269B2 (ja) * 2011-12-16 2017-04-26 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
JP6139821B2 (ja) * 2012-03-22 2017-05-31 東芝メディカルシステムズ株式会社 X線ct装置
JP5805689B2 (ja) * 2013-03-08 2015-11-04 株式会社モリタ製作所 X線ct撮影装置及びx線ct撮影方法
JP6165511B2 (ja) * 2013-06-12 2017-07-19 東芝メディカルシステムズ株式会社 X線コンピュータ断層撮影装置
US9224216B2 (en) * 2013-07-31 2015-12-29 Kabushiki Kaisha Toshiba High density forward projector for spatial resolution improvement for medical imaging systems including computed tomography
JP6283875B2 (ja) * 2013-09-05 2018-02-28 キヤノンメディカルシステムズ株式会社 医用画像処理装置、x線診断装置およびx線コンピュータ断層撮影装置
CN104142353B (zh) * 2014-06-06 2017-01-11 清华大学 可见光成像辅助定位局部ct扫描方法及系统
JP6386981B2 (ja) * 2015-08-31 2018-09-05 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像処理方法、画像処理装置及び放射線断層撮影装置並びにプログラム
CN111462266B (zh) * 2020-03-20 2023-08-04 北京东软医疗设备有限公司 图像重建方法、装置、ct设备及ct系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1474358A (zh) * 2002-08-08 2004-02-11 GEҽ��ϵͳ���������޹�˾ 三维空间滤波设备和方法
CN1953709A (zh) * 2004-05-19 2007-04-25 株式会社日立医药 图像处理装置及其方法
CN101032409A (zh) * 2006-01-19 2007-09-12 Ge医疗系统环球技术有限公司 图像显示设备和x射线ct设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416815A (en) * 1993-07-02 1995-05-16 General Electric Company Adaptive filter for reducing streaking artifacts in x-ray tomographic images
EP1223553A3 (en) * 2000-10-17 2003-09-24 Fuji Photo Film Co., Ltd. Apparatus for suppressing noise by adapting filter characteristics to input image signal based on characteristics of input image signal
DE10143484A1 (de) * 2001-09-05 2003-04-03 Siemens Ag Adaptives Filter
US6529575B1 (en) * 2002-04-29 2003-03-04 Ge Medical Systems Global Technology Company, Llc Adaptive projection filtering scheme for noise reduction
JP4360817B2 (ja) * 2002-10-18 2009-11-11 株式会社日立メディコ 放射線断層撮影装置
JP4348989B2 (ja) 2003-04-15 2009-10-21 株式会社島津製作所 断層再構成装置およびそれを用いた断層撮影装置
JP2005160544A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 画像処理装置
EP1716809B1 (en) * 2004-02-16 2013-11-06 Hitachi Medical Corporation Tomogram reconstruction method and tomograph
JP2006034785A (ja) * 2004-07-29 2006-02-09 Ge Medical Systems Global Technology Co Llc X線ct画像処理方法およびx線ct装置
JP2008148970A (ja) 2006-12-19 2008-07-03 Ge Medical Systems Global Technology Co Llc X線ctシステム
US8045776B2 (en) * 2007-03-06 2011-10-25 General Electric Company Geometry-dependent filtering in CT method and apparatus
DE102009007680A1 (de) * 2008-08-13 2010-07-01 CT Imaging GmbH Verfahren und Vorrichtung zur interaktiven CT-Rekonstruktion
US8244013B2 (en) * 2008-09-10 2012-08-14 Siemens Medical Solutions Usa, Inc. Medical image data processing and interventional instrument identification system
US9025848B2 (en) 2010-06-17 2015-05-05 Hitachi Medical Corporation X-ray CT apparatus and control method for reconstructing X-ray CT images from filtered projection data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1474358A (zh) * 2002-08-08 2004-02-11 GEҽ��ϵͳ���������޹�˾ 三维空间滤波设备和方法
CN1953709A (zh) * 2004-05-19 2007-04-25 株式会社日立医药 图像处理装置及其方法
CN101032409A (zh) * 2006-01-19 2007-09-12 Ge医疗系统环球技术有限公司 图像显示设备和x射线ct设备

Also Published As

Publication number Publication date
JPWO2011158893A1 (ja) 2013-08-19
WO2011158893A1 (ja) 2011-12-22
US9025848B2 (en) 2015-05-05
JP5878119B2 (ja) 2016-03-08
US20130094739A1 (en) 2013-04-18
CN102946807A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN102946807B (zh) X射线ct装置及其控制方法
CN103065279B (zh) 圆轨道锥束计算机断层摄影(ct)中用于大幅度地减轻伪影的方法以及系统
CN103156629B (zh) 图像处理设备和图像处理方法
CN101897593B (zh) 一种计算机层析成像设备和方法
JP3782833B2 (ja) コンピュータ化された断層像撮像装置
US10083543B2 (en) Metal artifacts reduction for cone beam CT using image stacking
CN103390284B (zh) 在扩展的测量场中的ct图像重建
CN105101879A (zh) X射线ct装置及ct图像显示方法
CN101433464A (zh) X射线ct装置和图像处理装置
CN102697516B (zh) 用于建立断层造影图像显示的方法和计算机断层造影系统
CN101005804A (zh) 用于评估旋转x射线投影的设备
CN106572832A (zh) 数据处理方法、数据处理装置以及x射线ct装置
CN107087393B (zh) 用于将多个采集的对比度归一化的方法和系统
US9965875B2 (en) Virtual projection image method
CN103284746A (zh) X 射线ct 装置、图像显示方法
US10089758B1 (en) Volume image reconstruction using projection decomposition
CN103767723A (zh) 一种基于c形臂的锥束ct三维数字成像方法
US10966670B2 (en) Imaging system and method for dual-energy and computed tomography
CN104200511A (zh) 基于块内插值的多分辨率体绘制方法
Peng Single Scan Dual-energy Cone-beam CT Using Static Detector Modulation: A Phantom Study
US10307114B1 (en) Iterative volume image reconstruction using synthetic projection images
Guedouar et al. A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method
CN110264536A (zh) 一种在平行束超分重建中计算高低分辨率投影关系的方法
Mahmoudi et al. Recent Advances in X-Ray CT Image Reconstruction Techniques
Wu IMPROVED IMAGE QUALITY IN CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED INTERVENTIONS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170307

Address after: Tokyo, Japan, Japan

Patentee after: Hitachi Ltd.

Address before: Tokyo, Japan, Japan

Patentee before: Hitachi Medical Corporation

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151014

Termination date: 20170616