CN102938413B - AlGaN/GaN异质结增强型器件及其制作方法 - Google Patents

AlGaN/GaN异质结增强型器件及其制作方法 Download PDF

Info

Publication number
CN102938413B
CN102938413B CN201210476553.5A CN201210476553A CN102938413B CN 102938413 B CN102938413 B CN 102938413B CN 201210476553 A CN201210476553 A CN 201210476553A CN 102938413 B CN102938413 B CN 102938413B
Authority
CN
China
Prior art keywords
algan
layer
gan
grid
potential barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210476553.5A
Other languages
English (en)
Other versions
CN102938413A (zh
Inventor
王冲
郝跃
何云龙
郑雪峰
马晓华
张进城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Hui Hui Electronic Technology Co Ltd
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201210476553.5A priority Critical patent/CN102938413B/zh
Publication of CN102938413A publication Critical patent/CN102938413A/zh
Application granted granted Critical
Publication of CN102938413B publication Critical patent/CN102938413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种AlGaN/GaN异质结增强型高电子迁移率晶体管制作方法。主要解决目前增强型高电子迁移率晶体管阈值电压均匀性及工艺重复性差的问题。其制作过程为:(1)在SiC或蓝宝石基片上生长AlGaN/GaN异质结,AlGaN势垒层厚度为8~16nm,Al组分为25~35%;(2)在AlGaN势垒层表面淀积SiN层进行覆盖,并进行栅槽刻蚀露出栅区域;(3)在露出栅区域的AlGaN层表面淀积的金属Ni;(4)在800℃~860℃下采用快速热退火炉进行氧气环境的高温热处理,形成NiO层;(5)在AlGaN层上进行有源区台面隔离,完成源、漏欧姆接触电极,并在NiO层上制作栅电极。本发明具有器件阈值电压高,栅泄漏电流小,制作过程简单,工艺重复性和可控性高的优点,可用于高工作电压增强型AlGaN/GaN异质结高压开关,以及GaN基组合逻辑电路的基本单元。

Description

AlGaN/GaN异质结增强型器件及其制作方法
技术领域
本发明属于微电子技术领域,涉及半导体器件制作,具体的说是一种AlGaN/GaN异质结增强型器件及制作方法,可用于制作增强型的高电子迁移率晶体管。
背景技术
近年来以SiC和GaN为代表的第三带宽禁带隙半导体以其禁带宽度大、击穿电场高、热导率高、饱和电子速度大和异质结界面二维电子气浓度高等特性,使其受到广泛关注。在理论上,利用这些材料制作的高电子迁移率晶体管HEMT、发光二极管LED、激光二极管LD等器件比现有器件具有明显的优越特性,因此近些年来国内外研究者对其进行了广泛而深入的研究,并取得了令人瞩目的研究成果。
AlGaN/GaN异质结高电子迁移率晶体管HEMT在高温器件及大功率微波器件方面已显示出了得天独厚的优势,追求器件高频率、高压、高功率吸引了众多的研究。近年来,由于高压开关和高速电路的驱动,GaN增强型器件成为关注的又一研究热点。由于AlGaN/GaN异质结生长完成后,异质结界面就存在大量二维电子气2DEG,当材料制作成器件加负栅压后才能将2DEG耗尽而使沟道夹断,即常规AlGaN/GaNHEMT为耗尽型器件。但在数字电路、高压开关等领域应用时需要增强型器件,确保只加正栅压才有工作电流,所以对增强型高电子迁移率晶体管的需求越来越紧迫。随着对AlGaN/GaN异质结研究逐渐深入,目前主要有如下几种制作基于AlGaN/GaN异质结的增强型器件的方法。
1.采用刻蚀掉AlGaN/GaN异质结的一部分AlGaN势垒层制作槽栅结构,利用肖特基结对2DEG的耗尽作用来实现增强型器件。参见Lanford W B,Tanaka T,Otoki Y,et al,Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,Electronics Letters,2005,41(7):449~450。该方法刻蚀掉AlGaN/GaN异质结的一部分AlGaN势垒层制作槽栅结构,利用肖特基结对2DEG的耗尽作用来实现增强型器件。该方法已经实现了阈值电压为0.47V的增强型器件。但该方法在刻蚀完成槽栅后,栅下方沟道中还存在少量二维电子气,需要靠肖特基的势垒来耗尽这些二维电子气。通常肖特基势垒高度仅1eV左右,所以制作出的器件阈值电压通常小于0.5V,而且当槽栅刻蚀较深时肖特基势垒才能完全耗尽栅下方剩余的二维电子气,而较深的槽栅刻蚀有可能对沟道的载流子迁移率造成损伤。所以该种增强型器件结构很难进一步提高正向的阈值电压,而且器件饱和电流较小,阈值电压受刻蚀深度影响很大。
2.采用对栅下方区域材料注入F离子的方法形成AlGaN/GaN异质结增强型HEMT。参见Wang Ruonan,Cai Yong,Tang Wilson,et al,Planar Integration of E/D-ModeAlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,IEEE Electron DeviceLetters,2006,27(8):633~635。该方法在异质结材料栅下方进行F离子注入,利用产生的表面负电荷对二维电子气进行耗尽,来制作增强型器件。该种方法制作增强型器件容易在离子注入的过程造成注入损伤,而且该方法形成的耗尽型是依靠电荷感应,该耗尽效应的稳定性问题还有待验证。王冲等人报道的结果证明,在高温退火的条件下,F注入增强型器件的阈值电压有负方向漂移的可能,参见王冲,全思,马晓华等,增强型AlGaN/GaN高电子迁移率晶体管高温退火研究,2010,59(10):7333~7337。
3.采用薄AlGaN势垒层结构制作AlGaN/GaN异质结增强型HEMT。参见Guowang Li,To m Zimmermann,Yu Cao,Threshold Voltage Control in Al0.72Ga0.28N/AlN/GaN HEMTs by Work-Function Engineering,IEEE Electron Device Letters,2010,31(9):954~956。该方法采用8nm厚度以下的薄AlGaN势垒层,使得栅肖特基势垒较容易对沟道二维电子气产生耗尽作用。但采用薄AlGaN势垒层使得整个源漏之间的二维电子气密度下降,栅源和栅漏串联电阻增大,影响器件特性。而且该方案仅采用薄势垒层,并不采用槽栅或者F注入进行栅区域处理,所以制作出的器件阈值电压较低。
发明内容
本发明的目的在于针对以上增强型器件的不足,提供一种AlGaN/GaN异质结增强型器件及其制作方法,以解决目前增强型高电子迁移率晶体管阈值电压均匀性差及工艺重复性差的问题,制造出均匀性和重复性稳定的器件,满足GaN基电子器件在高压开关、数字电路领域的应用要求。
本发明是这样实现的:
本发明的技术思路是:对AlGaN/GaN异质结材料表面栅区域采用热氧化的方法制作NiO层,热氧化的过程也会使得表层AlGaN部分氧化而造成势垒层的厚度减小,达到降低栅下方二维电子气浓度的目的。在栅区域热氧化工艺中,栅区域的材料表层先淀积纳米级的Ni覆盖层,该Ni层在栅区域热氧化过程中能形成NiO层,而呈现p型半导体的特性,进一步对栅下方的二维电子气产生耗尽作用,有利于栅下方在未加偏压时形成关态。利用有薄Ni层的热氧化技术形成呈现p型半导体NiO,对栅下方二维电子气产生很好的耗尽作用,使栅下方沟道仅在加正栅压时开启,而栅区域以外其余部分的沟道始终保持良好导电性。
依据上述技术思路本发明的AlGaN/GaN异质结的增强型器件,依次包括蓝宝石或SiC衬底、本征GaN层、AlGaN势垒层、SiN钝化层、介质层和电极,源电极和漏电极分别位于SiN钝化层两侧的AlGaN势垒层上,对SiN钝化层进行栅槽开孔刻蚀露出栅区域,其特征在于:栅区域的AlGaN势垒层上设有介质层,栅电极位于介质层之上;所述介质层,是通过在栅区域淀积金属Ni,再在氧气环境下高温氧化而形成的NiO层,以增加对n型沟道二维电子气的耗尽作用。
作为优选,上述AlGaN/GaN异质结增强型高电子迁移率晶体管,其特征在于AlGaN势垒层厚度为8~16nm,其Al组分为25~35%。
作为优选,上述AlGaN/GaN异质结增强型高电子迁移率晶体管,其特征在于NiO层的厚度为2~6nm。
依据上述技术思路,本发明AlGaN/GaN异质结增强型器件的制作方法,包括如下步骤:
(1)在蓝宝石或SiC基片上,利用MOCVD工艺,生长GaN缓冲层;
(2)在GaN缓冲层上,利用MOCVD工艺,生长本征GaN层;
(3)在本征GaN层上利用MOCVD工艺,生长厚度为8~16nm,Al组分为25~35%的AlGaN势垒层;
(4)采用PECVD工艺,在AlGaN势垒层上进行50nm-200nm厚的SiN层淀积覆盖其表面,并进行SiN栅槽开孔,刻蚀露出栅区域;
(5)在AlGaN势垒层上的栅槽中淀积2~6nm的金属Ni;
(6)对栅槽中已淀积的金属Ni,再在800℃~860℃下的氧气环境中进行2~10min的高温热处理,形成NiO层;
(7)在AlGaN势垒层上进行有源区台面隔离,并在台面两侧的AlGaN势垒层上制作源、漏欧姆接触电极,在NiO层上制作栅电极,进行压焊点引出。
上述AlGaN/GaN高电子迁移率晶体管制作方法,其中步骤(5)所述的在AlGaN势垒层上的栅槽中淀积2~6nm的金属Ni,按如下步骤进行:
先采用Ohmiker-50电子束蒸发台,在真空度为10-6pa条件下,采用0.1nm/s的速率,在AlGaN势垒层上方的SiN栅槽中进行Ni的电子束蒸发,再对栅区域以外区域的Ni进行剥离,从而形成栅区域2~6nm的金属Ni层。
本发明具有如下优点:
1)本发明的器件采用热氧化的方法,在栅与异质结材料表面之间形成了薄的NiO层,由于该NiO层呈现p型半导体的特性,对栅下方沟道的n型二维电子气有耗尽作用,容易使器件阈值电压大于0V。
2)本发明的器件由于在NiO的形成过程中采用了高温热处理工艺,使AlGaN势垒层的表层部分被氧化形成Al2O3或者GaO层,即减薄了栅下方的AlGaN势垒层,使得栅下方的有效二维电子气密度降低,增大了正向阈值电压。
3)热氧化过程中形成的Al2O3或者GaO层具有介质的特性,能明显的降低栅泄漏电流,由于NiO层呈现p型半导体特性,其与AlGaN势垒层会形成一定的耗尽区,也会使得栅泄漏电流减小。
4)本发明采用较长时间的高温热处理工艺来控制氧化的过程,与槽栅刻蚀或者F注入实现增强型器件的工艺相比,具有可控性好,易于实现器件间特性的均匀性和批次间的重复性等优点。
附图说明
图1是本发明器件的剖面结构示意图;
图2是本发明器件的制作工艺流程示意图。
具体实施方式
参照图1,本发明器件的最下层为蓝宝石或SiC衬底,衬底上为本征GaN层,本征GaN层上为8~16nm厚、Al组份为25~35%的AlGaN势垒层;本征GaN层和AlGaN势垒层间形成二维电子气2DEG。源电极和漏电极分别位于SiN钝化层两侧的AlGaN势垒层上,对SiN钝化层进行栅槽开孔刻蚀露出栅区域,栅区域的AlGaN势垒层上设有NiO介质层,栅电极位于介质层之上,所述NiO介质层,是通过在栅区域淀积2~6nm的金属Ni,再在氧气环境下高温氧化而形成的,以增加对n型沟道二维电子气的耗尽作用。
参照图2,本发明器件的制作给出以下三种实施例。
实施例1:
本发明器件的制作,包括如下步骤:
步骤1.外延材料生长。
1.1)在SiC衬底基片上,利用MOCVD工艺,生长本征GaN层;
1.2)在本征GaN层上,生长8nm厚的AlGaN势垒层,其中Al组份为35%,
在本征GaN层与AlGaN势垒层的接触位置形成2DEG,得到具有外延材料的样片。
步骤2.栅下方NiO制作。
2.1)采用PECVD790淀积设备在AlGaN势垒层上进行SiN淀积,淀积SiN厚度为50nm;
2.2)SiN栅槽刻蚀;
首先,以5000转/min的转速在外延材料表面甩正胶,得到厚度为0.8μm的光刻胶掩模,再在温度为80℃的高温烘箱中烘10min,然后采用NSR1755I7A光刻机光刻获得栅电极图形;
接着,采用ICP98c型感应耦合等离子体刻蚀机以0.5nm/s的刻蚀速率刻蚀去除栅区域50nm厚的SiN层,形成槽栅结构。
2.3)金属Ni的蒸发和剥离
首先,利用槽栅刻蚀采用的光刻图形做蒸发金属Ni的掩模图形;
然后,采用Ohmiker-50电子束蒸发台,在真空度为10-6pa条件下采用0.1nm/s的速率在AlGaN势垒层上方的SiN栅槽中进行2nm金属Ni的电子束蒸发,然后对栅槽以外区域进行剥离形成栅区域的金属Ni层。
2.4)金属Ni的高温热氧化形成NiO层。
首先,将形成栅区域的金属Ni层的样片放入RTP500快速热退火炉中,在氧气环境下,将炉温在20s时间内由室温升高至800℃;
然后,将800℃的温度保持2min,再在高温氧气环境中将栅区域的Ni热氧化为NiO;
最后,通入冷却氮气,将RTP500快速热退火炉温度迅速降到室温。
步骤3.器件隔离及源、漏和栅电极制作。
3.1)器件有源区隔离。
先采用甩胶机在2500转/min的转速下甩胶,得到光刻胶掩模厚度约为1μm;再采用NSR1755I7A光刻机进行曝光,形成台面有源区的掩模图形;然后将做好掩模的基片采用ICP98c型感应耦合等离子体刻蚀机以1nm/s的刻蚀速率进行台面隔离的干法刻蚀,刻蚀深度为120mm。
3.2)源漏电极制作。
首先,采用甩胶机在5000转/min的转速下甩胶,得到光刻胶掩模厚度0.8μm;
接着,在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机进行曝光,形成源、漏区域掩模图形;
然后,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行源漏电极制作,源漏金属依次选用Ti/Al/Ni/Au,其中Ti厚度为20nm,Al厚度为120nm,Ni厚度为45nm,Au厚度为55nm,;源漏欧姆接触金属蒸发完成后进行金属剥离,得到完整的源漏电极;
最后,再用RTP500快速热退火炉,在870℃的N2气氛中进行30s的快速热退火,对欧姆接触金属进行合金,完成源、漏电极的制作。
3.3)栅电极制作。
首先,采用甩胶机在5000转/min的转速下甩胶,得到光刻胶掩模厚度为0.8μm;
接着,在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机进行曝光,形成栅区域掩模图形;
最后,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行栅金属的蒸发,栅金属依次选用Ni/Au,其中Ni厚度为20nm,Au厚度为200nm;蒸发完成后进行金属剥离,得到完整的栅电极。
步骤4.完成互联引线的制作。
先采用甩胶机在5000转/min的转速下甩正胶;再采用NSR1755I7A光刻机进行曝光,形成电极引线掩模图形;接着采用Ohmiker-50电子束蒸发台以0.3nm/s的蒸发速率对制作好掩模的基片进行引线电极金属蒸发,金属选用Ti厚度为20nm,Au厚度为200nm;最后在引线电极金属蒸发完成后进行剥离,得到完整的引线电极。
实施例2
步骤一、在SiC衬底基片上,利用MOCVD工艺,生长本征GaN层;再在本征GaN层上,生长厚度为12nm、Al组份为30%的AlGaN势垒层,在本征GaN层与AlGaN势垒层的接触位置形成2DEG,得到具有外延材料的样片。
步骤二、栅下方NiO制作。
2a)采用PECVD790淀积设备在AlGaN势垒层上淀积100nm的SiN层;
2b)以5000转/min的转速在外延材料表面甩正胶,得到厚度为0.8μm的光刻胶掩模,再在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机光刻获得栅电极图形;再采用ICP98c型感应耦合等离子体刻蚀机以0.5nm/s的刻蚀速率刻蚀去除栅区域100nm厚的SiN层,形成槽栅结构;
2c)利用槽栅刻蚀采用的光刻图形做蒸发金属Ni的掩模图形,再采用Ohmiker-50电子束蒸发台,在真空度为10-6pa条件下采用0.1nm/s的速率在AlGaN势垒层上方的SiN栅槽中进行4nm金属Ni的电子束蒸发,然后对栅槽以外区域进行剥离形成栅区域的金属Ni层;
2d)将形成栅区域的金属Ni层的样片放入RTP500快速热退火炉中,在氧气环境下,将炉温在20s时间内由室温升高至830℃,将830℃的温度保持5min,再在高温氧气环境中将栅区域的Ni热氧化为NiO,最后通入冷却氮气,将RTP500快速热退火炉温度迅速降到室温。
步骤三、器件隔离,即先采用甩胶机在2500转/min的转速下甩胶,得到光刻胶掩模厚度约为1μm;再采用NSR1755I7A光刻机进行曝光,形成台面有源区的掩模图形;然后将做好掩模的基片采用ICP98c型感应耦合等离子体刻蚀机以1nm/s的刻蚀速率进行台面隔离的干法刻蚀,刻蚀深度为120nm。
步骤四、源、漏和栅电极制作。
4a)采用甩胶机在5000转/min的转速下甩胶,得到光刻胶掩模厚度为0.8μm;再在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机进行曝光,形成源、漏区域掩模图形;然后,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行源漏电极制作,源漏金属依次选用Ti/Al/Ni/Au,其中Ti厚度为20nm,Al厚度为120nm,Ni厚度为45nm,Au厚度为55nm,;源漏欧姆接触金属蒸发完成后进行金属剥离,得到完整的源漏电极;最后,再用RTP500快速热退火炉,在870℃的N2气氛中进行30s的快速热退火,对欧姆接触金属进行合金,完成源、漏电极的制作。
4b)采用甩胶机在5000转/min的转速下甩胶,得到光刻胶掩模厚度为0.8μm;再在温度为80℃的高温烘箱中烘10min,采用NSR1755I7A光刻机进行曝光,形成栅区域掩模图形;最后,采用Ohmiker-50电子束蒸发台以0.1nm/s的蒸发速率进行栅金属的蒸发,栅金属依次选用Ni/Au,其中Ni厚度为20nm,Au厚度为200nm;蒸发完成后进行金属剥离,得到完整的栅电极。
步骤五、采用甩胶机在5000转/min的转速下甩正胶;再采用NSR1755I7A光刻机进行曝光,形成电极引线掩模图形;接着采用Ohmiker-50电子束蒸发台以0.3nm/s的蒸发速率对制作好掩模的基片进行引线电极金属蒸发,金属依次选用Ti/Al,其中Ti厚度为20nm,Au厚度为200nm;最后在引线电极金属蒸发完成后进行剥离,得到完整的引线电极。
实施例3
步骤A.外延材料生长。
A1)在蓝宝石衬底基片上,利用MOCVD工艺,生长本征GaN层;
A2)在本征GaN层上,生长16nm厚的AlGaN势垒层,其中Al组份为25%,
在本征GaN层与AlGaN势垒层的接触位置形成2DEG,得到具有外延材料的样片。
步骤B.栅下方NiO制作。
B1)采用PECVD790淀积设备在AlGaN势垒层上进行SiN淀积,淀积SiN厚度为200nm;
B2)SiN栅槽刻蚀;
首先,以5000转/min的转速在外延材料表面甩正胶,得到厚度为0.8μm的光刻胶掩模,再在温度为80℃的高温烘箱中烘10min,然后采用NSR1755I7A光刻机光刻获得栅电极图形;
接着,采用ICP98c型感应耦合等离子体刻蚀机以0.5nm/s的刻蚀速率刻蚀去除栅区域200nm厚的SiN层,形成槽栅结构。
B3)金属Ni的蒸发和剥离
首先,利用槽栅刻蚀采用的光刻图形做蒸发金属Ni的掩模图形;
然后,采用Ohmiker-50电子束蒸发台,在真空度为10-6pa条件下采用0.1nm/s的速率在AlGaN势垒层上方的SiN栅槽中进行6nm金属Ni的电子束蒸发,然后对栅槽以外区域进行剥离形成栅区域的金属Ni层。
B4)金属Ni的高温热氧化形成NiO层。
首先,将形成栅区域的金属Ni层的样片放入RTP500快速热退火炉中,在氧气环境下,将炉温在20s时间内由室温升高至860℃;
然后,将860℃的温度保持10min,再在高温氧气环境中将栅区域的Ni热氧化为NiO;
最后,通入冷却氮气,将RTP500快速热退火炉温度迅速降到室温。
步骤C.与实施例1中的步骤3相同。
步骤D.与实施例1中的步骤4相同。

Claims (3)

1.一种AlGaN/GaN异质结增强型高电子迁移率晶体管的制作方法,包括如下步骤:
(1)在蓝宝石或SiC基片上,利用MOCVD工艺,生长GaN缓冲层;
(2)在GaN缓冲层上,利用MOCVD工艺,生长本征GaN层;
(3)在本征GaN层上利用MOCVD工艺,生长厚度为8~16nm,Al组分为25~35%的AlGaN势垒层;
(4)采用PECVD工艺,在AlGaN势垒层上进行50nm~200nm厚的SiN层淀积覆盖其表面,并进行SiN栅槽开孔,刻蚀露出栅区域;
(5)在AlGaN势垒层上的栅槽中淀积2~6nm的金属Ni;
(6)对栅槽中已淀积的金属Ni,再在800℃~860℃下的氧气环境中进行2~10min的高温热处理,形成NiO层;
(7)在AlGaN势垒层上进行有源区台面隔离,并在台面两侧的AlGaN势垒层上制作源、漏欧姆接触电极,在NiO层上制作栅电极,进行压焊点引出。
2.根据权利要求1所述的一种AlGaN/GaN异质结增强型高电子迁移率晶体管的制作方法,其中步骤(5)所述的在AlGaN势垒层上的栅槽中淀积2~6nm的金属Ni,按如下步骤进行:
5a)采用Ohmiker-50电子束蒸发台,在真空度为10-6pa条件下,采用0.1nm/s的速率,在AlGaN势垒层上方的SiN栅槽中进行Ni的电子束蒸发;
5b)对栅区域以外区域的Ni进行剥离,从而形成栅区域2~6nm的金属Ni层。
3.根据权利要求1所述的一种AlGaN/GaN异质结增强型高电子迁移率晶体管的制作方法,其中所述步骤(6)中的高温热处理,是先采用RTP退火炉在20s时间内升温至800℃~860℃,然后保持2~10min,接着通入氮气将温度快速降低到室温。
CN201210476553.5A 2012-11-21 2012-11-21 AlGaN/GaN异质结增强型器件及其制作方法 Active CN102938413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210476553.5A CN102938413B (zh) 2012-11-21 2012-11-21 AlGaN/GaN异质结增强型器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210476553.5A CN102938413B (zh) 2012-11-21 2012-11-21 AlGaN/GaN异质结增强型器件及其制作方法

Publications (2)

Publication Number Publication Date
CN102938413A CN102938413A (zh) 2013-02-20
CN102938413B true CN102938413B (zh) 2015-05-27

Family

ID=47697298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210476553.5A Active CN102938413B (zh) 2012-11-21 2012-11-21 AlGaN/GaN异质结增强型器件及其制作方法

Country Status (1)

Country Link
CN (1) CN102938413B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400856B (zh) * 2013-07-04 2016-03-02 西安电子科技大学 选区外延的一维电子气GaN基HEMT器件及制备方法
CN103383959B (zh) * 2013-07-04 2015-10-28 西安电子科技大学 横向过生长一维电子气GaN基HEMT器件及制备方法
CN103972069A (zh) * 2014-05-08 2014-08-06 西安电子科技大学 AlGaN-GaN异质结欧姆接触制作方法
CN104022151B (zh) * 2014-06-20 2018-03-02 苏州捷芯威半导体有限公司 半导体器件及其制造方法
CN104393039B (zh) * 2014-10-23 2017-02-15 西安电子科技大学 InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法
JP6401053B2 (ja) * 2014-12-26 2018-10-03 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
EP4092719A1 (en) * 2015-03-31 2022-11-23 SweGaN AB Heterostructure and method of its production
JP6669559B2 (ja) * 2016-03-30 2020-03-18 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
CN107170809B (zh) * 2017-06-16 2023-12-12 北京星云联众科技有限公司 一种基于自对准工艺的GaNHEMT器件及其制造方法
CN107887383B (zh) * 2017-11-06 2021-06-29 中国科学院微电子研究所 GaN基单片功率逆变器及其制作方法
CN108807509A (zh) * 2018-06-13 2018-11-13 中山大学 一种高耐压高导通性能p型栅极常关型hemt器件及其制备方法
CN110571267A (zh) * 2019-08-13 2019-12-13 中山市华南理工大学现代产业技术研究院 具有NiOX保护层的MIS-HEMT器件及制备方法
CN110797390B (zh) * 2019-09-30 2021-12-28 西安交通大学 一种增强型GaNHEMT集成结构及其制备方法
CN113659013A (zh) * 2021-06-29 2021-11-16 西安电子科技大学 p型氧化物介质复合混合阳极的肖特基二极管及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246902A (zh) * 2008-03-24 2008-08-20 西安电子科技大学 InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN101252088A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种新型增强型A1GaN/GaN HEMT器件的实现方法
CN101853880A (zh) * 2010-03-09 2010-10-06 西安电子科技大学 AlGaN/GaN高电子迁移率晶体管及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124262A (ja) * 2006-11-13 2008-05-29 Oki Electric Ind Co Ltd 選択再成長を用いたAlGaN/GaN−HEMTの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246902A (zh) * 2008-03-24 2008-08-20 西安电子科技大学 InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
CN101252088A (zh) * 2008-03-28 2008-08-27 西安电子科技大学 一种新型增强型A1GaN/GaN HEMT器件的实现方法
CN101853880A (zh) * 2010-03-09 2010-10-06 西安电子科技大学 AlGaN/GaN高电子迁移率晶体管及其制作方法

Also Published As

Publication number Publication date
CN102938413A (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
CN102938413B (zh) AlGaN/GaN异质结增强型器件及其制作方法
CN102945860B (zh) 原位SiN帽层AlGaN/GaN异质结增强型器件及其制作方法
CN100557815C (zh) InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
WO2020221222A1 (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
CN102386223B (zh) GaN高阈值电压增强型MOSHFET器件及制备方法
CN105720097A (zh) 增强型高电子迁移率晶体管及制备方法、半导体器件
CN105870013A (zh) 通过p型钝化实现增强型HEMT的方法及增强型HEMT
CN104201104A (zh) 一种氮化镓基增强型器件的制造方法
CN105355657A (zh) 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
CN108155099A (zh) 一种包含介质层的p型栅HEMT器件及其制作方法
CN104952938A (zh) 一种氮化镓异质结mis栅控功率二极管及其制造方法
CN106158950A (zh) 一种提高增强型GaN MOS沟道迁移率的器件结构及实现方法
CN105355659A (zh) 槽栅AlGaN/GaN HEMT器件结构及制作方法
CN105448962A (zh) 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管
CN109950323B (zh) 极化超结的ⅲ族氮化物二极管器件及其制作方法
CN109888013A (zh) 镁掺杂制备的增强型GaN基HEMT器件及其制备方法
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN104037218A (zh) 一种基于极化效应的高性能AlGaN/GaN HEMT高压器件结构及制作方法
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
CN106158960A (zh) 基于数字化湿法栅刻蚀技术形成GaN增强型MOSFET及制备方法
CN205564759U (zh) 一种新型增强型iii-v异质结场效应晶体管
CN102709322B (zh) 高阈值电压氮化镓增强型晶体管结构及制备方法
CN104037217B (zh) 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法
CN115881774A (zh) 一种具有阵列侧栅结构的hemt器件及其制备方法
CN104835819A (zh) 一种基于二次氧化法的GaN E/D集成器件制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161129

Address after: 650221 Yunnan city of Kunming province Dabanqiao Street office office building No. 7 room 7-114

Patentee after: Yunnan Hui Hui Electronic Technology Co., Ltd.

Address before: Xi'an City, Shaanxi province Taibai Road 710071 No. 2

Patentee before: Xidian University