CN102933801A - 用于快速连接蒸汽发生器的方法 - Google Patents

用于快速连接蒸汽发生器的方法 Download PDF

Info

Publication number
CN102933801A
CN102933801A CN2012800015754A CN201280001575A CN102933801A CN 102933801 A CN102933801 A CN 102933801A CN 2012800015754 A CN2012800015754 A CN 2012800015754A CN 201280001575 A CN201280001575 A CN 201280001575A CN 102933801 A CN102933801 A CN 102933801A
Authority
CN
China
Prior art keywords
steam
steam generator
additional
separating valve
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800015754A
Other languages
English (en)
Other versions
CN102933801B (zh
Inventor
M.米格尔
E.施米德
G.彼得斯
C.赫姆斯多夫
M.舍特勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102933801A publication Critical patent/CN102933801A/zh
Application granted granted Critical
Publication of CN102933801B publication Critical patent/CN102933801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/24Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种用于在发电装置中将至少一个附加蒸汽发生器(13)连接于第一蒸汽发生器的方法,该发电装置包括至少两个蒸汽发生器(13)和汽轮机(14),其中用于驱动汽轮机(14)的流体在包括多个蒸汽系统(27、31、36)的流体回路中引导流动,其中,蒸汽系统(27、31、36)与各个蒸汽发生器(13)相关联,并且可通过关闭装置(42、43、44、45、46、47、50、51、52)而相互分开,以及其中至少第一蒸汽发生器的流体切换到汽轮机(14),其中,在至少一个附加蒸汽发生器(13)的蒸汽已几乎达到与第一蒸汽发生器的蒸汽同样的蒸汽温度之前,打开至少一个附加蒸汽发生器(13)的至少一个第一蒸汽系统的关闭装置(45),使得蒸汽可流入所述附加蒸汽发生器中。

Description

用于快速连接蒸汽发生器的方法
技术领域
本发明涉及一种用于在发电装置系统中将至少一个附加蒸汽发生器与第一蒸汽发生器快速接合的方法。本发明还涉及该方法在燃气和蒸汽轮机装置及蒸汽发电装置中的应用。
背景技术
在两个或更多蒸汽发生器连接于汽轮机的发电装置系统中,当协同运行或接合第二或第三蒸汽发生器时,必须使各蒸汽系统达到几乎同样的蒸汽状态(压力、温度),以便能够通过打开隔离阀而连接各系统。
为此,需要一定的时间,并且在大多数情况下,蒸汽发生器输出在此过程中也必须保持为恒定,使得在进行连接时,存在尽可能固定且稳定的状态。如果不是这种情况,那么由于压力、温度或蒸汽量的变化,可能发生蒸汽发生器系统内的故障(汽包水位变化)或者汽轮机运行期间(对极限值的响应、汽轮机跳闸)的故障。因此,对于这种启动需要特定的时间,并且发电装置输出不能如预期那样快地增加。而且,在启动期间,产生的蒸汽经由旁通站进入冷凝器受阻,结果降低了系统效率。
已知一种方法,其中,根据确定的逻辑顺序,使各蒸汽系统达到几乎同样的压力和温度,并且各系统按照确定的顺序连接。例如,在带有单独再加热的三重压力系统的情况下,冷再加热系统首先调节至同样的蒸汽参数,并通过打开冷再加热滑阀连接于与汽轮机关联运行的再加热系统。在这之后,采用同样的方法将第二蒸汽发生器的高压蒸汽系统连接于处于工作状态的第一蒸汽发生器。而后,由于压力和温度相等,热再加热系统也通过打开热再加热系统中的蒸汽滑阀进行连接。在这种情况下,旁通站在每种情况下处于受控的关闭位置,并因此汽轮机负荷更加加重。同样,根据这些步骤,低压蒸汽系统也连接于第二蒸汽发生器的低压蒸汽系统。这中不好的是本方法是非常耗时的。
作为这种方法的替代,在不同压力和温度级别的协调之后,可同时将不同压力系统的隔离阀开启到更大或更小的程度,而第二蒸汽发生器因此可连接于已经与汽轮机关联运行的第一蒸汽发生器。同样在这种情况下,蒸汽发生器输出(因此在燃气和蒸汽轮机装置情况下的也就是燃气轮机的输出)必须保持恒定,也就是蒸汽发生器的功率提升被停止。该方法的确更快,但招致的附近风险是,故障可能同时出现在多个系统中并可能相互影响。因此,由于对极限值的响应(汽包水位高或低,在汽轮机方向太少或太多的蒸汽),汽轮机的或蒸汽发生器的不期望的关闭在相当大的程度上变得更加可能。
发明内容
因此,本发明的目的是进一步开发用于接合附加蒸汽发生器的方法,使得实现接合的显著的缩减。由于停止蒸汽发生器输出或由于蒸汽系统自身的连接,当接合第二或第三蒸汽发生器时的先前的延迟应尽可能地最小化或完全消除。
根据本发明,通过根据权利要求1所述的方法实现该目的。在从属权利要求中限定了本发明的有利改进。当在包括至少两个蒸汽发生器和汽轮机的发电装置系统中将至少一个附加蒸汽发生器与第一蒸汽发生器接合时--其中用于驱动所述汽轮机的流体在包括多个蒸汽系统的流体循环回路中循环流动,其中,各蒸汽系统与各个蒸汽发生器相关联,并且可通过隔离阀彼此分开,且在此期间在所述至少一个附加蒸汽发生器的蒸汽大致达到与第一蒸汽发生器的蒸汽相同的蒸汽参数之前,至少第一蒸汽发生器的流体供应给汽轮机-通过打开所述至少一个附加蒸汽发生器的至少第一蒸汽系统的隔离阀、使得蒸汽可流入所述附加蒸汽发生器,在第二蒸汽发生器的功率提升期间,各蒸汽系统的连可以已经在进行而不停止负荷增加。结果,没有浪费时间用于连接且旁通站可尽可能快地关闭。
有利地是打开再热冷端管路中的至少一个第一蒸汽系统的隔离阀。再热冷端管路中的阀的部分打开致使蒸汽从处于工作状态的系统--包括汽轮机和第一蒸汽发生器--流入附加蒸汽发生器的再加热系统中,并实际上将其补足至同样的压力。
有利的是,至少一个附加蒸汽发生器的至少第二蒸汽系统中的流体的温度和压力进一步增加,并且使蒸汽从第二蒸汽系统旁路而进入附加蒸汽发生器的第一蒸汽系统,使得蒸汽经由打开的隔离阀从附加蒸汽发生器流入第一蒸汽发生器。通过部分打开的冷再加热隔离阀,确保了来自于附加蒸汽发生器的高压蒸汽系统的蒸汽--其在该附加蒸汽发生器的功率提升期间仍不具有所述参数以便能供应给汽轮机的高压部分,且因此通过高压旁通站流入再热冷端管路,且可能不能从中压旁通站排出--通过回流引入第一蒸汽发生器的处于工作状态的冷再加热系统,并经由它的再加热管路流向汽轮机,并因此已导致所述汽轮机的输出增加。
至少在附加蒸汽发生器的各蒸汽系统一个附加蒸汽系统中,其隔离阀最好是打开的,特别在高压管路或新鲜蒸汽管路中和在低压管路中。这是可能的,因为通常在高压系统和低压系统中进行设置,而利用单向阀防止自处于运行中的系统的回流。作为第二蒸汽发生器的(或在燃气和蒸汽轮机装置情况下,燃气轮机装置的)输出增加,蒸汽温度和压力进一步增加。通过修正的压力控制(例如切换到流量控制的高压旁通阀控制),实现了压力接近处于工作状态的第一蒸汽发生器的压力的效果,这以缓和的方式发生。在压力相等的情况下,附加蒸汽发生器的高压蒸汽系统及低压蒸汽系统的单向阀打开,并且启始沿着汽轮机方向的蒸汽流动。如果在这些蒸汽管路中不设有单向阀,通过在测得压力相等的情况下打开相应的隔离阀可实现同样的效果,。
为了温度测量可以记录附加蒸汽发生器中的蒸汽温度的增加或为了喷射冷却器可以以正确的方式工作,有利的是,比如通过通向再热热端管路的中压旁通管路或加热管路中的阀的稍微打开,在附加蒸汽发生器的再加热系统中产生小的流动。
在相应的隔离阀已打开之后,最好关闭旁通阀,使得产生的蒸汽被汽轮机接受而不再引入冷凝器。
一旦附加蒸汽发生器的蒸汽温度基本上等于第一蒸汽发生器的蒸汽温度时,最好就打开再热热端管路中的隔离阀。然后再热冷端管路中的阀调节大体上对应于产生的高压蒸汽量的蒸汽量,以便尽可能避免两个蒸汽发生器中的不平衡负荷。
有利的是,在附加蒸汽发生器的高压蒸汽系统中的流量增加的情况下,再热冷端管路中的隔离阀相应地打开得更宽。
在燃气和蒸汽轮机装置中,有利的是,在与附加蒸汽发生器相关联的燃气轮机的同步期间打开隔离阀。
有利的是,将本方法应用在燃气和蒸汽轮机装置或多组蒸汽发电装置中。
根据本发明,不是像以前那样在蒸汽状态尽可能是静止的情况下进行所述接合,而是在压力持续增加且输出和蒸汽量持续变化期间进行该接合。
尽管附加蒸汽发生器的高压蒸汽产生可能甚至还没有开始,但是通过已正在工作的第一蒸汽发生器的再加热系统,附加蒸汽发生器的再加热系统被增压且具有低的通流量。如果这随后开始,那么由于在再热冷端管路中的明确允许的回流,可以使高压蒸汽系统及再加热系统的运行原理相对独立。因此,降低了控制的复杂性,且各蒸汽系统一个接一个的逐步接合不是绝对必须的并且暂时与之分离。
因此,当启动2x1或多x1系统结构时或者当接合第二或第三蒸汽发生器(或在燃气和蒸汽轮机装置情况下,燃气轮机热回收蒸汽发生器单元)时,获得了显著的优点,比如对于第二或第三蒸汽发生器来说总体上更短的接合时间,这增加了发电装置的经济效率和平均系统效率。此外,如果由于特定原因需要以交错的方式启动各蒸汽发生器,那么发电装置系统的启动时间自然也缩短。结果,这导致更高的平均装置效率以及还有更少的排放(环境友好),如运行期间所见到的那样,特别是在频繁启动(所谓的中等负荷装置或最大负荷装置)的情况下。结果,这些装置更加经济节约,并且负荷调度中心为了联网运行也相当经常地需要这些装置。
附图说明
下面通过示例并参照附图更加详细地解释本发明。附图是示意性的且没有按照比例示出:
图1示出了2×1燃气和蒸汽轮机装置的简化的水-蒸汽循环,
图2示出了根据现有技术的蒸汽发生器的接合的时间耗用,以及
图3示出了根据本发明的蒸汽发生器的接合的耗用。
具体实施方式
图1示意性地且通过示例示出了燃气和蒸汽轮机装置1,其包括两个燃气轮机/热回收蒸汽发生器单元2和汽轮机装置3,其中,两个燃气轮机/热回收蒸汽发生器单元2可以大体上是一样的。对于第一燃气轮机/热回收蒸汽发生器单元2,仅示出了离开蒸汽轮机发电装置3的连接以及通往蒸汽轮机发电装置3的连接部。作为图示的燃气和蒸汽轮机装置1的替换,本发明方法也可应用在多组蒸汽发电装置中,然而,其中,燃气轮机/热回收蒸汽发生器单元2将由火焰蒸汽发生器单元取代。
燃气轮机装置4安装有燃气轮机5、压缩机6和至少一个连接在压缩机6和燃气轮机5之间的燃烧室7。通过压缩机6,新鲜空气被吸入、压缩,通过新鲜空气管路8馈送至燃烧室7的燃烧器或多个燃烧器。供应的空气与通过燃料管路9提供的液态燃料或气态燃料混合,且该混合物被点燃。在该过程中产生的燃烧废气形成燃气轮机装置4的工作介质,其被提供给燃气轮机5并膨胀,在那里执行工作并驱动连接于燃气轮机5的轴10。除了连接于燃气轮机5之外,轴10还连接于空气压缩机6以及发电机11,从而驱动它们。通过排气管路12将膨胀的工作介质排至热回收蒸汽发生器13—其可特别设计为强制流动系统—并且沿着图中未示出的排气管的方向在出口侧离开热回收蒸汽发生器13。
汽轮机装置3的汽轮机14具有第一压力级15,或高压部分,和第二压力级16,或中压部分,以及还有第三压力级17,或低压部分,它们通过公用轴18驱动发电机19。
热回收蒸汽发生器13包括作为加热面的冷凝液预热器20,其在入口侧通过连接于冷凝泵22的冷凝管路21从冷凝器23被馈送以冷凝物。在出口侧,冷凝液预热器20通往给水泵24的吸入侧。为了基于需要将冷凝液预热器20旁通,通过旁通管路25对其桥接。
在例示性实施例中,给水泵24设计为带有中压支路26的高压馈送泵。它使冷凝物达到合适的压力水平,用于与汽轮机14的高压部分15相关联的流动介质循环的高压级。通过给水泵24传送的冷凝物在中压下馈送给中压蒸汽系统27-包括给水预热器、中压蒸发器和过热器-其在出口侧,连接于再热冷端管路29,该管路在出口侧将高压部分15连接于再加热器28。再加热器28又在出口侧通过蒸汽管路30连接于汽轮机14的中压部分16。
在高压侧,给水泵24连接于高压蒸汽系统31-包括高压燃料节省器、高压蒸发器和高压过热器—其在出口侧通过新鲜蒸汽管路32连接于汽轮机14的高压部分15。
在汽轮机的高压部分,由过热器28过加热的蒸汽驱动涡轮机14,而后通过汽轮机14的高压部分15的蒸汽出口33和再热冷端管路29传输至再加热器28。
在再加热器28中过加热之后,通过蒸汽管路30,将蒸汽传输至汽轮机14的中压部分16,它在此驱动涡轮机。
汽轮机14的中压部分16的蒸汽出口34通过跨接管路35连接于汽轮机14的低压部分17。
还连接于汽轮机14的低压部分17的是低压蒸汽系统36,从冷凝管路21予以馈送,包括布置在热回收蒸汽发生器13中的低压蒸汽发生器和通过低压蒸汽管路37向汽轮机14的低压部分17供给蒸汽的低压过热器。
在流过低压部分17以及因此驱动涡轮机14之后,冷却且膨胀的蒸汽通过汽轮机14的低压部分17的蒸汽出口38输送至冷凝器23。
除了已经提及的水-蒸汽循环的元件之外,还包括旁通管路,就是所谓的高压旁通管路39,其在新鲜蒸汽管路32到达汽轮机14的高压部分15之前,从新鲜蒸汽管路32分支出。高压旁通管路39将高压部分15旁通,并通向高压部分15和再加热器28之间的再热冷端管路29。
另一旁通管路,就是所谓的中压旁通管路40,在蒸汽管路30通入汽轮机14的中压部分16之前,从蒸汽管路30分支来。中压旁通管路40将汽轮机14的中压部分16和低压部分17二者旁通并通向冷凝器23。
另外,低压蒸汽系统36也具有低压旁通管路41,其将汽轮机14的低压部分17旁通,并直接向冷凝器23供给低压蒸汽。
隔离阀,比如单向阀42和滑阀43,安装在新鲜蒸汽管路32中,通过它们,可关闭该新鲜蒸汽管路。另一隔离阀44位于高压旁通管路39中。同样地,隔离阀45位于再热冷端管路29中,而另一隔离阀46位于再热冷端管路30中。
阀47也布置在中压旁通管路40中。
连接中压旁通管路40与再热热端管路30的加热管路48也具有阀49。
两个隔离阀,具体而言单向阀50和滑阀51,也安装在低压蒸汽管路37中,通过它们,可关闭该低压蒸汽管路。同样地,隔离阀52位于通向冷凝器23的低压旁通管路41中。
在启动燃气和蒸汽轮机装置1期间,旁通管路39、40、41和隔离阀42、43、44、46、47、49、50、51、52用于使一部分蒸汽旁通,对汽轮机14进行旁通。
用于第一蒸汽发生器单元的连接部53-56位于新鲜蒸汽管路32中、在再热冷端管路29中、在再热热端管路30中以及在低压蒸汽管路37中。
参照图1,下文将描述根据本发明的用于接合附加蒸汽发生器的方法的例示性实施例。
在根据本发明方法的开始,汽轮机装置3已经从第一蒸汽发生器或从第一燃气轮机/热回收蒸汽发生器单元被供以蒸汽。为了接合附加燃气轮机/热回收蒸汽发生器单元2,启动燃气轮机装置4,从它那排出的工作介质被供应给热回收蒸汽发生器13。膨胀的工作介质流过热回收蒸汽发生器13,并且沿着在图1中未示出的排气管的方向经由出口而离开它。当工作介质流过热回收蒸汽发生器13时,热量从工作介质传递至水或传递至水-蒸汽循环中的蒸汽。
在启动燃气轮机装置4之后,在热回收蒸汽发生器13中的工作介质的余热致使在蒸汽系统中开始产生蒸汽。
为了在第二蒸汽发生器13的功率提升期间连接各蒸汽系统而不停止负荷增加,高压蒸汽系统31中的、中压蒸汽系统27的再热冷端管路29中的以及低压蒸汽系统36中的滑阀43、45和51相对早期地打开,例如在附加燃气轮机装置4的同步期间或当增加附加热回收蒸汽发生器13的压力时。这是可能的,因为通常在高压系统31中和在低压系统36中进行设置,而利用单向阀42和50防止自处于运行中的系统的回流。
再热冷端管路29中的隔离阀45的部分打开致使蒸汽从处于运行中的系统流入附加再加热器28,并实际上将其补足至同样的压力。而且,通过在附加再加热系统中产生小的流动,比如通过稍微打开中压旁通管路40中的阀47或加热管路48中的阀49,确保了温度测量可以记录蒸汽温度的增加或喷射冷却器能够以正确方式工作。
此外,作为再热冷端管路29中的部分打开的隔离阀45的结果,确保了高压蒸汽-其经由高压旁通管路39流入再热冷端管路29,且可能地不能从中压旁通管路4排出放-通过回流引入第一蒸汽发生器的处于运行中的冷再加热系统,并经由它的再加热管路流向汽轮机14,并因此已致使汽轮机的输出增加。
作为第二蒸汽发生器13的(或在燃气和蒸汽轮机装置情况下,燃气轮机装置的)输出增加的结果,蒸汽温度和压力进一步增加。通过修正的压力控制(例如,切换到流量控制的高压旁通阀控制),实现压力接近处于运行中的第一蒸汽-发生器蒸汽系统的压力的效果,这以缓和的方式发生。在压力相等情况下,打开附加蒸汽发生器13的高压蒸汽系统31及低压蒸汽系统36的单向阀42和50,并起始沿着汽轮机14方向的蒸汽流动开始了。如果在这些蒸汽管路32和37中不设置单向阀42和50,在测出压力相等的情况下通过打开相应的隔离阀可实现同样的效果。
通过逐渐关闭旁通阀44、47、52,由蒸汽发生器产生的蒸汽最终被汽轮机14接受。
一旦附加蒸汽发生器13的蒸汽温度接近等于处于运行中的第一蒸汽发生器的温度,就打开再热热端管路30中的隔离阀46。再热冷端管路中的隔离阀45然后调节蒸汽量,其大体上对应于产生的高压蒸汽量,以便尽可能地避免两个蒸汽发生器中的不平衡负荷。
图2示意性地示出了相应于现有技术的附加蒸汽发生器13的接合的时间耗用。正如已解释的那样,根据现有技术,各蒸汽系统根据确定的顺序被促成达到几乎同样的压力和同样的温度并按照确定的顺序连接。该过程通常开始于冷再加热器100。如果其被完全接合,那么随后是热再加热器101,而在其完全接合之后,继之以高压系统102。低压系统也可以在冷再加热器的接合开始之后不久已经被接合。这样,在关闭所有旁通阀之前,已经过去约15至20分钟。
与此对比,如图3所示,在根据本发明的方法的情况下,各个系统早期接合并且大都几乎同时接合,使得当启动第二燃气轮机/热回收蒸汽发生器系统时,对于燃气轮机的功率提升实际上没有什么延迟。旁通阀的关闭取决于蒸汽轮机多快能够接受第二热回收蒸汽发生器的蒸汽。

Claims (14)

1.一种用于在发电装置系统中将至少一个附加蒸汽发生器(13)与第一蒸汽发生器接合的方法,该系统包括至少两个蒸汽发生器(13)和汽轮机(14),其中用于驱动所述汽轮机(14)的流体在包括多个蒸汽系统(27、31、36)的流体循环回路中循环流动,其中,各蒸汽系统(27、31、36)与各个蒸汽发生器(13)相关联,并且可通过隔离阀(42、43、44、45、46、47、50、51、52)彼此分开,其中至少第一蒸汽发生器的流体供应给汽轮机(14),其特征在于,在所述至少一个附加蒸汽发生器(13)的蒸汽大致达到与第一蒸汽发生器的蒸汽相同的蒸汽参数之前,所述至少一个附加蒸汽发生器(13)的至少第一蒸汽系统的隔离阀(45)被打开,使得蒸汽可流入所述附加蒸汽发生器。
2.如权利要求1所述的方法,其中,再热冷端管路(29)中的至少一个第一蒸汽系统(27)的隔离阀(45)被打开。
3.如权利要求1或2所述的方法,其中,所述至少一个附加蒸汽发生器(13)的至少第二蒸汽系统(31)中的流体的温度和压力进一步增加,并且来自于第二蒸汽系统(31)的蒸汽被旁通进入第一蒸汽系统(27),使得蒸汽经由打开的隔离阀(45)从所述附加蒸汽发生器(13)流入所述第一蒸汽发生器。
4.如前述权利要求中任一项所述的方法,其中,至少在附加蒸汽发生器(13)的各蒸汽系统中的附加蒸汽系统中(31、36),其隔离阀(43、51)被打开。
5.如权利要求4所述的方法,其中,位于新鲜蒸汽管路(32)中的、所述附加蒸汽发生器(13)的各蒸汽系统中的所述附加蒸汽系统(31)的隔离阀(43)被打开。
6.如权利要求4所述的方法,其中,位于低压管路(37)中的、附加蒸汽发生器(13)的各蒸汽系统中的所述附加蒸汽系统(36)的隔离阀(51)被打开。
7.如前述权利要求中任一项所述的方法,其中,附加蒸汽发生器(13)中的中压管路(40)中的阀(47)被打开。
8.如前述权利要求中任一项所述的方法,其中,附加蒸汽发生器(13)的通向再热热端管路(30)的加热管路(48)中的阀(49)被打开。
9.如前述权利要求中任一项所述的方法,其中,在相应的隔离阀已打开之后,关闭旁通阀(44、47、52)。
10.如前述权利要求中任一项所述的方法,其中,一旦附加蒸汽发生器(13)的蒸汽温度基本上等于第一蒸汽发生器的蒸汽温度时,就打开再热热端管路(30)中的隔离阀(46)。
11.如权利要求1至3中任一项所述的方法,其中,当附加蒸汽发生器(13)的高压蒸汽系统(31)中的流量增加时,打开隔离阀(45)。
12.如权利要求1至3中任一项所述的方法,其中,在与附加蒸汽发生器(13)相关联的燃气轮机(4)同步期间,打开隔离阀(45)。
13.如前述权利要求中任一项所述的方法在燃气和蒸汽轮机装置(1)中的应用。
14.如权利要求1至11中任一项所述的方法在多组蒸汽发电装置中的应用。
CN201280001575.4A 2011-03-24 2012-03-07 用于快速连接蒸汽发生器的方法 Active CN102933801B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11159511.2 2011-03-24
EP11159511A EP2503112A1 (de) 2011-03-24 2011-03-24 Verfahren zum schnellen Zuschalten eines Dampferzeugers
PCT/EP2012/053852 WO2012126727A1 (de) 2011-03-24 2012-03-07 Verfahren zum schnellen zuschalten eines dampferzeugers

Publications (2)

Publication Number Publication Date
CN102933801A true CN102933801A (zh) 2013-02-13
CN102933801B CN102933801B (zh) 2015-04-29

Family

ID=45841463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280001575.4A Active CN102933801B (zh) 2011-03-24 2012-03-07 用于快速连接蒸汽发生器的方法

Country Status (7)

Country Link
US (1) US8813506B2 (zh)
EP (2) EP2503112A1 (zh)
KR (1) KR101411702B1 (zh)
CN (1) CN102933801B (zh)
PL (1) PL2556218T3 (zh)
RU (1) RU2586415C2 (zh)
WO (1) WO2012126727A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746656A1 (de) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Entwässerung einer Kraftwerksanlage
DE102013202249A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Dampftemperatur-Regeleinrichtung für eine Gas- und Dampfturbinenanlage
EP2942493A1 (de) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Wasserdampfkreislauf sowie ein Verfahren zum Betreiben eines Wasserdampfkreislaufes
DE112016001877T5 (de) * 2015-04-24 2018-01-18 Nuovo Pignone Tecnologie Srl Kompressorangetriebene ORC-Abwärmerückgewinnungseinheit und Steuerungsverfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU485120B2 (en) * 1974-09-10 1976-03-18 The Babcock & Wilcox Company Control system fora two boiler, single turbine generator power producing unit
DE2730415A1 (de) * 1977-07-06 1979-01-18 Saarbergwerke Ag Verfahren zur regelung der kraftwerksleistung sowie schaltungsanordnung zur durchfuehrung des verfahrens
US20050034445A1 (en) * 2003-08-12 2005-02-17 Washington Group International, Inc. Method and apparatus for combined cycle power plant operation
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
US20100263376A1 (en) * 2009-04-15 2010-10-21 General Electric Company Systems and methods involving combined cycle plants
US20110036090A1 (en) * 2008-04-22 2011-02-17 Nem B.V. Steam Generation System Having A Main And Auxiliary Steam Generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384587A (en) * 1944-02-16 1945-09-11 Badenhausen John Phillips System for generating steam
CH569862A5 (zh) * 1973-10-02 1975-11-28 Sulzer Ag
JP2669545B2 (ja) * 1988-10-14 1997-10-29 株式会社日立製作所 排熱回収ボイラシステムとその運転方法
JPH04298604A (ja) * 1990-11-20 1992-10-22 General Electric Co <Ge> 複合サイクル動力装置及び蒸気供給方法
US5727379A (en) * 1996-05-31 1998-03-17 Electric Power Research Institute Hybid solar and fuel fired electrical generating system
US5822974A (en) * 1997-02-11 1998-10-20 Electric Power Research Inst. Hybrid biomass and natural gas/oil power generation system
DE19749452C2 (de) 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
RU2124641C1 (ru) * 1997-12-19 1999-01-10 Закрытое акционерное общество "Агентство регионального развития" Способ эксплуатации паросиловой энергетической установки и установка для его осуществления
DE19837251C1 (de) 1998-08-17 2000-02-10 Siemens Ag Gas- und Dampfturbinenanlage
RU2248453C2 (ru) * 1998-08-31 2005-03-20 III Вильям Скотт Роллинс Электростанция и способ получения энергии с комбинированием циклов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU485120B2 (en) * 1974-09-10 1976-03-18 The Babcock & Wilcox Company Control system fora two boiler, single turbine generator power producing unit
DE2730415A1 (de) * 1977-07-06 1979-01-18 Saarbergwerke Ag Verfahren zur regelung der kraftwerksleistung sowie schaltungsanordnung zur durchfuehrung des verfahrens
US20050034445A1 (en) * 2003-08-12 2005-02-17 Washington Group International, Inc. Method and apparatus for combined cycle power plant operation
US20110036090A1 (en) * 2008-04-22 2011-02-17 Nem B.V. Steam Generation System Having A Main And Auxiliary Steam Generator
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
US20100263376A1 (en) * 2009-04-15 2010-10-21 General Electric Company Systems and methods involving combined cycle plants

Also Published As

Publication number Publication date
EP2556218B1 (de) 2016-01-06
KR101411702B1 (ko) 2014-06-25
EP2503112A1 (de) 2012-09-26
PL2556218T3 (pl) 2016-06-30
EP2556218A1 (de) 2013-02-13
US8813506B2 (en) 2014-08-26
KR20130025914A (ko) 2013-03-12
US20140000259A1 (en) 2014-01-02
RU2586415C2 (ru) 2016-06-10
WO2012126727A1 (de) 2012-09-27
RU2012152097A (ru) 2014-06-10
CN102933801B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN1325770C (zh) 组合式燃气和蒸汽轮机设备中用于预热燃料的装置和方法
JP3883627B2 (ja) 排熱回収式蒸気発生装置および蒸気消費器に組み合わされたガスターボ群を運転するための方法
CN102966385B (zh) 汽轮机装置及其运转方法
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP5604074B2 (ja) 給水ポンプサイズを縮小するために燃料ガス加熱器の排水を使用する蒸気温度調節用装置
CN104279058B (zh) 联合循环发电设备以及操作联合循环发电设备的方法
US20120137683A1 (en) Run-up method for a solar steam power plant
US20040003583A1 (en) Combined cycle gas turbine system
JP5860597B2 (ja) 排熱回収ボイラ配管を予熱するシステム及び方法
US8387388B2 (en) Turbine blade
US20060162315A1 (en) Waste heat steam generator
US20100031933A1 (en) System and assemblies for hot water extraction to pre-heat fuel in a combined cycle power plant
US9404393B2 (en) Combined cycle power plant
KR20070120172A (ko) 가스 및 증기 터빈 시스템의 시동 방법
US9322298B2 (en) Steam turbine installation and method for operating the steam turbine installation
CN102933801B (zh) 用于快速连接蒸汽发生器的方法
US20130298559A1 (en) Steam power plant with high-temperature heat reservoir
CN109312635A (zh) 冷凝物再循环
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP2010242673A (ja) 蒸気タービンシステム及びその運転方法
CN105765179A (zh) 用于转子空气冷却应用的选择性压力釜锅炉
CN102803664B (zh) 具有冷却系统的蒸汽发电装置以及其控制单元和操作该冷却系统的方法
US9145794B2 (en) Apparatus and method for increasing power plant efficiency at partial loads
CN114810231B (zh) 一种燃气–蒸汽联合循环机组燃气增压机变频控制方法
TWI824415B (zh) 火力發電廠以及火力發電廠的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220121

Address after: Munich, Germany

Patentee after: Siemens energy Global Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG