CN102931920A - 适用于输入输出接口的传输电路及其讯号传输方法 - Google Patents

适用于输入输出接口的传输电路及其讯号传输方法 Download PDF

Info

Publication number
CN102931920A
CN102931920A CN2012103939597A CN201210393959A CN102931920A CN 102931920 A CN102931920 A CN 102931920A CN 2012103939597 A CN2012103939597 A CN 2012103939597A CN 201210393959 A CN201210393959 A CN 201210393959A CN 102931920 A CN102931920 A CN 102931920A
Authority
CN
China
Prior art keywords
signal
circuit
preset state
equalizer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103939597A
Other languages
English (en)
Other versions
CN102931920B (zh
Inventor
沈洪浩
王维宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Labs Inc
Original Assignee
Via Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Technologies Inc filed Critical Via Technologies Inc
Publication of CN102931920A publication Critical patent/CN102931920A/zh
Application granted granted Critical
Publication of CN102931920B publication Critical patent/CN102931920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • H04L25/03885Line equalisers; line build-out devices adaptive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种适用于输入输出接口的传输电路及其讯号传输方法。该传输电路,包括均衡器电路、切分器电路、讯号检测电路及控制器电路。均衡器电路根据多个预设状态来对输入讯号进行均衡操作,以对应各预设状态输出均衡讯号。切分器电路对均衡讯号进行切分操作,以输出切分讯号。讯号检测电路检测并比较均衡讯号与切分讯号,以据此将均衡器电路调整至其中的一预设状态。控制器电路接收对应各预设状态的切分讯号,比较对应各预设状态的切分讯号与多个讯号图样以产生一比较结果,并且根据比较结果从预设状态中择一,使均衡器电路根据被选择的预设状态来进行均衡操作。

Description

适用于输入输出接口的传输电路及其讯号传输方法
技术领域
本发明涉及一种电子电路及其讯号处理方法,特别是涉及一种适用于输入输出接口的传输电路及其讯号传输方法。
背景技术
一般而言,当电子装置之间欲进行讯号传输时,两者间必须根据其传输接口的标准先进行通讯连结(link),待此连结成功建立后,电子装置之间即可进行讯号传输的操作。然而,对于高速传输的讯号,经过连结电子装置之间的品质不佳的传输通道(channel)后,其讯号强度可能会不当的衰减,以致于造成讯号强度太小或杂讯扰动(jitter)太大,从而造成误码率增加,影响通讯品质。因此,传输通道的良窳对电子装置间的通讯品质影响甚大。
在现有技术中,电子装置的输入输出接口的传输电路通常会配置均衡器(equalizer)电路来对所接收的输入讯号进行均衡操作。然而,现有的均衡器电路对输入讯号进行均衡操作时,其内部所预设的参数值一般为固定。也就是说,无论传输通道的良窳与否,均衡器电路内部所预设的参数值无法根据传输通道特性的不同来作适应性的调整。因此,在某些传输接口标准的应用中,均衡器电路可能无法适应品质较差的传输通道,而提供不正确讯号至后端电路,使后端电路产生误解码事件。因此,如何因应不同品质的传输通道而使均衡器电路提供对应的均衡操作参数值为一待解决的问题。
发明内容
本发明提供一种适用于输入输出接口的传输电路,可提供良好的讯号传递品质。
本发明提供一种讯号传输方法,可提供良好的讯号传递品质。
本发明提出一种适用于输入输出接口的传输电路,此传输电路包括一均衡器(equalizer)电路、一切分器(slicer)电路、一讯号检测电路以及一控制器电路。均衡器电路接收一输入讯号,并且根据多个预设状态来对输入讯号进行一均衡操作,以对应各预设状态输出一均衡讯号。切分器电路耦接至均衡器电路,接收均衡讯号,并且对均衡讯号进行一切分操作,以据此输出一切分讯号。讯号检测电路耦接至切分器电路,检测并比较均衡讯号与切分讯号,以据此将均衡器电路调整至预设状态其中之一。控制器电路耦接至切分器电路,以接收对应各预设状态的切分讯号,比较对应各预设状态的切分讯号与多个讯号图样以产生一比较结果,并且根据比较结果从预设状态中择一,使均衡器电路根据被选择的预设状态来进行均衡操作。
本发明提出一种讯号传输方法,适用于输入输出接口的传输电路。此讯号传输方法包括如下步骤。接收一输入讯号,并且分别根据多个预设状态来对输入讯号进行一均衡操作,以对应各预设状态输出一均衡讯号。对均衡讯号进行一切分操作,以据此输出一切分讯号。检测并比较均衡讯号与切分讯号,以据此将传输电路设定在预设状态其中之一。比较对应各预设状态的切分讯号与多个讯号图样以产生一比较结果,并且根据比较结果从预设状态中择一,使传输电路根据被选择的预设状态来进行均衡操作。
本发明提出一种适用于输入输出接口的传输电路,通过一传输通道与一主机建立通讯连结。传输电路包括一模拟电路区块以及一数字电路区块。模拟电路区块接收一输入讯号,并且根据多个预设状态来对输入讯号进行一均衡操作,以对应各预设状态产生一均衡讯号。并且,模拟电路区块对均衡讯号进行一切分操作,以据此输出一切分讯号。数字电路区块耦接至模拟电路区块,以接收对应各预设状态的切分讯号。数字电路区块比较对应各预设状态的切分讯号与多个讯号图样以产生一比较结果。并且,数字电路区块根据比较结果从预设状态中择一,使模拟电路区块根据被选择的预设状态来进行均衡操作。
基于上述,在本发明的范例实施例中,控制器电路根据切分讯号与各讯号图样的比较结果,来设定均衡器电路在进行均衡操作时的预设状态。因此本发明的传输电路可因应不同品质的传输通道而选择对应的预设状态进行均衡操作。藉此,在不同品质的传输通道进行讯号传输时均可提供良好的讯号传递品质。
为使本发明的上述特征和优点能更明显易懂,下文特举实施例,并结合附图详细说明如下。
附图说明
图1示出了本发明一实施例的所述元件的传输电路方块示意图。
图2示出了本发明另一实施例的传输电路的方块示意图。
图3示出了图2的传输电路中讯号检测电路的详细示意图。
图4示出了本发明一实施例的高通滤波器电路的电路示意图。
图5示出了本发明一实施例的低通滤波器电路的电路示意图。
图6示出了图2的传输电路中均衡器电路的详细示意图。
图7示出了输入讯号的转换函数在调整第一可变电阻Radj1时的变化示意图。
图8示出了输入讯号的转换函数在调整第二可变电阻Radj2时的变化示意图。
图9示出了输入讯号波形示意图。
图10示出了均衡讯号与切分讯号两者的波形示意图。
图11示出了图2的传输电路中控制器电路的方块示意图。
图12示出了本发明一实施例的讯号传输方法的步骤流程图。
附图符号说明
10:主机
30:传输通道
100、200:传输电路
110、210:模拟电路区块
112、212:均衡器电路
120、220:数字电路区块
214:切分器电路
216:讯号检测电路
216A:第一检测电路
216B:第二检测电路
217A:第一功率放大电路
217B:第二功率放大电路
222:控制器电路
400:高通滤波器电路
500:低通滤波器电路
510:第一低通滤波单元
520:第二低通滤波单元
610:差动输入对
620:摆幅调整元件
630:增益调整元件
710:寄存器电路
720:模拟数字转换电路
730:比较器电路
740:计数器电路
750:控制器单元
VS:切分讯号
VIN:输入讯号
VEQ:均衡讯号
Vsw:摆幅调整讯号
Vgn:增益调整讯号
Vset:设定讯号
LPF1:第一低通滤波器电路
LPF2:第二低通滤波器电路
HPF1:第一高通滤波器电路
HPF2:第二高通滤波器电路
PD1:第一功率比较电路
PD2:第二功率比较电路
OP1:第一放大器电路
OP2:第二放大器电路
I:偏压电流源
R:偏压电阻
R1、R2:电阻
Radj1:第一可变电阻
Radj2:第二可变电阻
C、C1、C2:电容
DC1、DC2:直流偏压
IN-、IN+:差动输入对的输入端
OUT-、OUT+:均衡器电路输出端
S200、S210、S220、S230:讯号传输方法的步骤
具体实施方式
一般而言,当两个电子装置之间欲进行讯号传输时,两者间必须根据其传输接口的标准先进行通讯连结,待此连结成功建立后,两个电子装置之间即可进行讯号传输的操作。目前可作为输入输出接口的传输接口的标准包括序列先进附件(Serial Advanced Technology Attachment,SATA)标准、电气和电子工程师协会(Institute of Electrical and ElectronicEngineers,IEEE)1394标准、高速周边零件连接接口(Peripheral ComponentInterconnect Express,PCI Express)标准、通用序列总线(UniversalSerial Bus,USB)标准、安全数字(Secure Digital,SD)接口标准、存储棒(Memory Stick,MS)接口标准、多媒体储存卡(Multi Media Card,MMC)接口标准、小型快闪(Compact Flash,CF)接口标准、整合式驱动电子接口(Integrated Device Electronics,IDE)标准或其他适合的标准。
以第三代的通用序列总线(Universal Serial Bus 3.0,USB 3.0)标准为例,为了清楚说明起见,下面分别区分两个电子装置为主机(host)与装置(device)。在所述主机尚未以适当的传输通道与元件进行电性连接之前,所述主机与所述装置之间的连结状态是处于USB 3.0标准所定义的超速未致能状态(super speed inactive)。待所述主机与所述元件之间以适当的传输通道进行电性连接之后,所述主机与所述元件之间的连结状态会处于输入检测状态(Rx.Detect),而使所述主机检测是否有讯号输入。接着,若检测到输入讯号,所述主机会执行询讯程序(polling),以建立与所述装置之间的通讯连结。之后,若所述主机与所述装置之间的询讯程序可顺利的被执行,并且询讯无误,则所述主机与所述装置之间的连结状态即可进入正常操作状态(normal operational state)。至此,所述主机与所述装置之间的通讯连结即属建立成功,两者可在正常操作状态下进行讯号传输。
在询讯程序中,所述主机与所述装置之间尚必需执行多个询讯步骤,以确保询讯程序正确无误。首先,所述主机会传送低频率周期讯号(lowfrequency period signal,LFPS)给所述装置。相对的,所述装置在接收到来自所述主机的低频率周期讯号后,也必须传送对应的低频率周期讯号给所述主机,以达到讯号交握(hands hake)的目的。接着,在讯号交握完成之后,询讯程序会进入接收均衡(RxEQ)的步骤。在此步骤中,所述主机会传递均衡测试顺序组(TSEQ ordered sets)至所述装置。同样的,所述装置在接收到来自所述主机的均衡测试顺序组后,也必须传送对应的均衡测试顺序组给所述主机,以确认此步骤完成,从而依序进行其他的询讯程序。因此,若所述主机与所述装置之间的询讯程序可顺利的被执行,并且询讯无误,则所述主机与所述装置之间的连结状态即可进入正常操作状态。
作为输入讯号的均衡测试顺序组输入所述装置的传输电路后,此传输电路会对均衡测试顺序组进行均衡、切分及模拟数字转换等操作。接着,传输电路再将经讯号处理后的均衡测试顺序组输出至下一级电路。因此,在询讯程序中,传输电路对均衡测试顺序组进行均衡操作的演算法对于确保询讯程序正确无误扮演举足轻重的角色。如何提供一个较佳的演算法为目前设计者所必须面对的一个重要的课题。在本发明的范例实施例中,传输电路例如是应用USB 3.0标准所定义的询讯程序中,但本发明并不限于此,其可提供一个较佳的演算法来对所输入的测试讯号进行均衡操作,以提供良好的讯号传递品质。藉此,可以使用品质不佳的传输通道(如传输线)进行主机与装置之间的讯号传输。为更清楚地了解本发明,以下将结合附图以至少一范例实施例来作详细说明。
图1示出了本发明一实施例的所述装置的传输电路方块示意图。请参考图1,本实施例的传输电路100与主机10以适当的传输通道30进行电性连接。在上述询讯程序的均衡测试步骤中,主机10与传输电路100彼此传递均衡测试顺序组TSEQ。本实施例的传输电路100大致可区分为两个电路区块,分别为模拟电路区块110与数字电路区块120。作为输入讯号的均衡测试顺序组TSEQ在输入传输电路100之后,模拟电路区块110会对均衡测试顺序组TSEQ进行均衡及切分等操作。接着,模拟电路区块110再将对应于均衡测试顺序组TSEQ的切分讯号VS输出至数字电路区块120。在本实施例中,模拟电路区块110是根据多个预设状态的其中一个预设状态来对作为输入讯号的均衡测试顺序组TSEQ进行均衡操作。在一实施例中,模拟电路区块110在不同的预设状态下以不同的均衡操作参数值对该均衡测试顺序组TSEQ进行均衡操作。在一实施例中,这些不同的均衡操作参数值可对应于不同品质的传输通道30。藉由不同的均衡操作参数值,模拟电路区块110因应不同品质的传输通道30可具有不同程度的均衡操作,以提供正确的讯号至后端电路。
本实施例的数字电路区块120接收对应于均衡测试顺序组TSEQ的切分讯号VS后,会比较切分讯号VS与预先储存于其内部的寄存器电路的多个讯号图样。在传输电路是位于USB 3.0标准的元件中的实施例中,该均衡测试顺序组为USB 3.0规范中定义的一组调制讯号序列,此序列具有多个特定的讯号图样。本实施例的数字电路区块120可预先储存此调制讯号序列的理想讯号图样。当接收到对应于均衡测试顺序组TSEQ的切分讯号VS后,数字电路区块120可比较切分讯号VS以及所储存的讯号图样,以得知该切分讯号VS与所述讯号图样的匹配程度。接着,数字电路区块120根据另一组参数信息设定模拟电路区块110,使模拟电路区块110以另一预设状态对该均衡测试顺序组TSEQ进行均衡操作,而使模拟电路区块110再输出对应于均衡测试顺序组TSEQ的切分讯号VS至数字电路区块120。数字电路区块120则再次比较接收到的切分讯号VS以及所述讯号图样,以得知在目前的预设状态下该切分讯号VS与对应的多个讯号图样的匹配程度。根据不同预设状态下切分讯号VS与对应的多个讯号图样的匹配程度,数字电路区块120会从多个预设状态中选择匹配程度最高的预设状态来设定模拟电路区块110,以使模拟电路区块110在所选择的预设状态下,对输入讯号进行均衡操作。简而言之,数字电路区块120可使模拟电路区块110以不同的预设状态对均衡测试顺序组TSEQ进行均衡操作。数字电路区块120可比较讯号图样(即USB3.0规范中定义的调制讯号序列对应的理想讯号图样)及各不同预设状态下的切分讯号VS,而得出一比较结果。因此,可据此比较结果选择匹配程度最高的预设状态来设定模拟电路区块110。本实施例的传输电路100可根据不同品质的传输通道30使模拟电路区块110以最合适的均衡操作参数值进行均衡操作,因而可提供良好的讯号传递品质。此外,本实施例的数字电路区块120还将原本属于串流(series)类型的切分讯号VS转换为非串流(deseries)类型的数字讯号,并且提供给下一级电路使用。
在本实施例中,由主机10所输出的均衡测试顺序组TSEQ,经由适当的传输通道30传递输入至所述元件,其中所述元件的接收端即为本实施例的传输电路100的其中一种实施态样。以下说明如何比较切分讯号与预设的多个讯号图样,并且根据比较结果来设定均衡器电路的预设状态的实施例。
图2示出了本发明另一实施例的传输电路的方块示意图。请参考图2,本实施例的传输电路200包括均衡器电路212、切分器电路214、讯号检测电路216以及控制器电路222。均衡器电路212接收输入讯号VIN,此输入讯号VIN例如包括在询讯程序中用以建立连结的均衡测试顺序组TSEQ。其中,均衡器电路212根据多个预设状态来对输入讯号VIN进行均衡操作,以对应各该预设状态输出均衡讯号VEQ至切分器电路214与讯号检测电路216。在一实施例中,所述多个预设状态代表讯号检测电路216以多种不同的参数信息配置后去调整均衡器电路212的均衡操作参数值,使调整后的均衡器电路212对均衡测试顺序组TSEQ进行均衡操作。在一实施例中,上述预设状态对应的参数信息为讯号检测电路216内的直流偏压(DC Bias)。上述均衡器电路212的均衡操作参数值包括摆幅(Swing)以及增益(Gain)。亦即,均衡器电路212在不同的预设状态下可被调整至具有不同的摆幅或增益,以对输入讯号VIN进行均衡操作。
在本实施例中,切分器电路214耦接至均衡器电路212,用以接收均衡讯号VEQ,并且对均衡讯号VEQ进行切分操作,以据此输出切分讯号VS至控制器电路222与讯号检测电路216。讯号检测电路216耦接至切分器电路214的两端点,用以检测并比较输入至切分器电路214的均衡讯号VEQ与输出至控制器电路222的切分讯号VS,以据此于所述的多个预设状态其中之一调整均衡器电路212。在一实施例中,讯号检测电路216所检测的对象例如是均衡讯号VEQ及切分讯号VS的讯号功率大小,但本发明并不限于此。在其他实施例中,讯号检测电路216所检测的对象也可以是均衡讯号VEQ及切分讯号VS的其他讯号特性。
在本实施例中,控制器电路222耦接至切分器电路247,用以比较切分讯号VS与讯号图样,并且根据比较结果从预设状态中择一以调整均衡器电路212。在本实施例中,控制器电路222是经由讯号检测电路216将均衡器电路212调整至所述其中的一预设状态,以进行均衡操作,但本发明并不限于此。在另一实施例中,控制器电路222也可直接对均衡器电路212进行设定,无需通过讯号检测电路216。
从电路区块的观点来看,本实施例的传输电路200大致可区分为两个电路区块,分别为模拟电路区块210与数字电路区块220。在此实施例中,模拟电路区块210包括均衡器电路212、切分器电路214以及讯号检测电路216,数字电路区块220包括控制器电路222。
简单来说,本实施例的控制器电路222在询讯程序的接收均衡步骤中,会让均衡器电路212根据不同的预设状态来执行均衡操作。并且,控制器电路222会比较切分讯号VS与讯号图样,从而选择匹配程度最高的预设状态来作为之后模拟电路区块210执行均衡操作的设定。此处衡量切分讯号VS与讯号图样匹配程度的指标例如是指位错误率(bit error rate,BER)。在询讯程序的接收均衡步骤中,以均衡器电路212在各预设状态下均使用相同的时间(例如为1000个时钟周期)进行均衡操作为例,位错误率愈低者即表示匹配程度愈高。反之,位错误率愈高者即表示匹配程度愈低。控制器电路222会选择位错误率最低的预设状态作为模拟电路区块210执行均衡操作的设定。另一种衡量切分讯号VS与讯号图样匹配程度的指标例如是正确率(correct rate),控制器电路222会选择正确率最高的预设状态作为模拟电路区块210执行均衡操作的设定。
图3示出了图2的传输电路中讯号检测电路的详细示意图。请参考图3,本实施例的讯号检测电路216包括一第一检测电路216A及一第二检测电路216B。第一检测电路216A耦接至切分器电路214,用以检测并比较均衡讯号VEQ与切分讯号VS的低频成分,以据此输出一摆幅调整讯号Vsw至均衡器电路212来调整均衡器电路212的摆幅(Swing)。第二检测电路216B耦接至切分器电路214,用以检测并比较均衡讯号VEQ与切分讯号VS的高频成分,以据此输出一增益调整讯号Vgn至均衡器电路212来调整均衡器电路212的增益(Gain)。
在上述实施例中,是以均衡讯号VEQ与切分讯号VS的低频成分来调整均衡器电路212的摆幅,并且以均衡讯号VEQ与切分讯号VS的高频成分来调整均衡器电路212的增益。但本发明不限于此。在另一实施例中,亦可用均衡讯号VEQ与切分讯号VS的高频成分来调整均衡器电路212的摆幅,并且以均衡讯号VEQ与切分讯号VS的低频成分来调整均衡器电路212的增益。此外,上述第一检测电路216A及第二检测电路216B所检测者例如是分别是均衡讯号VEQ及切分讯号VS的低频成分及高频成分的讯号功率大小,但本发明并不限于此。在其他实施例中,第一检测电路216A及第二检测电路216B所检测的对象也可以是均衡讯号VEQ及切分讯号VS的其他讯号特性。
具体而言,在本实施例中,第一检测电路216A包括一第一低通滤波器电路LPF1、一第二低通滤波器电路LPF2以及一第一功率放大电路217A。第一低通滤波器电路LPF1耦接至切分器电路214与均衡器电路212,用以检测均衡讯号VEQ,并输出均衡讯号VEQ的低频成分至第一功率放大电路217A。第二低通滤波器电路LPF2耦接至切分器电路214与控制器电路222,用以检测切分讯号VS,并输出切分讯号VS的低频成分至第一功率放大电路217A。第一功率放大电路217A耦接第一低通滤波器电路LPF1、第二低通滤波器电路LPF2及均衡器电路212。第一功率放大电路217A用以比较均衡讯号VEQ与切分讯号VS的低频成分,以据此输出摆幅调整讯号Vsw来调整均衡器电路212的摆幅。控制器电路222耦接第一低通滤波器电路LPF1及第二低通滤波器电路LPF2,根据一预设状态发出一设定讯号Vset以设定第一低通滤波器电路LPF1及第二低通滤波器电路LPF2内部的直流偏压(DC Bias),从而调整第一低通滤波器电路LPF1及第二低通滤波器电路LPF2的输出。
在一实施例中,第一功率放大电路217A包括一第一功率比较电路PD1以及一第一放大器电路OP1。第一功率比较电路PD1耦接第一低通滤波器电路LPF1及第二低通滤波器电路LPF2,以比较均衡讯号VEQ与切分讯号VS的低频成分的功率大小,并且输出一差动讯号至第一放大器电路OP1。此差动讯号代表两者低频成分的功率差值。接着,第一放大器电路OP1再放大此差动讯号,以作为调整均衡器电路212的摆幅的摆幅调整讯号Vsw,直到均衡讯号VEQ的低频成分功率与切分讯号VS的低频成分功率相等。在另一实施例中,第一放大器电路OP1的实施方式也可以包括一个比较器电路,其可用以执行第一功率比较电路PD1中比较均衡讯号VEQ与切分讯号VS的功能。
在本实施例中,第二检测电路216B包括一第一高通滤波器电路HPF1、一第二高通滤波器电路HPF2以及一第二功率放大电路217B。第一高通滤波器电路HPF1耦接至切分器电路214与均衡器电路212,用以检测均衡讯号VEQ,并输出均衡讯号VEQ的高频成分至第二功率放大电路217B。第二高通滤波器电路HPF2耦接至切分器电路214与控制器电路222,用以检测切分讯号VS,并输出切分讯号VS的高频成分至第二功率放大电路217B。第二功率放大电路217B耦接至第一高通滤波器电路HPF1、第二高通滤波器电路HPF2及均衡器电路212。第二功率放大电路217B用以比较均衡讯号VEQ与切分讯号VS的高频成分,以据此输出增益调整讯号Vgn来调整均衡器电路212的增益。控制器电路222耦接第一高通滤波器电路HPF1及第二高通滤波器电路HPF2,根据一预设状态发出该设定讯号Vset以设定第一高通滤波器电路HPF1及第二高通滤波器电路HPF2内部的直流偏压(DC Bias),从而调整第一高通滤波器电路HPF1及第二高通滤波器电路HPF2的输出。
在一实施例中,第二功率放大电路217B包括一第二功率比较电路PD2以及一第二放大器电路OP2。第二功率比较电路PD2耦接第一高通滤波器电路HPF1及第二高通滤波器电路HPF2,以比较均衡讯号VEQ与切分讯号VS的高频成分的功率大小,并且输出另一差动讯号至第二放大器电路OP2。此差动讯号代表两者高频成分的功率差值。接着,第二放大器电路OP2再放大此差动讯号,以作为调整均衡器电路212输入讯号VIN增益的增益调整讯号Vgn,直到均衡讯号VEQ的高频成分功率与切分讯号VS的高频成分功率相等。在另一实施例中,第二放大器电路OP2的实施方式可以包括一个比较器电路,其可用以执行第二功率比较电路PD2中比较均衡讯号VEQ与切分讯号VS的功能。
图4示出了本发明一实施例的高通滤波器电路的电路示意图。请参考图4,本实施例的高通滤波器电路400包括一电容C1、一电阻R1以及一直流偏压DC1。电容C1的一端作为高通滤波器电路400的输入端,另一端作为高通滤波器电路400的输出端。电阻R1的一端耦接至高通滤波器电路400的输出端,另一端耦接至直流偏压DC1。此种电容C1与电阻R1的电路结构可用以执行滤除输入至高通滤波器电路400的讯号的低频成分。此外,控制器电路222可根据一选取的预设状态设定直流偏压DC1,来调整高通滤波器电路400的输出,从而改变输出的偏移量(offset)。本实施例的高通滤波器电路400的电路结构例如是为图3的第一或第二高通滤波器电路HPF1、HPF2的其中一种实施态样,但本发明并不限于此。
图5示出了本发明一实施例的低通滤波器电路的电路示意图。请参考图5,本实施例的低通滤波器电路500包括一第一低通滤波单元510、一第二低通滤波单元520以及一直流偏压DC2。第一低通滤波单元510为一全带高通滤波器(full band high-pass filter)。第二低通滤波单元520包括一电阻R2以及一电容C2。电阻R2的一端耦接至电容C1的一端,电阻R2的另一端作为低通滤波器电路500的输出端。电容C2的一端耦接至低通滤波器电路500的输出端,电容C2的另一端耦接至接地电压。此种电容C1与电阻R1的电路结构可用以执行滤除输入至低通滤波器电路500的讯号的高频成分。此外,控制器电路222可根据一选取的预设状态设定直流偏压DC2,来调整低通滤波器电路500的输出,从而改变输出的偏移量。本实施例的低通滤波器电路500的电路结构例如是为图3的第一或第二低通滤波器电路LPF1、LPF2的其中一种实施态样,但本发明并不限于此。
值得一提的是,由于本实施例藉由一选取的预设状态设定滤波器的直流偏压DC1、DC2,再由设定好直流偏压的滤波器来调整均衡器电路212的摆幅以及增益,使均衡器电路212操作在多个预设状态其中之一。因此,控制器电路222除了预先储存多个讯号图样(pattern)之外,还需在一存储单元(图中未示)中预先储存对应各预设状态的直流偏压DC1、DC2的设定值作为参数信息,用以改变均衡器电路212的预设状态。
图6示出了图2的传输电路中均衡器电路的详细示意图。请参考图2及图6,本实施例的均衡器电路212包括一差动输入对610、一摆幅调整元件620、一增益调整元件630以及一偏压电路。在此,偏压电路包括一对偏压电阻R与一对偏压电流源I,但其实施态样并不用以限制本发明。在本实施例中,差动输入对610具有两个输入端IN-、IN+,用以接收差动形式的输入讯号VIN。各偏压电阻R与差动输入对610耦接的一端作为均衡器电路212的两个输出端OUT-、OUT+,用以输出差动形式的均衡讯号VEQ。
在本实施例中,讯号检测电路216根据所选择的其中的一预设状态来调整摆幅调整元件620,以调整均衡器电路212的摆幅。类似的,讯号检测电路612也可根据所选择的其中的一预设状态来调整增益调整元件630,以调整均衡器电路212的增益。换句话说,可藉由调整摆幅调整元件620以及增益调整元件630来调整均衡器电路212的转换函数(transfer function),以使均衡器电路212依据调整后的转换函数对输入讯号VIN进行均衡操作。
具体而言,本实施例的摆幅调整元件620包括一第一可变电阻Radj1。在本实施例中,讯号检测电路216调整摆幅调整元件620的方式例如是调高第一可变电阻Radj1的阻值,以增加均衡器电路212的摆幅,使均衡器电路212输出的切分讯号VS的摆幅增加。或者,讯号检测电路216可调低第一可变电阻Radj1的阻值,以降低均衡器电路212的摆幅,使均衡器电路212输出的切分讯号VS的摆幅降低。另外,本实施例的增益调整元件630包括一第二可变电阻Radj2以及一电容C。在本实施例中,讯号检测电路216调整增益调整元件630的方式例如是调高第二可变电阻Radj2的阻值,以降低均衡器电路212的高频增益,使切分讯号VS的高频部份增益降低。或者,讯号检测电路216可调低第二可变电阻Radj2的阻值,以增加均衡器电路212的高频增益,使切分讯号VS的高频部份增益增加。
图7示出了均衡器电路212的转换函数在调整第一可变电阻Radj1时的变化示意图,图8示出了均衡器电路212的转换函数在调整第二可变电阻Radj2时的变化示意图。首先,请参考图7,如上所述,讯号检测电路216可调高或调低第一可变电阻Radj1的阻值,以对应的增加或降低均衡器电路212的摆幅,此一特征反应在均衡器电路212的转换函数T(ω)上,即如图7所示。当第一可变电阻Radj1的阻值增加时,转换函数T(ω)的整体会一起线性上升,如图7中上方的虚线所示出的。另一方面,当第一可变电阻Radj1的阻值降低时,转换函数T(ω)的整体会一起线性下降,如图7中下方的虚线所示出的。请参考图8,如上所述,讯号检测电路216可调高或调低第二可变电阻Radj2的阻值,以对应的降低或增加均衡器电路212的高频增益,此一特征反应在均衡器电路212的转换函数T(ω)上,即如图8所示。假设在转换函数T(ω)高频部份不变的情况下,当第二可变电阻Radj2的阻值增加时,转换函数T(ω)的低频部份会随阻值的增加而线性上升,如图8中上方的虚线所示出的。另一方面,当第二可变电阻Radj2的阻值降低时,转换函数T(ω)的低频部份会随阻值的增加而线性下降,如图8中下方的虚线所示出的。此一低频变动的现象从另一观点来看,假设在转换函数T(ω)低频不变的情况下,当第二可变电阻Radj2的阻值改变时,转换函数T(ω)的高频部份会随阻值的增加而对应的线性下降,或者是转换函数T(ω)的高频部份会随阻值的减少而对应的线性上升。
根据上述调整可变电阻的方式,底下进一步说明输入讯号VIN、均衡讯号VEQ及切分讯号VS三者之间的波形变化关系。图9示出了输入讯号的波形示意图,图10示出了均衡讯号与切分讯号两者的波形示意图。首先,请参考图9,本实施例的输入均衡器电路212的输入讯号VIN低频部份的摆幅例如是介于±0.4伏特之间,输入讯号VIN高频部份的摆幅例如是介于±0.1伏特之间。在一实施例中,此输入信号VIN可由图一的主机10通过传输通道30传送至传输电路100。在传输过程中,输入讯号VIN高频部份衰减程度较输入讯号VIN低频部份多,因此高频部份的摆幅会小于低频部份的摆幅。经过均衡器电路212以特定的增益以及摆幅对如图9的输入讯号VIN进行均衡操作后,可得到均衡讯号VEQ,如图10中的均衡讯号VEQ1或VEQ2所示。而均衡讯号VEQ经过切分器电路214后,切分器电路214会输出切分讯号VS,如图10中的切分讯号VS所示。
在一实施例中,均衡器电路212进行均衡操作时,控制器电路222可利用摆幅调整讯号Vsw来调整第一可变电阻Radj1的阻值,以使均衡器电路212输出的均衡讯号VEQ具有相同的摆幅。在不考虑增益调整的情况下,即可得到经摆幅调整后的均衡讯号VEQ,如图10中的均衡讯号VEQ1、VEQ2。
接着,假设均衡讯号VEQ的摆幅已经过调整而符合实际设计需求,此时均衡讯号VEQ仍有可能存在高频成份过多或不足的情形。在图10中,均衡讯号VEQ1与均衡讯号VEQ2即分别代表其所对应的均衡操作的高频成份过多与不足的情形。与图10中理想的切分讯号VS相比,高频成份过多或不足的均衡讯号VEQ1与均衡讯号VEQ2经切分处理之后,都难以符合实际设计需求。因此,可调整均衡讯号VEQ1、VEQ2的高频部份,以获得具有接近理想高频成份的均衡讯号VEQ。在本实施例中,控制器电路222利用增益调整讯号Vgn来调高或调低第二可变电阻Radj2的阻值,以对应的降低或增加均衡器电路212的高频增益,以使均衡讯号VEQ1高频部份降低或使均衡讯号VEQ1低频部份增加,从而获得符合实际设计需求的切分讯号VS。
在本实施例中,虽然揭示顺序是以先调整讯号摆幅再调整讯号增益,但是本发明并不加以限制。在另一实施例中,也可先调整讯号增益再调整讯号摆幅。此外,在本实施例中,虽然是以分别调整第一可变电阻Radj1以及第二可变电阻Radj2来对应的改变均衡讯号VEQ的摆幅以及高频部份,但是本发明并不加以限制。在另一实施例中,也可分别调整第二可变电阻Radj2以及第一可变电阻Radj1来对应的改变均衡讯号VEQ的摆幅以及高频部份。
图11示出了图2的传输电路中控制器电路的方块示意图。请参考图2及图11,本实施例的控制器电路222包括一寄存器电路710、一模拟数字转换电路720、一比较器电路730、一计数器电路740以及一控制器单元750。寄存器电路710用以预先储存各预设状态的参数信息以及多个理想的讯号图样(pattern)。模拟数字转换电路720用以对切分讯号VS进行一模拟数字转换操作,以据此输出一对应的数字讯号VD至下一级电路。比较器电路730耦接至模拟数字转换电路720,用以比较切分讯号VS与多个理想的的讯号图样,以据此输出比较结果。在一实施例中,讯号图样例如是一数字信息,因此,比较器电路730所接收的切分讯号VS例如是经模拟数字转换后的讯号。计数器电路740耦接至比较器电路740,用以计数切分讯号VS与讯号图样的匹配次数,以据此输出一计数结果。在此实施例中,衡量切分讯号VS与各预设状态的讯号图样的匹配程度的指标例如是指位错误率或者正确率。控制器单元750耦接至计数器电路740,用以根据计数结果选择位错误率最低或正确率最高的参数信息,并使均衡器电路212以操作在对应于此参数信息的预设状态。
应注意的是,在没有配置计数器电路740的实施态样中,控制器单元750例如是直接根据比较器电路730的比较结果从多个预设状态中择一作为其中的一预设状态。在配置有计数器电路740的实施态样中,控制器单元750例如是在一特定期间内,根据计数器电路740的计数结果从多个预设状态中择一作为其中的一预设状态。此特定期间在USB 3.0标准所定义的接收均衡步骤中例如是指4毫秒(milliseconds,ms)。
图12示出了本发明一实施例的讯号传输方法的步骤流程图。请参考图12,本实施例的讯号传输方法例如适用于上述实施例所揭露的传输电路。此讯号传输方法包括如下步骤。在步骤S200中,均衡器电路212接收一输入讯号VIN,并且分别根据多个预设状态来对输入讯号VIN进行均衡操作,以对应各该预设状态输出均衡讯号VEQ。接着,在步骤S210中,切分器电路214对均衡讯号VEQ进行切分操作,以据此输出切分讯号VS。之后,在步骤S220中,讯号检测电路216检测并比较均衡讯号VEQ与切分讯号VS,以据此将均衡器电路212调整至预设状态其中之一。继之,在步骤S230中,控制器电路222比较切分讯号VS与多个理想的讯号图样,并且根据比较结果从预设状态中择一作为其中的一预设状态,以让均衡器电路212根据所选的其中的一预设状态来进行均衡操作。
另外,本发明的实施例的讯号传输方法可以由图1至图12实施例的叙述中获致足够的教示、建议与实施说明,因此不再赘述。
简单来说,在本揭示中,控制器电路222例如以多个预设状态中的第一预设状态来设定讯号检测电路216的滤波器的直流偏压DC1、DC2。接着,讯号检测电路216比较均衡讯号VEQ及切分讯号VS的高低频成分的讯号功率大小,再分别输出对应于高低频成分的差动讯号至其内部的放大器电路,其代表均衡讯号VEQ及切分讯号VS的功率差值。之后,放大器电路再放大差动讯号以调整均衡器电路212内部的摆幅调整元件620及增益调整元件630,直到均衡讯号VEQ的功率与切分讯号VS的功率相等。继之,控制器电路222计算切分讯号VS与理想的讯号图样的位错误率或正确率。
接着,控制器电路222再以多个预设状态中的第二预设状态重复执行上述流程。之后,当执行完所有的预设状态之后,控制器电路222选择位错误率最低的预设状态或正确率最高的预设状态,作为之后均衡器电路212执行均衡操作的参数设定。
综上所述,在本发明的范例实施例中,控制器电路根据切分讯号与讯号图样的比较结果,来设定均衡器电路在进行均衡操作时的预设状态。藉此,可由多个预设状态中,选择最适合目前传输通道品质的一个预设状态。
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,本领域的技术人员,在不脱离本发明的精神和范围的前提下,可作若干的更动与润饰,故本发明的保护范围是以本发明的权利要求为准。

Claims (16)

1.一种适用于输入输出接口的传输电路,包括:
一均衡器电路,接收一输入讯号,并且根据多个预设状态来对该输入讯号进行一均衡操作,以对应各该预设状态输出一均衡讯号;
一切分器电路,耦接至该均衡器电路,接收该均衡讯号,并且对该均衡讯号进行一切分操作,以据此输出一切分讯号;
一讯号检测电路,耦接至该切分器电路,检测并比较该均衡讯号与该切分讯号,以据此将该均衡器电路调整至这些预设状态其中之一;以及
一控制器电路,耦接至该切分器电路,以接收对应各该预设状态的该切分讯号,比较对应各该预设状态的该切分讯号与多个讯号图样以产生一比较结果,并且根据该比较结果从这些预设状态中择一,使该均衡器电路根据被选择的该预设状态来进行该均衡操作。
2.如权利要求1所述的传输电路,其中经由该讯号检测电路以使该均衡器电路根据被选择的该预设状态来进行该均衡操作。
3.如权利要求1所述的传输电路,其中该控制器电路包括:
一比较器电路,耦接至该切分器电路,比较对应各该预设状态的该切分讯号与这些讯号图样,以据此输出该比较结果;
一计数器电路,计数该切分讯号与这些讯号图样的匹配次数,以据此输出一计数结果;以及
一控制器单元,耦接至该计数器电路,根据该计数结果从这些预设状态中择一。
4.如权利要求1所述的传输电路,其中该均衡器电路包括:
一摆幅调整元件,该讯号检测电路根据这些预设状态其中的一预设状态来调整该摆幅调整元件,以调整该均衡器电路的摆幅;以及
一增益调整元件,该讯号检测电路根据这些预设状态其中的一预设状态来调整该增益调整元件,以调整该均衡器电路的增益。
5.如权利要求4所述的传输电路,其中该摆幅调整元件包括一第一可变电阻,该讯号检测电路调高该第一可变电阻的阻值,以增加该均衡器电路的摆幅,并且该讯号检测电路调低该第一可变电阻的阻值,以降低该均衡器电路的摆幅。
6.如权利要求4所述的传输电路,其中该增益调整元件包括一第二可变电阻,该讯号检测电路调高该第二可变电阻的阻值,以降低该均衡器电路的高频增益,并且该讯号检测电路调低该第二可变电阻的阻值,以增加该均衡器电路的高频增益。
7.如权利要求1所述的传输电路,其中该讯号检测电路包括:
一第一检测电路,耦接至该切分器电路,用以检测并比较该均衡讯号与该切分讯号的低频成分,以据此输出一摆幅调整讯号来调整该均衡器电路的摆幅。
8.如权利要求7所述的传输电路,其中该第一检测电路包括:
一第一低通滤波器电路,耦接至该切分器电路与该均衡器电路,用以检测并输出该均衡讯号的低频成分;
一第二低通滤波器电路,耦接至该切分器电路与该控制器电路,用以检测并输出该切分讯号的低频成分;以及
一第一功率放大电路,耦接至该第一及该第二低通滤波器电路,用以比较并放大该均衡讯号与该切分讯号的低频成分的功率,以据此输出该摆幅调整讯号来调整该均衡器电路的摆幅,
其中该控制器电路藉由调整该第一及该第二低通滤波器电路内部的直流偏压,来调整该第一及该第二低通滤波器电路的输出。
9.如权利要求1所述的传输电路,其中该讯号检测电路包括:
一第二检测电路,耦接至该切分器电路,用以检测并比较该均衡讯号与该切分讯号的高频成分,以据此输出一增益调整讯号调整该均衡器电路的增益。
10.如权利要求9所述的传输电路,其中该第二检测电路包括:
一第一高通滤波器电路,耦接至该切分器电路与该均衡器电路,用以检测并输出该均衡讯号的高频成分;
一第二高通滤波器电路,耦接至该切分器电路与该控制器电路,用以检测并输出该切分讯号的高频成分;以及
一第二功率放大电路,耦接至该第一及该第二高通滤波器电路,用以比较并放大该均衡讯号与该切分讯号的高频成分的功率,以据此输出该增益调整讯号来调整该均衡器电路的增益,
其中该控制器电路藉由调整该第一及该第二高通滤波器电路内部的直流偏压,来调整该第一及该第二高通滤波器电路的输出。
11.一种讯号传输方法,适用于输入输出接口的一传输电路,该讯号传输方法包括:
接收一输入讯号,并且分别根据多个预设状态来对该输入讯号进行一均衡操作,以对应各该预设状态输出一均衡讯号;
对该均衡讯号进行一切分操作,以据此输出一切分讯号;
检测并比较该均衡讯号与该切分讯号,以据此将该传输电路设定在这些预设状态其中之一;以及
比较对应各该预设状态的该切分讯号与多个讯号图样以产生一比较结果,并且根据该比较结果从这些预设状态中择一,使该传输电路根据被选择的该预设状态来进行该均衡操作。
12.如权利要求11所述的讯号传输方法,还包括:
储存各该预设状态的参数信息以及这些讯号图样;以及
计数对应各该预设状态的该切分讯号与这些讯号图样的匹配次数,以据此输出一计数结果,
其中在从这些预设状态中择一的步骤中,是根据该计数结果从这些预设状态中择一。
13.如权利要求11所述的讯号传输方法,其中该传输电路包括一均衡器电路,其中对该输入讯号进行该均衡操作的步骤包括:
根据这些预设状态其中的一预设状态来调整该均衡器电路的摆幅或增益。
14.如权利要求13所述的讯号传输方法,其中检测并比较该均衡讯号与该切分讯号的步骤包括:
检测、比较并放大该均衡讯号与该切分讯号的低频成分的功率,以据此输出一摆幅调整讯号来调整该均衡器电路的摆幅;以及
检测、比较并放大该均衡讯号与该切分讯号的高频成分的功率,以据此输出一增益调整讯号来调整该均衡器电路的增益。
15.如权利要求13所述的讯号传输方法,其中该均衡器电路包括一第一可变电阻以及一第二可变电阻,并且检测并比较该均衡讯号与该切分讯号的步骤还包括:
调高或调低该第一可变电阻的阻值,以对应的增加或均衡器电路的摆幅;以及
调高或调低该第二可变电阻的阻值,以对应的降低或增加该均衡器电路的高频增益。
16.一种适用于输入输出接口的传输电路,通过一传输通道与一主机建立通讯连结,该传输电路包括:
一模拟电路区块,接收一输入讯号,并且根据多个预设状态来对该输入讯号进行一均衡操作,以对应各该预设状态产生一均衡讯号,并且对该均衡讯号进行一切分操作,以据此输出一切分讯号;以及
一数字电路区块,耦接至该模拟电路区块,以接收对应各该预设状态的该切分讯号,比较对应各该预设状态的该切分讯号与多个讯号图样以产生一比较结果,并且根据该比较结果从这些预设状态中择一,使该模拟电路区块根据被选择的该预设状态来进行该均衡操作。
CN201210393959.7A 2012-09-26 2012-10-17 适用于输入输出接口的传输电路及其讯号传输方法 Active CN102931920B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101135362 2012-09-26
TW101135362A TWI564725B (zh) 2012-09-26 2012-09-26 適用於輸入輸出介面之傳輸電路及其訊號傳輸方法

Publications (2)

Publication Number Publication Date
CN102931920A true CN102931920A (zh) 2013-02-13
CN102931920B CN102931920B (zh) 2015-12-09

Family

ID=47646650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210393959.7A Active CN102931920B (zh) 2012-09-26 2012-10-17 适用于输入输出接口的传输电路及其讯号传输方法

Country Status (3)

Country Link
US (1) US9215111B2 (zh)
CN (1) CN102931920B (zh)
TW (1) TWI564725B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905338A (zh) * 2019-01-25 2019-06-18 晶晨半导体(上海)股份有限公司 一种串行数据接收器的多级均衡器增益的控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483018B1 (ko) * 2013-11-20 2015-01-19 스마트파이 주식회사 고속 인터페이스 시스템에서의 장치 및 고속 인터페이스 시스템
TWI533136B (zh) * 2013-12-05 2016-05-11 慧榮科技股份有限公司 應用於通用串列匯流排裝置的頻率校正方法及其相關的通用串列匯流排裝置
CN106850476B (zh) * 2017-02-24 2019-09-17 合肥兆芯电子有限公司 均衡器调整方法、可适性均衡器及存储器存储装置
JP7145786B2 (ja) 2019-02-22 2022-10-03 日立Astemo株式会社 信号伝送回路、信号伝送システム
CN112217529B (zh) * 2019-07-09 2023-07-21 富泰华工业(深圳)有限公司 降低无线传输数字信号干扰的方法和装置
US11411781B2 (en) * 2020-07-24 2022-08-09 Lg Electronics Inc. Signal receiving apparatus and signal processing method thereof
CN117375538A (zh) * 2023-10-09 2024-01-09 新港海岸(北京)科技有限公司 一种衰减补偿方法和衰减补偿电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294790A (zh) * 1999-01-22 2001-05-09 三菱电机株式会社 自适应均衡器及自适应均衡方法
US20070058709A1 (en) * 2005-09-13 2007-03-15 Freescale Semiconductor, Inc. Dynamic switching between MLSE and linear equalizer for single antenna interference cancellation in a GSM communication system
TW200843382A (en) * 2007-04-30 2008-11-01 Realtek Semiconductor Corp Equalizer and related signal equalizing method
TW201210271A (en) * 2010-08-26 2012-03-01 Sunplus Technology Co Ltd Hybrid equalization system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505222B1 (en) * 1999-10-29 2003-01-07 International Business Machines Corporation Systems methods and computer program products for controlling undesirable bias in an equalizer
CN1973477B (zh) * 2004-05-12 2012-01-18 汤姆森特许公司 高级电视系统-数字电视接收器中的双模均衡器
US7944964B2 (en) * 2005-12-09 2011-05-17 Electronics And Telecommunications Research Institute Apparatus and method for stable DEF using selective FBF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294790A (zh) * 1999-01-22 2001-05-09 三菱电机株式会社 自适应均衡器及自适应均衡方法
US20070058709A1 (en) * 2005-09-13 2007-03-15 Freescale Semiconductor, Inc. Dynamic switching between MLSE and linear equalizer for single antenna interference cancellation in a GSM communication system
TW200843382A (en) * 2007-04-30 2008-11-01 Realtek Semiconductor Corp Equalizer and related signal equalizing method
TW201210271A (en) * 2010-08-26 2012-03-01 Sunplus Technology Co Ltd Hybrid equalization system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905338A (zh) * 2019-01-25 2019-06-18 晶晨半导体(上海)股份有限公司 一种串行数据接收器的多级均衡器增益的控制方法
CN109905338B (zh) * 2019-01-25 2021-10-19 晶晨半导体(上海)股份有限公司 一种串行数据接收器的多级均衡器增益的控制方法

Also Published As

Publication number Publication date
CN102931920B (zh) 2015-12-09
TW201413459A (zh) 2014-04-01
TWI564725B (zh) 2017-01-01
US9215111B2 (en) 2015-12-15
US20140086297A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
CN102931920B (zh) 适用于输入输出接口的传输电路及其讯号传输方法
EP2779550B1 (en) Digital equalizer adaptation using on-die instrument
CN104378321B (zh) 自适应均衡参数调整、传输性能测试的集成方法和电路
EP2443558B1 (en) Frequency responsive bus coding
EP2332304B1 (en) Automatic calibration in high-speed serial interface receiver circuitry
WO2008085943A2 (en) Equalizing transmitter and method of operation
CN100492889C (zh) 定时调节方法和定时调节设备
CN101119185B (zh) 自动等化器装置及其数字眼图侦测单元与方法
CN204206212U (zh) 自适应均衡参数调整、传输性能测试的电路
CN108540244A (zh) 预加重系数测试方法、装置及通信设备
JP2011228826A (ja) インターフェイス装置
CN105577138A (zh) 一种自适应动态阻抗匹配方法
CN112161525A (zh) 一种电子雷管起爆器接收回路的数据解析方法
CN101997620B (zh) 一种提供测试信号的装置及提供测试信号的方法
CN103543310A (zh) 具有频率响应补偿电路的示波器
CN104168524A (zh) 数字功放设备的控制电路及其控制方法
CN109213708A (zh) 一种串行解串链路发射机的驱动器
CN103513129B (zh) 测试装置
CN101610140A (zh) 信号幅度检测电路及方法
CN105160176B (zh) 一种基于无线传感的电容器在线监测的装置及其监测方法
CN103795395B (zh) 一种用于防抖动时隙同步的模电装置
CN204616104U (zh) 多业务分布通信系统的变频装置
CN106713703A (zh) 一种射频功率探头视频输出信号放大系统及放大方法
CN100369383C (zh) 无线接收系统中直流失调的消除方法、装置及系统
US20130241638A1 (en) Signal amplifier circuit for usb port

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200624

Address after: Chinese Taiwan New Taipei City

Patentee after: VIA LABS Inc.

Address before: Chinese Taiwan New Taipei City

Patentee before: Via Technologies, Inc.

TR01 Transfer of patent right