CN102918727A - GaN边缘发射激光器中增强的平面性 - Google Patents

GaN边缘发射激光器中增强的平面性 Download PDF

Info

Publication number
CN102918727A
CN102918727A CN2011800263266A CN201180026326A CN102918727A CN 102918727 A CN102918727 A CN 102918727A CN 2011800263266 A CN2011800263266 A CN 2011800263266A CN 201180026326 A CN201180026326 A CN 201180026326A CN 102918727 A CN102918727 A CN 102918727A
Authority
CN
China
Prior art keywords
gan
layer
gainn
conducting shell
edge emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800263266A
Other languages
English (en)
Inventor
R·巴特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN102918727A publication Critical patent/CN102918727A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供了一种GaN边缘发射激光器,它包含半极性GaN衬底、有源区、N侧波导层、P侧波导层、N型包覆层和P型包覆层。GaN衬底限定了
Figure DDA00002476265300011
晶体生长面和滑移面。N侧和P侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层。N侧和P侧SL波导层的超晶格层限定了针对波导平面性进行优化的相应层厚度,所述层厚度在约1nm与约5nm之间。根据本发明的另一实施方式,通过确保N侧和P侧GaN基波导层以超过约0.09nm/s的生长速率生长来促进平面化,而不管N侧和P侧GaN基波导层被设置为GaInN/GaN或GaInN/GaInN SL波导层还是本体波导层。在其他一些实施方式中,可通过选择最佳SL层厚度和生长速率来促进平面化。本发明还描述了其他的实施方式,并要求专利保护。

Description

GaN边缘发射激光器中增强的平面性
要求在先提交的美国申请的权益
本申请要求2010年5月28日提交的美国申请系列第12/789,956号的权益。此文件的内容以及本文提到的出版物、专利和专利文件的所有内容都通过参考结合入本文中。
背景
本发明涉及GaN边缘发射激光器,更具体地涉及提高这种激光器的平面性的方案。
发明简述
本发明人认识到,在半极性GaN衬底上生长的长波长发光器件能够表现出提高的辐射效率。例如,高效绿光激光二极管可在半极性
Figure BDA00002476265100011
GaN衬底上生长,即使在高In组成的情况下也能得到均匀的GaInN量子阱。本发明人还认识到,在这种器件中,在GaN衬底上生长的异质外延GaInN和AlGaInN层在许多情况下难以保持平面性。更具体地说,对于许多在半极性GaN衬底上生长的长波长发光器件,一些层,特别是在低温下生长并包含In的那些层,发生小面化和起伏。这些起伏会产生厚度不均匀且/或In含量不均匀的非平面量子阱。所得到的激光器结构的非平面性会变得很高,特别是波导层和包覆层的非平面性会引起过度的光损耗。在量子阱中,厚度的不均匀和铟含量的变化会减小增益,并使发射光谱变宽。
根据本发明的一个实施方式,本发明提供了GaN边缘发射激光器,所述激光器包含半极性GaN衬底、有源区、N侧波导层、P侧波导层、N型包覆层和P型包覆层。GaN衬底限定了晶体生长面和滑移面。N侧和P侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层。N侧和P侧SL波导层的超晶格层限定了针对波导平面性进行优化的相应层厚度,所述层厚度在约1nm与约5nm之间。根据本发明的另一实施方式,可以通过确保N侧和P侧GaN基波导层以超过约0.09nm/s的生长速率生长来促进平面化,而不管N侧和P侧GaN基波导层被设置为GaInN/GaN或GaInN/GaInN SL波导层还是本体(bulk)波导层。在其他一些实施方式中,可通过选择最佳SL层厚度和生长速率来促进平面化。
附图说明
当结合以下附图阅读下面对本发明的具体实施方式的详细描述时,可对其形成最好的理解,附图中相同的结构用相同的编号表示,其中:
图1是根据本发明的一个实施方式的GaN边缘发射激光器的示意图。本文在描述图中所示实施方式的各种变化形式时,将不再参考其他附图。
具体实施方式
首先参见图1,图中所示的GaN边缘发射激光器100包含半极性GaN衬底10、有源区20、N侧波导层30、P侧波导层40、N型包覆层50和P侧包覆层60。GaN衬底限定了
Figure BDA00002476265100021
晶体生长面和滑移面。出于描述和限定本发明的目的,应当指出,GaN激光器往往在GaN衬底的极性面上生长,这带来很强的内场,所述内场会妨碍发光所需的电子-空穴复合。非极性面如m面和a面可用来消除这些场。GaN衬底也可沿着半极性晶面切割,产生弱得多的内场,并可在有源区形成高铟浓度,这可使发射波长延伸至绿光。本发明的具体实施方式涉及在GaN衬底的
Figure BDA00002476265100022
晶面上的生长,在此情况下,可称GaN衬底限定了
Figure BDA00002476265100023
晶体生长面。GaN衬底的相应滑移面通常在朝向衬底c轴的方向延伸。
在图示实施方式中,N侧波导层30和P侧波导层40包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层。对于SL波导层,N侧和P侧SL波导层30、40的超晶格层限定了针对波导平面性进行优化的相应层厚度,所述层厚度在约1nm与约5nm之间。本发明人还设想,通过确保N侧和P侧GaN基波导层30、40以超过约0.09nm/s的生长速率生长来促进平面化,而不管N侧和P侧GaN基波导层30、40被设置为GaInN/GaN或GaInN/GaInN SL波导层还是本体波导层。
图中进一步显示,有源区20介于N侧SL波导层30与P侧SL波导层40之间,并基本上平行于这两个层延伸。N型包覆层50介于N侧波导层30与GaN衬底10之间。P型包覆层60在P侧波导层40上形成。P侧SL波导层与N侧SL波导层各自的组成通常基本上相同,虽然并不做这样的要求。此外,在许多情况下,N侧SL波导层30至少与P侧SL波导层40一样厚,N侧SL波导层30的厚度增加通常伴随着光损耗减少。
P侧接触结构70可按照与GaN基激光器中接触件的制作相关的常规技术或待开发技术形成,在图1中仅呈现了示意图。本发明人还设想,可在GaN衬底10上形成GaN基缓冲层15,用以辅助制造过程。此外,可在有源区20的上面和下面,也就是在有源区20与相应的N侧和P侧波导层30、40之间提供电流阻挡层80,用以提高器件性能。这些类型的激光二极管组件在最新的GaN基激光器设计文献中有完整的记录。
应当指出,本领域已有完整记录的马修斯-布莱克斯利(Matthews-Blakeslee)平衡理论对应变异质外延层开始发生错配位错的临界厚度提供了预测。根据该理论,如果层厚度超过该层的马修斯-布莱克斯利临界厚度,就会因产生错配位错而发生弛豫。此厚度与层中应变的数学乘积在本文中称作该层的应变-厚度积。本发明人已经认识到,对于本发明的GaN基激光器,N侧SL波导层30的应变-厚度积可设计成超过其应变弛豫临界值。此外,N型包覆层50的应变-厚度积可设计成超过其应变弛豫临界值。所得的应变弛豫在沿着GaN衬底的滑移面的单向上,有助于提高GaN基激光二极管的性能。例如,在一个实施方式中,N侧SL波导层30的应变-厚度积超过其应变弛豫临界值约10%。在另一个实施方式中,有源区20的应变-厚度积小于其应变弛豫临界值。在其他一些实施方式中,N型包覆层50的应变-厚度积超过其应变弛豫临界值约10%。
有源区20可包含势垒层和单一量子阱层或多周期量子阱层。在此情况下,量子阱层的厚度通常在约1nm到约5nm之间,势垒层的厚度在约5nm到约30nm之间。在许多情况下,有源区20包含单一GaInN量子阱或多周期GaInN量子阱。在此情况下,可调节GaInN量子阱的In含量,使其大于N型SL波导层的In含量,以促进在光谱范围中绿光部分的工作。在所设想的其他一些实施方式中,有源区还包含AlGaInN势垒层,并调节AlGaInN势垒层的In含量,使其小于N型SL波导层的In含量。
N型包覆层50和P型包覆层60可包含GaN、AlGaN或AlGaInN本体晶体(bulk crystal),或者AlGaN/AlGaN、AlGaN/GaN、AlGaInN/AlGaInN、AlGaInN/GaN、AlGaInN/GaInN或AlGaInN/AlGaN的SL。
虽然图1所示的GaN边缘发射激光器100包含介于N侧SL波导层30与N型包覆层50之间的N型GaN过渡层55以及介于P侧SL波导层40与P型包覆层60之间的P型GaN过渡层65,但应当指出,这些层对于器件的设计或工作并不重要,可以省略。
出于描述和限定本发明的目的,应当指出,本文提到的GaN激光二极管应理解为表示在GaN衬底上生长的激光二极管结构。本文提到的GaN衬底应理解为表示衬底由高纯GaN制成。
应当指出,本文所用的诸如“优选”、“常规”和“通常”之类的词语不是用来限制本发明要求保护的范围,也不表示某些特征对本发明要求保护的结构或者功能来说是重要的、关键的甚至是必不可少的。相反地,这些词语仅仅用来表明本发明实施方式的特定方面,或者强调可以用于或者可以不用于本发明特定实施方式的可选或附加的特征。
出于描述和限定本发明的目的,应当指出,词语“基本上”和“约”在本文中用来表示可归属于任何定量比较、数值、测量或其他表达的固有不确定程度。词语“基本上”和“约”在本文中还用来表示在不会导致所讨论的主题的基本功能发生改变的情况下定量表达值与特定基准的偏离程度。
在结合具体实施方式详细描述了本发明的主题之后,应当指出,本文披露的各种细节不应理解为暗示着这些细节涉及属于本文所述各种实施方式的实质性组成的要素,即便在本文所附的每幅图中都示出了特定要素的情况下也是如此。相反,本文所附权利要求书应理解为唯一表达了本发明的广度和本文所述各项发明的相应范围。此外,在不背离所附权利要求书所限定的本发明范围的前提下,显然可以作出各种改变和变化。更具体来说,尽管本发明的一些方面在本文中被认为是优选的或者特别有益的,但应该可以想到,本公开没有必要限于这些方面。
应当指出,以下权利要求书中的一项或多项权利要求使用短语“其特征在于”作为过渡语。出于限定本发明的目的,应当指出,在权利要求中用该短语作为开放式过渡短语来引出对一系列结构特征的描述,应当对其作出与更常用的开放式引导语“包括/包含”类似的解释。

Claims (18)

1.一种GaN边缘发射激光器,它包含半极性GaN衬底、有源区、N侧波导层、P侧波导层、N型包覆层和P型包覆层,其中:
所述GaN衬底限定了
Figure FDA00002476265000011
晶体生长面和滑移面;
所述N侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层;
所述P侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层;
所述N侧和P侧SL波导层的超晶格层限定了针对波导平面性进行优化的相应层厚度,所述层厚度在约1nm与约5nm之间;
所述有源区介于N侧SL波导层与P侧SL波导层之间,并基本上平行于这两个层延伸;
所述N型包覆层介于N侧波导层与GaN衬底之间;
所述P型包覆层在P侧波导层上形成;以及
所述N侧SL波导层的应变-厚度积超过其应变弛豫临界值,且所述N型包覆层的应变-厚度积超过其应变弛豫临界值,使得所得应变弛豫在沿着GaN衬底的滑移面的单向上。
2.一种制造GaN边缘发射激光器的方法,所述激光器包含半极性GaN衬底、有源区、N侧波导层、P侧波导层、N型包覆层和P型包覆层,其中:
所述GaN衬底限定了
Figure FDA00002476265000012
晶体生长面和滑移面;
所述N侧波导层包含GaN基超晶格波导层或本体波导层;
所述P侧波导层包含GaN基超晶格波导层或本体波导层;
所述有源区介于N侧SL波导层与P侧SL波导层之间,并基本上平行于这两个层延伸;
所述N型包覆层介于N侧波导层与GaN衬底之间;
所述P型包覆层在P侧波导层上形成;
所述N侧SL波导层的应变-厚度积超过其应变弛豫临界值,且所述N型包覆层的应变-厚度积超过其应变弛豫临界值,使得所得应变弛豫在沿着GaN衬底的滑移面的单向上;以及
所述N侧和P侧GaN基波导层以超过0.09nm/s的生长速率生长,以优化波导平面性。
3.如权利要求2所述的制造GaN边缘发射激光器的方法,其特征在于,所述N侧和P侧GaN基波导层的生长速率是约0.095nm/s。
4.如权利要求2所述的制造GaN边缘发射激光器的方法,其特征在于,所述N侧和P侧GaN基波导层的生长速率在约0.09nm/s与约0.10nm/s之间。
5.如权利要求2所述的制造GaN边缘发射激光器的方法,其特征在于:
所述N侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层;
所述P侧波导层包含GaInN/GaN或GaInN/GaInN超晶格(SL)波导层;以及
使N侧和P侧SL波导层的超晶格层生长,以限定针对波导平面性进行优化的相应层厚度,所述层厚度在约1nm与约5nm之间。
6.如权利要求1所述的GaN边缘发射激光器,其特征在于,中间夹有有源区的N侧和P侧波导层包含GaInN/GaN SL波导层。
7.如权利要求1所述的GaN边缘发射激光器,其特征在于,中间夹有有源区的N侧和P侧波导层包含GaInN/GaInN SL波导层。
8.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述N侧SL波导层的应变-厚度积超过其应变弛豫临界值约10%。
9.如权利要求1所述的GaN边缘发射激光器,其特征在于:
所述P侧SL波导层与N侧SL波导层的相应组成基本上相同;以及
所述N侧SL波导层至少与P侧SL波导层一样厚。
10.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述有源区的应变-厚度积小于其应变弛豫临界值。
11.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述有源区包含势垒层和单一量子阱层或多周期量子阱层。
12.如权利要求11所述的GaN边缘发射激光器,其特征在于:
所述量子阱层的厚度在约1nm与约5nm之间;以及
所述势垒层的厚度在约5nm与约30nm之间。
13.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述有源区包含单一GaInN量子阱或多周期GaInN量子阱。
14.如权利要求13所述的GaN边缘发射激光器,其特征在于,所述GaInN量子阱的In含量大于N型SL波导层的In含量。
15.如权利要求13所述的GaN边缘发射激光器,其特征在于,所述有源区还包含AlGaInN势垒层。
16.如权利要求15所述的GaN边缘发射激光器,其特征在于,所述AlGaInN势垒层的In含量小于N型SL波导层的In含量。
17.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述N型包覆层和P型包覆层包含GaN、AlGaN或AlGaInN的本体晶体,或者AlGaN/AlGaN、AlGaN/GaN、AlGaInN/AlGaInN、AlGaInN/GaN、AlGaInN/GaInN或AlGaInN/AlGaN的SL。
18.如权利要求1所述的GaN边缘发射激光器,其特征在于,所述N型包覆层的应变-厚度积超过其应变弛豫临界值约10%。
CN2011800263266A 2010-05-28 2011-05-26 GaN边缘发射激光器中增强的平面性 Pending CN102918727A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/789,956 2010-05-28
US12/789,956 US8218595B2 (en) 2010-05-28 2010-05-28 Enhanced planarity in GaN edge emitting lasers
PCT/US2011/038015 WO2011150135A2 (en) 2010-05-28 2011-05-26 ENHANCED PLANARITY IN GaN EDGE EMITTING LASERS

Publications (1)

Publication Number Publication Date
CN102918727A true CN102918727A (zh) 2013-02-06

Family

ID=45004794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800263266A Pending CN102918727A (zh) 2010-05-28 2011-05-26 GaN边缘发射激光器中增强的平面性

Country Status (7)

Country Link
US (2) US8218595B2 (zh)
EP (1) EP2577821A4 (zh)
JP (1) JP2013527626A (zh)
KR (1) KR20130090797A (zh)
CN (1) CN102918727A (zh)
TW (1) TW201203761A (zh)
WO (1) WO2011150135A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811243B (zh) * 2016-03-28 2018-10-26 中国科学院半导体研究所 应力调控波导层绿光激光器外延片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238227A1 (en) * 2008-03-05 2009-09-24 Rohm Co., Ltd. Semiconductor light emitting device
JP2009239084A (ja) * 2008-03-27 2009-10-15 Rohm Co Ltd 半導体レーザ素子
WO2010041657A1 (ja) * 2008-10-07 2010-04-15 住友電気工業株式会社 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961197A (en) 1988-09-07 1990-10-02 Hitachi, Ltd. Semiconductor laser device
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JPH10270756A (ja) * 1997-03-27 1998-10-09 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体装置
US6459096B1 (en) 1998-01-14 2002-10-01 Manijeh Razeghi Multi quantum well grinsch detector
JP2002026456A (ja) 2000-06-30 2002-01-25 Toshiba Corp 半導体装置、半導体レーザ及びその製造方法並びにエッチング方法
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
JP3951973B2 (ja) * 2003-06-27 2007-08-01 日亜化学工業株式会社 窒化物半導体素子
KR101351396B1 (ko) * 2005-06-01 2014-02-07 재팬 사이언스 앤드 테크놀로지 에이젼시 반극성 (Ga,Al,In,B)N 박막들, 헤테로구조들, 및소자들의 성장 및 제조에 대한 기술
KR20090018106A (ko) * 2006-05-09 2009-02-19 더 리전츠 오브 더 유니버시티 오브 캘리포니아 비극성 및 준극성 (al, ga, in)n을 위한 인-시츄 결함 감소 기술
KR100835116B1 (ko) * 2007-04-16 2008-06-05 삼성전기주식회사 질화물 반도체 발광 소자
WO2009035648A1 (en) * 2007-09-14 2009-03-19 Kyma Technologies, Inc. Non-polar and semi-polar gan substrates, devices, and methods for making them
JP4390007B2 (ja) * 2008-04-07 2009-12-24 住友電気工業株式会社 Iii族窒化物半導体素子及びエピタキシャルウエハ
US8481991B2 (en) * 2009-08-21 2013-07-09 The Regents Of The University Of California Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
KR20130056206A (ko) * 2010-04-05 2013-05-29 더 리전츠 오브 더 유니버시티 오브 캘리포니아 반극성 면 ⅲ-족 질화물 반도체-계 발광 다이오드들 및 레이저 다이오드들을 위한 알루미늄 갈륨 질화물 배리어들 및 분리 구속 헤테로구조 층들

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090238227A1 (en) * 2008-03-05 2009-09-24 Rohm Co., Ltd. Semiconductor light emitting device
JP2009239084A (ja) * 2008-03-27 2009-10-15 Rohm Co Ltd 半導体レーザ素子
WO2010041657A1 (ja) * 2008-10-07 2010-04-15 住友電気工業株式会社 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI KYONO ET AL.: "Optical Polarization Characteristics of InGaN Quantum Wells for Green Laser Diodes on Semi-Polar{2021} GaN Substrates", 《APPLIED PHYSICS EXPRESS》 *

Also Published As

Publication number Publication date
EP2577821A4 (en) 2015-08-12
EP2577821A2 (en) 2013-04-10
JP2013527626A (ja) 2013-06-27
US8218595B2 (en) 2012-07-10
US20110292958A1 (en) 2011-12-01
US8355422B2 (en) 2013-01-15
KR20130090797A (ko) 2013-08-14
TW201203761A (en) 2012-01-16
WO2011150135A2 (en) 2011-12-01
WO2011150135A3 (en) 2012-04-05
US20120244654A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP6804413B2 (ja) C方向において+/−15度より少ないミスカットを有するm面基板上の半極性iii族窒化物光電子デバイス
EP2709170B1 (en) P-Side Layers for Short Wavelength Light Emitters
US9252329B2 (en) Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction
EP2615650B1 (en) III-nitride epitaxial substrate and deep ultraviolet light emitting device using the same
US8121165B2 (en) MQW laser structure comprising plural MQW regions
JP6921059B2 (ja) Iii族窒化物積層体、およびiii族窒化物発光素子
JP5521068B1 (ja) Iii族窒化物半導体発光素子
CN103026561B (zh) 具有偏离有源区的错配位错的GaN基激光二极管
TW469654B (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP2000196143A (ja) 半導体発光素子
JP2014508416A (ja) インジウム含有クラッド層を有する半導体レーザ
JP2007201040A (ja) 半導体発光素子
CN102918727A (zh) GaN边缘发射激光器中增强的平面性
JP2009043832A (ja) 半導体発光素子
WO2007032355A1 (ja) 半導体発光素子
JP2006339311A (ja) 半導体レーザ
JP2013527626A5 (zh)
JP2009004555A (ja) 発光素子
Guo et al. Development of AlGaN-based deep ultraviolet light-emitting diodes and laser diodes
JP2007081181A (ja) 半導体発光素子
JP2002374044A (ja) 窒化物半導体発光素子
JP2008198858A (ja) 半導体ldエピ構造及び半導体ld

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160824

C20 Patent right or utility model deemed to be abandoned or is abandoned