CN102816106A - 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法 - Google Patents

用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法 Download PDF

Info

Publication number
CN102816106A
CN102816106A CN2012101130855A CN201210113085A CN102816106A CN 102816106 A CN102816106 A CN 102816106A CN 2012101130855 A CN2012101130855 A CN 2012101130855A CN 201210113085 A CN201210113085 A CN 201210113085A CN 102816106 A CN102816106 A CN 102816106A
Authority
CN
China
Prior art keywords
compound
structural formula
amino
tyraminase
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101130855A
Other languages
English (en)
Inventor
本杰明·米杰茨
希拉·慕莱
杰克·梁
利萨·M·纽曼
张希云
詹姆士·拉隆德
迈克尔·D·克莱
军·朱
约翰·M·格鲁伯
杰弗里·科尔贝克
小约翰·D·芒格
亚加迪什·马维纳哈利
罗杰·谢尔登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme LLC
Original Assignee
Schering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering Corp filed Critical Schering Corp
Publication of CN102816106A publication Critical patent/CN102816106A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/52Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03004Monoamine oxidase (1.4.3.4)

Abstract

本发明内容提供如本文所述的基本上立体异构纯的结构式II至VII的稠合二环脯氨酸化合物,以及用于制备它们的生物催化方法和那些方法中使用的酶。

Description

用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法
本申请是申请日为2009年6月23日,申请号为200980133157.9,发明名称为“用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法”的申请的分案申请。
1.技术领域
本公开内容涉及基本上立体异构纯的稠合二环脯氨酸化合物、用于它们制备的生物催化方法以及用于所述方法的生物催化酶。
2.序列表、表格或计算机程序的引用
根据37C.F.R.§1.821以计算机可读形式(CRF)同时电子提交的文件名为CX2-020WO01.txt的“序列表”通过引用并入本文。序列表的电子副本是在2009年6月23日创建的,文件大小为110千字节。
3.背景
二环脯氨酸类似物用于拟肽药物(peptidomimetic drug)的发现和开发。(A.Trabocchi等人(2008)Amino Acids(2008)34:1-24)。丙型肝炎病毒蛋白酶抑制剂boceprevir(SCH 505034;((1R,2S,5S)-N-(4-氨基-1-环丁基-3,4-二氧代丁-2-基)-3-((S)-2-(3-叔丁基脲基)-3,3-二甲基丁酰基)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-甲酰胺)(Malcolm等人(2006)Antimicrob.AgentsChemother.50(3):101320),和telaprevir(VX 950;N-((S)-1-环己基-2-((S)-1-((1S,3aR,6aS)-1-((R)-3-(2-(环丙氨基)-2-氧代乙酰基)己酰基)六氢环戊[c]吡咯-2(1H)-基)-3,3-二甲基-1-氧代丁-2-基氨基)-2-氧代乙基)吡嗪-2-甲酰胺)(Perni等人(2006)Antimicrob.AgentsChemother.50(3):899909)。
Figure BDA0000154039570000021
Boceprevir和telaprevir分别是由下面所显示的顺-稠合二环L-脯氨酸类似物(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-羧酸和(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸的酯制备的:
Figure BDA0000154039570000022
WO 2000/20824和WO 2000/218369描述了包括对应于结构式VI的各种稠合二环L-脯氨酸类似物的大量其他丙型肝炎蛋白酶抑制剂。
尽管已经报道了使用有机化学的方法和工具合成这种复杂分子的方法,但是那些合成通常是多步的、复杂的、昂贵的、低效的、总产率低的方法。
Wu等人(WO 2007/075790)公开了由相应的结构式(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷的对称(非手性)二环胺制备二环脯氨酸类似物(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-羧酸的甲基酯,由所述二环胺氧化为相应的如下结构式的外消旋亚胺开始:
Figure BDA0000154039570000031
随后外消旋亚胺与氰化物反应得到如下结构式的外消旋氨基腈:
然后该外消旋氨基腈与酸和甲醇反应得到如下结构式的外消旋氨基酸甲酯:
Figure BDA0000154039570000033
最后,通过非对映体盐拆分来分离这些(1R,2S,5S)(不期望的)和(1S,2R,5R)(期望的)立体异构的甲基酯,形成具有前一对映体的二-对甲苯基-D-酒石酸盐或具有后一对映体的二-对甲苯基-L-酒石酸盐。
Tanoury等人(WO 2007/022459)公开了如下从相应的对称(非手性)二环胺合成外消旋(叔丁氧基羰基)八氢环戊[c]吡咯-1-羧酸:制备N-Boc衍生物,并使其在存在多于化学计量的大量二胺螯合物存在下与引火剂仲丁基锂反应,然后与二氧化碳反应以制备如下所描绘的外消旋N-Boc氨基酸,所述反应全部都在低于-70℃下进行:
然后使用诸如S-1-氨基四氢萘的单对映体手性碱通过非对映体盐拆分分离这些外消旋Boc-酸的(1R,2S,5S)(不期望的)和(1S,2R,5R)(期望的)立体异构体。
尽管通过这些方法获得了氨基酸衍生物的期望立体异构体,但是这些二环脯氨酸类似物的对映体混合物的拆分固有地包括了用于制备外消旋混合物的所有材料(例如,原料、试剂、溶剂、催化剂)中至少一半的浪费。
还已经报道了氨基酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸及其酯的化学合成的其他方法,所述方法包括(i)N-乙酰基-3-氮杂二环[3.3.0]辛烷的阳极氧化(EA 00090362)和(ii)噻唑内鎓盐方法(Letters in DrugDesign&Discovery(2005)2(7):497502);J.Org.Chem.1994,59,2773-8)。
由结构式I((1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷)的相应的对称(非手性)二环胺不对称地制备结构式(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸及其结构式V的酯的氨基酸的方法避免了形成外消旋混合物和随后分离对映体的需要,该方法与上面所描述的基于拆分的方法相比可能更有效、浪费更少并且更加有成本效率。
已经使用单胺氧化酶经由用氧将一种对映体立体特异性地氧化为相应的亚胺而拆分和去外消旋化(deracemize)外消旋手性胺。已经报道了黑曲霉(Aspergillus niger)的黄素依赖性单胺氧化酶的衍生物(MAO N)(Shilling等人(1995)Biochim.Biophys.Acta.1243:52937)可与非特异性化学还原剂组合用于去外消旋化(d/l)α甲基苄胺以提供对映体纯的(93%ee)(d)α甲基苄胺(Alexeeva等人(2002)Angew.Chem.Int.Ed.41:3177-3180)。黑曲霉的黄素依赖性单胺氧化酶的衍生物还用于去外消旋化(R/S)-2-苯基吡咯烷以提供对映体纯的(98%ee)(R)-2-苯基吡咯烷(Carr等人(2005),ChemBioChem 6:63739;Gotor等人“EnantioselectiveEnzymatic Desymmetrization in Organic Synthesis(有机合成中的对映体选择性酶促去对称化),”Chem.Rev.(2005)105:313-54)。
因此,期望的是不仅提供基本上对映体纯的手性化合物,尤其是可用作合成中间体的手性胺化合物,而且还提供用于它们的不对称合成的有效的、可放大的生物催化方法。因此,还期望的是提供可用于那些生物催化方法中的酶。
4.概述
在本发明的第一方面,提供了一种基本上立体异构纯的化合物,所述化合物是根据结构式II(a)、II(b)、III(a)或IV(a)的化合物:
Figure BDA0000154039570000051
包括其盐和水合物,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在本发明的另一方面,提供了一种混合物,包含一对在本发明的第一方面提供的基本上立体异构纯的化合物,其中所述的一对化合物选自:(i)结构式II(a)和II(b)的化合物;(ii)结构式III(a)和III(b)的化合物;以及(iii)结构式IV(a)和IV(b)的化合物。
在本发明的又一方面,提供了一种制备基本上立体异构纯的根据结构式II(a)的化合物的方法:
Figure BDA0000154039570000061
包括其盐和水合物,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括:使根据结构式I的胺化合物
Figure BDA0000154039570000062
其中A、M和M’如对结构式II(a)和II(b)所定义,在单胺氧化酶与辅因子的存在下在其中单胺氧化酶将结构式I的胺化合物氧化为结构式II(a)的相应亚胺化合物的条件下与氧接触。
在本发明的又一方面,提供了一种制备包含基本上对映体纯的根据结构式III(a)的氨基磺酸盐化合物和基本上对映体纯的根据结构式III(b)的氨基磺酸盐化合物的混合物的方法:
Figure BDA0000154039570000071
包括它们的盐和水合物,其中:
其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括:使根据结构式I的胺化合物
Figure BDA0000154039570000072
其中A、M和M’如对结构式III所定义,在与辅因子缔合的单胺氧化酶和亚硫酸氢盐的存在下在产生所述包含基本上对映体纯的根据结构式III(a)的氨基磺酸盐化合物和基本上对映体纯的根据结构式III(b)的氨基磺酸盐化合物的混合物的条件下与氧接触。
在本发明的又一方面,提供了一种制备基本上对映体纯的根据结构式IV(a)的氨基腈化合物的方法:
Figure BDA0000154039570000081
包括其盐和水合物,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括:使根据结构式I的胺化合物
Figure BDA0000154039570000082
其中A、M和M’如对结构式IV所定义,在与辅因子缔合的单胺氧化酶和亚硫酸氢盐的存在下在产生包含基本上对映体纯的根据结构式III(a)的氨基磺酸盐化合物和基本上对映体纯的根据结构式III(b)的氨基磺酸盐化合物的混合物的条件下与氧接触
Figure BDA0000154039570000091
以及
使根据结构式III(a)和III(b)的化合物在产生基本上对映体纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触。
在本发明的又一方面,提供了一种制备基本上立体异构纯的根据结构式VI的氨基酸化合物的方法:
Figure BDA0000154039570000092
包括其盐,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括使基本上对映体纯的根据结构式IV(a)的氨基腈化合物:
Figure BDA0000154039570000101
其中A、M和M’如对结构式VI的氨基酸化合物所定义,在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VI的氨基酸化合物的条件下与酸和水接触。
在本发明的又一方面,提供了一种制备基本上立体异构纯的根据结构式VI的氨基酸化合物的方法:
Figure BDA0000154039570000102
包括其盐,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
Figure BDA0000154039570000111
在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
Figure BDA0000154039570000112
其中A、M和M’如对结构式VI的氨基酸化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VI的氨基酸化合物的条件下与酸和水接触。
在本发明的又一方面,提供了一种制备基本上对映体纯的根据结构式V的氨基酯化合物的方法:
包括其盐,其中:
R5是(C1-C6)烷基;
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括使基本上立体异构纯的根据结构式VI的氨基酸化合物:
Figure BDA0000154039570000121
其中A、M和M’如对结构式V的氨基酯化合物所定义,在其中将根据结构式VI的氨基酸化合物转化为基本上对映体纯的结构式V的氨基酯化合物的条件下与酸和选自由R5-OH和R5OC(O)CH3组成的组的化合物接触。
在本发明的又一方面,提供了一种制备基本上立体异构纯的根据结构式V的氨基酯化合物的方法:
Figure BDA0000154039570000122
包括其盐,其中:
R5是(C1-C6)烷基,A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
其中A、M和M’如对结构式V的氨基酯化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式V的氨基酯化合物的条件下与酸和醇接触。
在本发明的又一方面,提供了一种制备基本上立体异构纯的根据结构式VII的氨基酰胺化合物的方法:
Figure BDA0000154039570000133
包括其盐,其中:
A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接;
条件是
(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;
(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且
(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
Figure BDA0000154039570000141
在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
其中A、M和M’如对结构式VII的氨基酰胺化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VII的氨基酰胺化合物的条件下与酸接触。
本公开内容提供基本上立体异构纯的结构式II(a)的二环亚胺化合物(及其结构式II(b)的二聚体),该化合物尤其可用作合成立体异构性被限定的治疗剂的新颖中间体:
Figure BDA0000154039570000151
包括其盐和水合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
本公开内容还提供基本上对映体纯的根据结构式III(a)和结构式III(b)的氨基磺酸盐化合物,其尤其可用作合成对映体异构性被限定的治疗剂的新颖中间体:
Figure BDA0000154039570000152
包括其盐和水合物,其中A、M和M’如上文所描述。
此外,本公开内容提供了基本上对映体纯的结构式IV(a)的氨基腈化合物,该化合物可用作合成立体异构性被限定的治疗剂的新颖中间体。基本上对映体纯的结构式IV(a)的反式氨基腈化合物还可以提供为包含基本上对映体纯的结构式IV(b)的顺式氨基腈化合物的混合物,
Figure BDA0000154039570000161
包括其盐和水合物,其中A、M和M’如上文所描述。
本公开内容提供任选被保护的基本上对映体纯的结构式V的化合物,该化合物尤其可用作合成对映体异构性被限定的治疗剂的中间体:
Figure BDA0000154039570000162
包括其盐和水合物,其中A、M和M’如上文所描述,并且其中R5选自由下列组成的组:保护基团(例如,苄基或三甲基甲硅烷基以及类似基团)、-(C1-C2)烷基、-(C1-C3)烷基、-(C1-C4)烷基和-(C1-C6)烷基。在某些非限制性实施方案中,R5是甲基、乙基或叔丁基。
本公开内容还提供任选被保护的基本上对映体纯的结构式V(b)的化合物(对应于结构式V的化合物的顺式对映体):
Figure BDA0000154039570000163
包括其盐和水合物,其中A、M和M’如上文所描述,并且其中R5选自由下列组成的组:保护基团(例如,苄基或三甲基甲硅烷基以及类似基团)、-(C1-C2)烷基、-(C1-C3)烷基、-(C1-C4)烷基和-(C1-C6)烷基。在某些非限制性实施方案中,R5是甲基、乙基或叔丁基。
本公开内容还提供基本上对映体纯的羧基取代的结构式VI的化合物,该化合物尤其可用作合成对映体异构性被限定的治疗剂的中间体:
Figure BDA0000154039570000171
包括其盐和水合物,其中A、M和M’如上文所描述。
本公开内容还提供任选被保护的基本上对映体纯的结构式VI(b)的化合物(对应于结构式VI的化合物的顺式对映体):
Figure BDA0000154039570000172
包括其盐和水合物,其中A、M和M’如上文所描述。
此外,本公开内容还提供基本上对映体纯的结构式VII的化合物,该化合物尤其可用作合成对映体异构性被限定的治疗剂的中间体:
包括其盐和水合物,其中A、M和M’如上文所描述。
本公开内容还提供任选被保护的基本上对映体纯的结构式VII(b)的化合物(对应于结构式VII的化合物的顺式对映体):
包括其盐和水合物,其中A、M和M’如上文所描述。
因此,在具体的实施方案中,本公开内容提供可用作合成一种或多种治疗剂的中间体的下列稠合二环脯氨酸化合物,以及用于合成至少下列稠合二环脯氨酸化合物的生物催化方法:
Figure BDA0000154039570000181
本公开内容提供可用作合成一种或多种治疗剂的中间体的下列稠合二环脯氨酸化合物,以及用于合成至少下列稠合二环脯氨酸化合物的生物催化方法:
Figure BDA0000154039570000182
在其他具体实施方案中,本公开内容提供可用作合成一种或多种治疗剂的中间体的下列化合物,以及用于合成这些化合物的生物催化方法:
Figure BDA0000154039570000191
因此,本公开内容提供可用作合成一种或多种治疗剂的中间体的稠合二环脯氨酸化合物,以及用于合成这些稠合二环脯氨酸化合物的生物催化方法:
本公开内容还提供用于生物催化合成基本上立体异构纯的结构式II至VII的化合物的方法。在一个实施方案中,本公开内容提供制备基本上立体异构纯的根据结构式II的亚胺化合物的方法,所述化合物包括其盐,其中A、M和M’如上文所描述的。所述方法包括使根据结构式I的对称(非手性)二环胺化合物
其中A、M和M’如上文所描述,在辅因子的存在下在其中单胺氧化酶将结构式I的胺化合物氧化为相应的结构式II(a)的亚胺化合物、其式II(b)的二聚体和它们的混合物的条件下与氧和单胺氧化酶接触。在某些实施方案中,辅因子选自由下列组成的组:FAD、FMN、NADP和NAD。在具体的实施方案中,辅因子是FAD。在某些实施方案中,反应混合物还包含可用于促进将单胺氧化酶催化的反应的过氧化氢副产物歧化为分子氧和水的组分,如在方案2(下文)中描绘的。在某些实施方案中,该组分选自例如但不限于Pd和Fe以及类似物的化学剂中,而在其他实施方案中,该组分是酶,例如酶过氧化氢酶。在具体的实施方案中,反应混合物还包含酶过氧化氢酶,所述过氧化氢酶催化方案2中所描绘的将过氧化氢(H2O2)分解为分子氧和水的歧化反应。
在某些实施方案中,能够将结构式I的胺化合物氧化为相应的结构式II(a)的亚胺化合物的单胺氧化酶由曲霉属(Aspergillus)的物种获得。在具体的实施方案中,单胺氧化酶是黑曲霉单胺氧化酶,而在其他实施方案中,单胺氧化酶是米曲霉(Aspergillus oryzae)单胺氧化酶。在任一情况下,单胺氧化酶可以从相应的曲霉属物种纯化或者可以作为在异源宿主中表达的重组蛋白分离,所述异源宿主例如但不限于大肠杆菌(E.coli.)。
在另一实施方案中,能够将结构式I的胺化合物氧化为相应的结构式II(a)的亚胺化合物的单胺氧化酶包含多于一种单胺氧化酶的部分,例如包含黑曲霉单胺氧化酶的氨基端部分和米曲霉单胺氧化酶的羧基端部分的融合蛋白或杂合蛋白。在具体的实施方案中,单胺氧化酶是495个氨基酸的蛋白(SEQ ID NO:6),其中氨基端的314个氨基酸对应于黑曲霉的氨基端的314个氨基酸(SEQ ID NO:2),并且羧基端的181个氨基酸对应于米曲霉的羧基端的181个氨基酸(SEQ ID NO:32)。在其他具体实施方案中,单胺氧化酶是选自下列的SEQ ID NO:6的495个氨基酸的蛋白的衍生物:SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ IDNO:18、SEQ ID NO:20和SEQ ID NO:36,它们的每一个携带与SEQ IDNO:6的氨基酸序列相比的至少一个氨基酸取代。
在某些实施方案中,能够将结构式I的胺化合物氧化为相应的结构式II(a)的亚胺化合物的单胺氧化酶衍生自SEQ ID NO:2的曲霉属单胺氧化酶并且与SEQ ID NO:2的黑曲霉单胺氧化酶的氨基酸序列相比具有两个或更多个氨基酸取代。在具体的实施方案中,能够将结构式I的胺化合物氧化为相应的结构式II的亚胺化合物的单胺氧化酶包含SEQ ID NO:4或SEQID NO:8的氨基酸序列。
在其他实施方案中,能够将结构式I的胺化合物氧化为相应的结构式II(a)的亚胺化合物的单胺氧化酶是融合蛋白,其中氨基端氨基酸序列衍生自第一曲霉单胺氧化酶,而羧基端氨基酸序列衍生自另一曲霉单胺氧化酶的氨基酸序列。在某些非限制性实施方案中,这种融合蛋白的氨基端和羧基端部分二者可以独立地选自由下列组成的组之中:SEQ ID NO:22、SEQID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32和SEQ ID NO:34。在具体的实施方案中,融合蛋白的氨基端部分衍生自SEQ ID NO:32的蛋白,而融合蛋白的羧基端部分衍生自SEQ ID NO:2的蛋白。
在某些实施方案中,本公开内容提供制备根据结构式III(a)或III(b)的氨基磺酸盐化合物的方法,所述化合物包括其盐和水合物,A、M和M’如上文所描述的。这些方法包括使根据结构式I的对称二环胺化合物在产生氨基磺酸盐(亚胺-亚硫酸氢盐加成物)化合物的条件下与氧、单胺氧化酶和亚硫酸氢盐接触,A、M和M’如上文所述。在具体的实施方案中,氧化反应混合物还包含酶过氧化氢酶。
本公开内容还提供制备基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的方法,所述化合物包括其盐和水合物,其中A、M和M’如上文所描述。该方法包括使根据结构式I的对称二环胺化合物与氧、单胺氧化酶和亚硫酸氢盐接触,随后在产生氨基腈化合物的条件下与氰化物接触,其中A、M和M’如上文所述。在具体的实施方案中,氧化反应混合物还包含酶过氧化氢酶。
本公开内容提供制备基本上立体异构纯的根据结构式IV的氨基腈化合物的方法,所述化合物包括其盐,其中A、M和M’如上文所描述。该方法包括使根据结构式I的对称二环胺化合物与氧、单胺氧化酶接触形成结构式II(a)的亚胺、其结构式II(b)的二聚体或它们的混合物,随后在产生氨基腈化合物的条件下与氰化物接触,其中A、M和M’如上文所述。在具体的实施方案中,氧化反应混合物还包含酶过氧化氢酶。
本公开内容还提供制备基本上立体异构纯的根据结构式VI的氨基酸化合物的方法,所述化合物包括其盐,其中A、M和M’如上文所描述,所述方法是由结构式II(a)的化合物(或结构式II(b)的化合物)开始的,或者由结构式IV(a)氨基腈化合物开始。所述方法包括在其中氨基腈化合物转化为结构式VI的氨基酸化合物的条件下使基本上立体异构纯的根据结构式IV的氨基腈化合物与酸和水接触,其中A、M和M’如上文所描述。
本公开内容还提供制备基本上立体异构纯的根据结构式VI的氨基酸化合物的方法,所述化合物包括其盐和共晶(例如,NH4Cl),其中A、M和M’如上文所描述。该方法包括使根据结构式I的对称(非手性)胺化合物与氧、单胺氧化酶接触,随后在适于产生基本上立体异构纯的根据结构式IV的氨基腈化合物的条件下与氰化物接触,其中A、M和M’如上文所述。在某些实施方案中,氧化反应混合物还包含酶过氧化氢酶。在氨基腈化合物转化为结构式VI的氨基酸化合物的条件下使如此形成的氨基腈化合物与酸和水接触。
本公开内容还提供制备基本上立体异构纯的根据结构式VI的氨基酸化合物的方法,所述化合物包括其盐和共晶(例如,NH4Cl),其中A、M和M’如上文所描述。该方法包括使根据结构式I的对称(非手性)胺化合物与氧、单胺氧化酶和亚硫酸氢盐接触,随后在适于产生基本上对映体纯的根据结构式IV的氨基腈化合物的条件下与氰化物接触,其中A、M和M’如上文所述。在某些实施方案中,氧化反应混合物还包含酶过氧化氢酶。在其中氨基腈化合物转化为结构式VI的氨基酸化合物的条件下使如此形成的氨基腈化合物与酸和水接触。在其他实施方案中,在氨基腈化合物转化为结构式V的氨基酯化合物的条件下使如此形成的氨基腈化合物与酸和醇接触。
此外,本公开内容提供使用本文所公开的新颖的化合物和新颖的方法制备基本上立体异构纯的被保护的根据结构式V的氨基酸化合物的方法,所述化合物包括其盐,其中A、M、M’和R5如上文所描述,所述新颖的方法包括生物催化方法。所述方法包括在其中氨基腈化合物转化为结构式V的氨基酸酯化合物的条件下使基本上立体异构纯的根据结构式IV的氨基腈化合物与酸和醇接触,其中A、M和M’如上文所描述。
本公开内容还提供使用本文所公开的新颖的化合物和新颖的方法制备基本上对映体纯的根据结构式VI的氨基酸化合物的方法,所述化合物包括其盐,其中A、M、M’如上文所描述,所述新颖的方法包括生物催化方法。所述方法包括在其中氨基腈化合物转化为结构式VI的氨基酸化合物的条件下使基本上对映体纯的根据结构式IV的氨基腈化合物与酸(例如,HCl)接触,其中A、M和M’如上文所描述。
本公开内容还提供制备基本上对映体纯的根据结构式VI的氨基酸化合物的方法,所述化合物包括其盐和共晶(例如,NH4Cl),其中A、M和M’如上文所描述。该方法包括使根据结构式I的胺化合物与氧和单胺氧化酶以及NaHSO3接触,随后在适于产生基本上对映体纯的根据结构式IV的氨基腈化合物的条件下与氰化物接触,其中A、M和M’如上文所述。在某些实施方案中,反应混合物还包含酶过氧化氢酶。在其中氨基腈化合物转化为结构式VI的氨基酸化合物的条件下使如此形成的氨基腈化合物与HCl接触。
此外,本公开内容提供使用本文所公开的新颖的化合物和新颖的方法制备基本上对映体纯的根据结构式V的氨基酸酯化合物的方法,所述化合物包括其盐,其中A、M、M’和R5如上文所描述,所述新颖的方法包括生物催化方法。所述方法包括在其中氨基腈化合物转化为结构式V的氨基酯化合物的条件下使基本上对映体纯的根据结构式IV的氨基腈化合物与酸(例如,HCl)和醇接触,其中A、M、M’如上文所描述。
本公开内容还提供制备基本上对映体纯的根据结构式VII的氨基酰胺化合物的方法,所述化合物包括其盐,其中A、M和M’如上文所描述。所述方法包括使根据结构式I的胺化合物与氧和单胺氧化酶和任选的过氧化氢酶和亚硫酸氢盐接触,随后在适于产生基本上对映体纯的根据结构式IV的氨基腈化合物的条件下与氰化物接触,其中结构式I中的A、M、M’如上文所描述,结构式IV中的A、M、M’如上文所描述,并然后在氨基腈化合物可以转化成结构式VII的氨基酸酰胺化合物的条件下使所述氨基腈化合物与HCl和水接触。
能够将结构式I的胺化合物氧化为相应的结构式II的亚胺化合物的本公开内容的单胺氧化酶与SEQ ID NO:2、SEQ ID NO:32和SEQ ID NO:6的氨基酸序列相比具有一个或多个氨基酸取代。这种氨基酸取代为单胺氧化酶提供了一种或多种改良的特性,包括酶活性增加、立体选择性增加、热稳定性增加、溶剂稳定性增加、产物抑制降低、底物抑制降低或对反应副产物的敏感性降低。这种氨基酸取代还可以改善单胺氧化酶在宿主细胞中的溶解性、稳定性和表达水平,例如作为在异源宿主细胞中重组表达的蛋白,所述异源宿主细胞例如但不限于大肠杆菌宿主细胞。
本公开内容还提供编码这种单胺氧化酶的多核苷酸和在所公开的生物催化方法中使用多肽的方法。
在一些实施方案中,本说明书中公开的单胺氧化酶与SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:6的酶相比在它们的酶活性速率,即将结构式I的胺化合物转化为相应的结构式II的亚胺化合物的速率方面是有所改善的。在一些实施方案中,所公开的单胺氧化酶能够以下列速率将底物转化为产物:SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:6的单胺氧化酶所表现的速率的至少1.5-倍、2-倍、3-倍、4-倍、5-倍、10-倍、25-倍、50-倍、100-倍、或大于100-倍。具有这种特性的示例性多肽包括但不限于包含对应于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20和SEQ IDNO:36的氨基酸序列的多肽。
在一些实施方案中,本文公开的单胺氧化酶能够将结构式I的胺化合物转化为相应的结构式II的亚胺化合物,其中对映体过量百分比为至少约95%。具有这种特性的示例性多肽包括但不限于包含对应于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ IDNO:16、SEQ ID NO:18、SEQ ID NO:20和SEQ ID NO:36的氨基酸序列的多肽。
在一些实施方案中,本公开内容的改良的单胺氧化酶基于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ IDNO:16、SEQ ID NO:18和SEQ ID NO:20的序列式,并且可以包含与所述序列式至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列。这些差异可以是一个或多个氨基酸插入、缺失、取代或这些改变的任何组合。在一些实施方案中,氨基酸序列差异可以包含非保守的、保守的以及非保守的和保守的氨基酸取代的组合。本文描述了可以进行这些改变的各种氨基酸残基位置。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基99和SEQ ID NO:32的残基97的氨基酸谷氨酰胺被酸性氨基酸即天冬氨酸或谷氨酸取代的氨基酸序列。在具体的实施方案中,该谷氨酰胺残基被谷氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基365和SEQ ID NO:32的残基363的氨基酸酪氨酸被不同的芳族氨基酸即苯丙氨酸或色氨酸氨酸保守地取代的氨基酸序列。在具体的实施方案中,该酪氨酸残基被色氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基382和SEQ ID NO:32的残基380的氨基酸苯丙氨酸被非极性氨基酸即缬氨酸、异亮氨酸、丙氨酸、甘氨酸、蛋氨酸或亮氨酸取代的氨基酸序列。在具体的实施方案中,该苯丙氨酸残基被亮氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基465和SEQ ID NO:32的残基463的氨基酸丝氨酸被非极性氨基酸即缬氨酸、异亮氨酸、丙氨酸、蛋氨酸、亮氨酸或甘氨酸取代的氨基酸序列。在具体的实施方案中,该丝氨酸残基被甘氨酸残基取代。
在其他实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基135的氨基酸苏氨酸被另一极性氨基酸即丝氨酸、谷氨酰胺或天冬酰胺保守地取代的氨基酸序列。在具体的实施方案中,该苏氨酸残基被谷氨酰胺残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO.6的残基284的氨基酸天冬酰胺被酸性氨基酸即天冬氨酸或谷氨酸取代的氨基酸序列。在具体的实施方案中,该天冬酰胺残基被谷氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2的残基289的氨基酸被另一非极性氨基酸即甘氨酸、缬氨酸、亮氨酸、异亮氨酸或蛋氨酸保守取代的氨基酸序列。在具体的实施方案中,该丙氨酸残基被缬氨酸残基取代。
在其他实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2的残基384的氨基酸赖氨酸被另一极性氨基酸即丝氨酸、苏氨酸或谷氨酰胺保守地取代的氨基酸序列。在具体的实施方案中,该赖氨酸残基被谷氨酰胺残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶是如下的单胺氧化酶:其为黑曲霉单胺氧化酶(SEQ ID NO:2)的同源物或米曲霉单胺氧化酶(SEQ ID NO:44)的同源物并且携带对应于本文所公开的那些氨基酸取代的一个或多个氨基酸取代。示例性同源物包括单胺氧化酶SEQ IDNO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32和SEQ ID NO:34。在其他实施方案中,本公开内容的改良的单胺氧化酶是选自下列序列的酶并且携带对应于本文所公开的那些氨基酸取代的一个或多个氨基酸取代的单胺氧化酶:SEQ ID NO:22、SEQ IDNO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32和SEQ ID NO:34。
在另一方面,本公开内容提供编码本文所述的工程化单胺氧化酶的多核苷酸或在高度严格条件下与这种多核苷酸杂交的多核苷酸。所述多核苷酸可以包含启动子和可用于表达编码的工程化单胺氧化酶的其他调节元件,并且所述多核苷酸可以利用被优化用于特定的期望表达系统的密码子。示例性多核苷酸包括但不限于SEQ ID NO:1、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、SEQ ID NO:31和SEQ ID NO:35。
在另一方面,本公开内容提供包含本文所述的多核苷酸和/表达载体的宿主细胞。所述宿主细胞可以是曲霉属的细胞,例如黑曲霉、米曲霉或构巢曲霉(Aspergillus nidulans),或者它们可以是不同的生物体,例如大肠杆菌或酿酒酵母(S.cerevisiae)。宿主细胞可用于表达和分离本文所描述的工程化单胺氧化酶,或者可选地,它们可直接用于将底物转化为立体异构的产物。
无论是用全细胞、细胞提取物还是纯化的单胺氧化酶进行方法,均可以使用单一的单胺氧化酶,或者可选择地,可以使用两种或更多种单胺氧化酶的混合物。
本文所述的单胺氧化酶能够催化结构式I的化合物氧化为结构式II(a)的化合物:
Figure BDA0000154039570000271
在具体的实施方案中,本文所述的单胺氧化酶能够催化(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)氧化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2):
Figure BDA0000154039570000272
在另一具体实施方案中,本文所述的单胺氧化酶能够催化(3aR,6aS)-八氢环戊[c]吡咯,化合物(3)氧化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯,化合物(4):
Figure BDA0000154039570000273
在将结构式I的化合物氧化为结构式II(a)的化合物的方法的一些实施方案中,底物被氧化为大于约99%立体异构体过量的产物,其中单胺氧化酶包含对应于SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ IDNO:20、或SEQ ID NO:36的序列。
在将结构式I的化合物氧化为结构式II(a)的化合物的这种方法的一些实施方案中,用约1-10g/L的多肽,在小于约24小时内至少约10-20%的1-100g/L底物被转化为产物,其中所述多肽包含对应于SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ IDNO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、或SEQ ID NO:36的氨基酸序列。
在将底物还原为产物的这种方法的一些实施方案中,在用大于约25-50g/L的底物和小于约1-5g/L的多肽进行时,在小于约24小时内至少约95%的底物被转化为产物,其中所述多肽包含对应于SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQID NO:16、SEQ ID NO:18、SEQ ID NO:20、或SEQ ID NO:36的氨基酸序列。
5.详述
5.1本公开内容的稠合二环脯氨酸化合物
本公开内容涉及基本上立体异构纯的结构式II至VII的稠合二环脯氨酸化合物:
其中A、M、M’和R5如本文所描述的;涉及用于它们制备的生物催化方法;并且涉及那些方法中使用的生物催化酶。
5.1.1式II(a)和式II(b)的稠合二环脯氨酸化合物
本公开内容提供基本上对映体纯的结构式II(a)的稠合二环脯氨酸化合物和其二聚体结构式II(b)的化合物以及它们的混合物:
Figure BDA0000154039570000291
包括它们盐和水合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
在再一实施方案中,M和M’是-O-,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’是-O-,并且A选自由下列组成的组:-CH2-、-C(CH3)2-和-C(C2H5)2-。
已知许多吡咯烷化合物(例如,3,4-二氢-2H-吡咯)的亚胺由于环的张力除二聚体以外形成热力学有利的三聚体,或者形成热力学有利的三聚体而不形成二聚体。因此,在某些实施方案中,上述式II(a)化合物的任一种还可以以具有结构式II(c)的三聚体形式存在
在某些实施方案中,本公开内容提供式II(a)的化合物的三聚体,例如,式II(c)的化合物,和它们与式II(a)和/或式II(b)的化合物的混合物。
5.1.2结构式III的氨基磺酸盐
本公开内容还提供基本上对映体纯的结构式III(a)和III(b)的氨基磺酸盐化合物:
Figure BDA0000154039570000311
包括其盐、水合物和混合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
在再一实施方案中,M和M’是-O-,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’是-O-,并且A选自由下列组成的组:-CH2-、-C(CH3)2-和-C(C2H5)2-。
5.1.3结构式IV的氨基腈化合物
另外,本公开内容还提供基本上对映体纯的结构式IV(a)和IV(b)的氨基腈化合物:
Figure BDA0000154039570000321
包括其盐、水合物和混合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
5.1.4结构式V的稠合二环脯氨酸化合物
本公开内容提供结构式V的稠合二环脯氨酸化合物:
Figure BDA0000154039570000331
包括其盐和水合物,其中A、M和M’如上文所描述,其中R5选自由下列组成的组:保护基团(例如,苄基或三甲基甲硅烷基以及类似基团)、-(C1-C2)烷基、-(C1-C3)烷基、-(C1-C4)烷基和-(C1-C6)烷基。在某些非限制性实施方案中,R5是甲基、乙基或叔丁基,包括其盐和水合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
在一个实施方案中,R5是苄基。
在一个实施方案中,R5是三甲基甲硅烷基。
在另一实施方案中,R5是甲基。
在又一实施方案中,R5是乙基。
在另一实施方案中,R5是叔丁基。
5.1.5结构式VI的稠合二环脯氨酸化合物
本公开内容还提供基本上对映体纯的根据结构式VI的化合物:
Figure BDA0000154039570000351
包括其盐和水合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在,并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
5.1.6结构式VII的稠合二环脯氨酸化合物
此外,本公开内容提供基本上对映体纯的结构式VII的杂二环亚氨基酸化合物:
Figure BDA0000154039570000361
包括其盐和水合物,其中A是O、CR1R2、-C=C-或-CH2-CH2-,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br。M和M’二者可以都存在或者可以都不存在并且当M和M’二者都存在时,M和M’是相同的并且选自O和CR3R4,其中R3和R4是H,或者M的R3或R4和M’的R3或R4形成亚甲基桥接,条件是:(a)当M和M’是O时,A不是O;并且当A是O时,M和M’不是O;(b)当M和M’是CR3R4时,A可以是-CH=CH-或-CH2-CH2-;并且(c)当M和M’是CR3R4并且具有一个或多个立体中心时,M和M’的立体中心具有相反的立体化学性。
在一个实施方案中,R6和R7均是氢。
在一个实施方案中,A是-CH2-。
在另一实施方案中,A是-CH(CH3)-。
在另一实施方案中,A是-C(CH3)2-。
在另一实施方案中,A是-CH(CH2CH3)-。
在另一实施方案中,A是-C(CH2CH3)2
在另一实施方案中,A是-C(CH2CH3)(CH3)-。
在一个实施方案中,M和M’不存在,并且A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
在另一实施方案中,M和M’不存在并且A选自由下列组成的组:-CH2-、-C(CH3)2-、-C(CH3)2-和-C(C2H5)2-。
在另一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-、-C(CH3)2-、-CH(CH3)-、-C(C2H5)2-、-CH(C2H5)-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-C(H2)NHC(NH)NH2-。
在又一实施方案中,M和M’是-CH2-,并且A选自由下列组成的组:-O-、-CH2-和-C(CH3)2-。
5.2本公开内容的单胺氧化酶
能够将结构式I的胺化合物氧化为相应的结构式II的亚胺化合物的本公开内容的单胺氧化酶与SEQ ID NO:2、SEQ ID NO:6和SEQ ID NO:32的氨基酸序列相比具有一个或多个氨基酸取代。这种氨基酸取代为单胺氧化酶提供了一种或多种改善的特性,包括酶活性增加、立体特异性增加、热稳定性增加、溶剂稳定性增加、产物抑制降低、底物抑制降低或对反应副产物的敏感性降低。这种氨基酸取代还可以改善单胺氧化酶在宿主细胞中的表达水平、溶解性和/或稳定性,例如作为在异源宿主细胞中重组表达的蛋白,所述异源宿主细胞例如但不限于大肠杆菌宿主细胞。在一个实施方案中,氨基酸取代S465G提供本公开内容的单胺氧化酶在大肠杆菌中的表达水平、溶解性和/或稳定性的明显增加。
本公开内容还提供编码这种单胺氧化酶的多核苷酸和在所公开的生物催化方法中使用多肽的方法。
在一些实施方案中,本说明书中公开的单胺氧化酶与SEQ ID NO:2、SEQ ID NO:6或SEQ ID NO:32的酶相比在它们的酶活性速率,即将结构式I的胺化合物转化为相应的结构式II的亚胺化合物的速率方面是有所改善的。在一些实施方案中,所公开的单胺氧化酶能够以下列速率将底物转化为产物:SEQ ID NO:2、SEQ ID NO:6和SEQ ID NO:32的单胺氧化酶所表现的速率的至少1.5-倍、2-倍、3-倍、4-倍、5-倍、10-倍、25-倍、50-倍、100-倍、或大于100-倍。具有这种特性的示例性多肽包括但不限于包含对应于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、或SEQ IDNO:36的氨基酸序列的多肽。
在一些实施方案中,本文公开的单胺氧化酶能够将结构式I的胺化合物转化为相应的结构式II的亚胺化合物,其中非对映体过量百分比为至少约95%。具有这种特性的示例性多肽包括但不限于包含对应于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ IDNO:16、SEQ ID NO:18、SEQ ID NO:20、或SEQ ID NO:36的氨基酸序列的多肽。
在一些实施方案中,本公开内容的改良的单胺氧化酶基于SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ IDNO:16、SEQ ID NO:18或SEQ ID NO:20的序列式,并且可以包含与所述序列式至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列。这些差异可以是氨基酸插入、缺失、取代或这些改变的任何组合。在一些实施方案中,氨基酸序列差异可以包含非保守的氨基酸取代、保守的氨基酸取代以及非保守的氨基酸取代和保守的氨基酸取代的组合。本文描述了可以进行这些改变的各种氨基酸残基位置。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基99和SEQ ID NO:32的残基97的氨基酸谷氨酰胺被酸性氨基酸即天冬氨酸或谷氨酸取代的氨基酸序列。在具体的实施方案中,该谷氨酰胺残基被谷氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基365和SEQ ID NO:32的残基363的氨基酸酪氨酸被不同的芳族氨基酸即苯丙氨酸或色氨酸氨酸保守地取代的氨基酸序列。在具体的实施方案中,该酪氨酸残基被色氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基382和SEQ ID NO:32的残基380的氨基酸苯丙氨酸被非极性氨基酸即缬氨酸、异亮氨酸、丙氨酸、甘氨酸、蛋氨酸或亮氨酸取代的氨基酸序列。在具体的实施方案中,该苯丙氨酸残基被亮氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基465和SEQ ID NO:32的残基463的氨基酸丝氨酸被非极性氨基酸即缬氨酸、异亮氨酸、丙氨酸、蛋氨酸、亮氨酸或甘氨酸取代的氨基酸序列。在具体的实施方案中,该丝氨酸残基被甘氨酸残基取代。
在其他实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基135的氨基酸苏氨酸被另一极性氨基酸即丝氨酸、谷氨酰胺或天冬酰胺保守地取代的氨基酸序列。在具体的实施方案中,该苏氨酸残基被谷氨酰胺残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基284的氨基酸天冬酰胺被酸性氨基酸即天冬氨酸或谷氨酸取代的氨基酸序列。在具体的实施方案中,该天冬酰胺残基被谷氨酸残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2和SEQ ID NO:6的残基289的氨基酸丙氨酸被另一非极性氨基酸即甘氨酸、缬氨酸、亮氨酸、异亮氨酸或蛋氨酸取代的氨基酸序列。在具体的实施方案中,该丙氨酸残基被缬氨酸残基取代。
在其他实施方案中,本公开内容的改良的单胺氧化酶包含其中对应于SEQ ID NO:2的残基384的氨基酸赖氨酸被另一极性氨基酸即丝氨酸、苏氨酸或谷氨酰胺保守地取代的氨基酸序列。在具体的实施方案中,该赖氨酸残基被谷氨酰胺残基取代。
在一些实施方案中,本公开内容的改良的单胺氧化酶是如下的单胺氧化酶:其为黑曲霉单胺氧化酶(SEQ ID NO:2)的同源物或米曲霉单胺氧化酶(SEQ ID NO:32)的同源物并且携带对应于本文所公开的那些氨基酸取代的一个或多个氨基酸取代。示例性同源物包括下列序列的单胺氧化酶:SEQ ID NO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ IDNO:30、SEQ ID NO:32和SEQ ID NO:34。因此,在某些实施方案中,本公开内容的改良的单胺氧化酶是选自下列序列的酶的携带对应于本文所公开的那些氨基酸取代的一个或多个氨基酸取代的单胺氧化酶:SEQ IDNO:22、SEQ ID NO:24、SEQ ID NO:26、SEQ ID NO:28、SEQ ID NO:30、SEQ ID NO:32和SEQ ID NO:34。
5.3定义
如本文所用的下列术语旨在具有下列含义。
单胺氧化酶”是指具有将上述结构式I的化合物氧化为相应的上述结构式II的产物的酶能力的多肽。该多肽通常利用氧化的辅因子,例如但不限于黄素腺嘌呤二核苷酸(FAD)、黄素腺嘌呤单核苷酸(FMN)、烟酰胺腺嘌呤二核苷酸(NAD)或烟酰胺腺嘌呤二核苷酸磷酸(NADP)。在具体的实施方案中,氧化的辅因子是FAD。如本文所用的单胺氧化酶包括天然存在的(野生型)单胺氧化酶以及通过人操作产生的非天然存在的工程化多肽。
编码序列”是指编码蛋白的氨基酸序列的那部分核酸(例如,基因)。“天然存在的”或“野生型”是指天然发现的形式。例如,天然存在的或野生型多肽或多核苷酸序列是在生物体中存在的可以从天然来源分离的序列并且该序列没有通过人操作被故意地修饰。
当结合例如细胞、核酸或多肽使用时,“重组”是指已经以否则不会天然存在的方式被修饰、或者与材料的天然形式或固有形式相同但是产自或源于合成材料和/或通过使用重组技术的操作产生或衍生的材料,或相应于该材料的天然形式或固有形式的材料。非限制性实例包括但不限于:表达在固有(非重组)形式的细胞中不存在的基因或者表达否则以不同的水平表达的固有基因的重组细胞。
序列同一性百分比”和“百分比同源性”在本文中可互换使用,是指多核苷酸和多肽之间的比较,并且是通过在比较窗口中比较两条最佳比对的序列来确定的,其中多核苷酸或多肽序列在比较窗口中的部分与两条序列最佳比对的参考序列(其不包含添加或缺失)相比可以包含添加或缺失(即,缺口)。百分比可以如下计算:确定在两条序列中出现相同核酸碱基或氨基酸残基的位置数从而产生匹配位置数,用匹配位置数除以比较窗口中位置的总数并将结果乘以100,得出序列同一性的百分比。可选择地,百分比可以如下计算:确定在两条序列中出现相同核酸碱基或氨基酸残基的位置数或者与缺口对齐的核酸碱基或氨基酸残基的位置数从而得出匹配位置数,用匹配位置数除以比较窗口中位置的总数并将结果乘以100,得出序列同一性的百分比。本领域的技术人员了解存在许多已确立的算法可用于比对两条序列。可以通过下列算法进行比较序列的最佳比对:例如,通过Smith和Waterman,1981,Adv.Appl.Math.2:482的局部同源性算法;通过Needleman和Wunsch,1970,J.Mol.Biol.48:443的同源比对算法;通过Pearson和Lipman,1988,Proc.Natl.Acad.Sci.USA 85:2444的相似性检索方法;通过这些算法的计算机化执行(在GCG Wisconsin软件包中的GAP、BESTFIT、FASTA和TFASTA)或通过视觉检查(大体参见,CurrentProtocols in Molecular Biology(分子生物学最新实验方案),F.M.Ausubel等人,编辑,Current Protocols,Greene Publishing Associates,Inc.与JohnWiley&Sons,Inc.合资,(1995补充材料)(Ausubel))。适于确定百分比序列同一性和序列相似性的算法的实例是BLAST和BLAST 2.0算法,它们分别描述于:Altschul等人,1990,J.Mol.Biol.215:403-410和Altschul等人,1977,Nucleic Acids Res.3389-3402中。进行BLAST分析的软件通过美国国家生物技术信息中心网站可公开获得。这种算法包括首先通过鉴定在查询序列中长度为W的短字(word)来鉴定高评分序列对(HSP),所述短字在与数据库序列中相同长度的字比对时符合或满足一些正值阈值评分T。T是指相邻字评分阈值(Altschul等人,如上)。这些最初的相邻字匹配字串(word hit)充当启动寻找含有它们的更长HSP的种子。然后字匹配字串沿着各序列在两个方向延伸,只要累积比对评分可以增加即可。对于核苷酸序列,累积评分使用参数M(匹配残基对的奖励评分(rewardscore);总是大于0)和N(错配残基的惩罚评分,总是小于0)计算。对于氨基酸序列,使用评分矩阵来计算累积评分。在下列情况下停止各方向的字匹配字串延伸:累积比对评分由其达到的最大值降低了量X;累积评分由于一个或多个负评分残基比对的累积而变为零或低于零;或到达任一序列的末端。BLAST算法参数W、T和X决定比对的灵敏度和速度。BLASTN程序(对于核苷酸序列)使用下列作为缺省参数:字长(wordlength,W)为11,期望值(E)为10,M=5,N=-4,以及两条链的比较。对于氨基酸序列,BLASTP程序使用下列缺省参数:字长(W)为3,期望值(E)为10以及BLOSUM62评分矩阵(参见Henikoff和Henikoff,1989,Proc Natl Acad Sci USA 89:10915)。示例性的序列比对和%序列同一性的确定可以采用GCG Wisconsin软件包(Accelrys,Madison WI)中的BESTFIT或GAP程序,使用所提供的缺省参数。
参考序列”是指用作序列比较的基础的确定序列。参考序列可以是较大序列的子序列,例如全长基因或多肽序列的区段。一般地,参考序列是至少20个核苷酸或氨基酸残基长、至少25个残基长、至少50个残基长或全长的核酸或多肽。由于两条多核苷酸或多肽可以各自(1)包含两个序列之间相似的序列(即,完整序列的一部分)并且(2)还可以包含两个序列之间差异的序列,所以两条(或更多条)多核苷酸或多肽之间的序列比较通常通过在“比较窗口”内比较两条多核苷酸的序列而鉴定和比较局部区域的序列相似性来进行。
比较窗口”是指其中可以将序列与至少20个连续核苷酸或氨基酸的参考序列相比较的至少约20个连续核苷酸位置或氨基酸残基的概念上的区段,并且其中在比较窗口中的序列部分与两条序列最佳比对的参考序列(其不包含添加或缺失)相比可以包含20%或更少的添加或缺失(即,缺口)。比较窗口可以长于20个连续残基并且任选包含30个连续残基、40个连续残基、50个连续残基、100个连续残基或更长的窗口。
基本的同一性”是指在至少20个残基位置的比较窗口内、通常在至少30-50个残基的窗口内,与参考序列相比具有至少80%序列同一性、至少85%同一性和89%至95%序列同一性,更通常至少99%序列同一性的多核苷酸或多肽序列,其中序列同一性百分比是通过在比较窗口内将参考序列与包含参考序列的总计20%或更少的缺失或添加的序列相比计算而来的。在应用于多肽的特定实施方案中,术语“基本的同一性”意指在通过例如程序GAP或BESTFIT使用缺省空位权重(gap weihgt)进行最佳比对时,两条多肽序列具有至少80%序列同一性,优选至少89%序列同一性,至少95%序列同一性或更高的序列同一性(例如,99%序列同一性)。优选地,不相同的残基位置是由于保守的氨基酸取代而不同。
当用于给定氨基酸或多核苷酸序列编号的下文中时,“对应于”、“关于”或“相对于”是指在给定的氨基酸或多核苷酸序列与指定的参考序列相比较时,所述参考序列的残基编号。换言之,给定的聚合物的残基编号或残基位置是关于参考序列指定的而非通过给定氨基酸或多核苷酸序列中的残基的实际数字位置指定。例如,可以通过引入缺口以优化两条序列之间的残基匹配,将诸如工程化单胺氧化酶的氨基酸序列的给定氨基酸序列与参考序列比对。在这些情况下,尽管存在缺口,但给定氨基酸或多核苷酸序列中残基的编号是关于其所比对的参考序列而指定的。
立体选择性”是指在化学反应或酶促反应中,一种立体异构体相对于另一立体异构体优先形成。立体选择性可以是部分的,这时一种立体异构体的形成比另一种有利,或者立体选择性可以是完全的,这时只形成一种立体异构体。当立体异构体是对映体时,立体选择性是指对映体选择性,即一种对映体在两种对映体总和中的分数(通常报道为百分比)。其(通常为百分比)在本领域中通常可选地报道为根据如下公式由其计算的对映体过量(e.e):[主要对映体-次要对映体]/[主要对映体+次要对映体]。在立体异构体是非对映异构体时,立体选择性是指非对映体选择性,即一种非对映体在两种非对映体混合物中的分数(通常报道为百分比),通常可选地报道为非对映体过量(d.e.)。对映体过量和非对映体过量是立体异构体过量的类型。
“高立体选择性”:是指能够将底物转化为具有至少约99%立体异构体过量的相应产物的单胺氧化酶多肽。
“立体特异性”是指在化学反应或酶促反应中,一种立体异构体相对于另一立体异构体优先转化。立体特异性可以是部分的,这时一种立体异构体的转化比另一种有利,或者立体特异性可以是完全的,这时只转化一种立体异构体。
化学选择性”是指在化学反应或酶促反应中,一种产物相对于另一产物优先形成。
改良的酶特性”是指与参考单胺氧化酶相比表现出任何酶特性改良的单胺氧化酶多肽。对于本文所述的工程化单胺氧化酶多肽,一般进行与野生型单胺氧化酶的比较,尽管在一些实施方案中,参考单胺氧化酶可以是另一种改良的单胺氧化酶。期望改良的酶特性包括但不限于:酶活性(其可以根据百分比底物转化表示)、热稳定性、pH活性谱、辅因子需求、对抑制剂(例如,产物抑制)的不应性、立体特异性、立体选择性(包括对映体选择性)、溶解性和稳定性以及在宿主细胞中的表达水平。
增加的酶活性”是指工程化单胺氧化酶多肽的改良的特性,它可以通过与参考单胺氧化酶相比的比活性(例如,产生的产物/时间/重量蛋白)的增加或底物转化为产物的百分比转化(例如,使用指定量的单胺氧化酶时在指定的时间段中起始量的底物转化为产物的转化百分比)的增加代表。确定酶活性的示例性方法在实施例中提供。可以影响关于酶活性的任何特性,包括经典的酶特性Km、Vmax或kcat,它们的改变可以导致酶活性增加。酶活性的改善可以为相应的野生型单胺氧化酶的酶活性的约1.5倍至多达天然存在的单胺氧化酶或单胺氧化酶多肽来源的另一工程化单胺氧化酶的酶活性的2倍、5倍、10倍、20倍、25倍、50倍、75倍、100倍或更多倍。技术人员应理解任何酶的活性是扩散限制的,使得催化转换速率不会超过底物(包括任何所需的辅因子)的扩散速率。扩散限制或kcat/Km的理论最大值一般是约108至109(M-1s-1)。因此,单胺氧化酶的酶活性的任何改善将具有与该单胺氧化酶所作用的底物的扩散速率有关的上限。单胺氧化酶活性可以使用已公布的测量单胺氧化酶的方法或其改造方法测量,例如但不限于Zhou等人(Zhou等人“A One-StepFluorometric Method for the Continuous Measurement of Monoamine OxidaseActivity(单胺氧化酶活性连续测量的一步式荧光法),”1997Anal.Biochem.253:169-74)和Szutowicz等人(Szutowicz等人,“Colorimetric Assay forMonoamine Oxidase in Tissues Using Peroxidase and2,2′-Azino(3-ethtylbenzthaizoline-6-sulfonic Acid)as Chromogen(使用过氧化物酶和2,2′-连氮基(3-乙基苯并噻唑啉-6-磺酸)作为色原进行的组织中单胺氧化酶的比色测定),”1984,Anal.Biochem.138:86-94)所公开的那些方法。酶活性的比较是使用限定的酶制剂、在设定条件下的限定的测定和一种或多种限定的底物进行的,如本文进一步详细描述的或者使用例如Zhou和Szutowicz的方法。一般地,当比较裂解物时,确定测定的细胞数和测定的蛋白的量并且使用相同的表达系统和相同的宿主细胞来将宿主细胞产生的酶和裂解物中存在的酶的量的差异最小化。
转化”:是指底物至相应产物的酶促氧化。“百分比转化”是指在指定条件下一段时间内被氧化为产物的底物的百分比。因此,单胺氧化酶多肽的“酶活性”或“活性”可以表示为底物至产物的“百分比转化”。
热稳定的”是指单胺氧化酶多肽在暴露于升高的温度(例如40-80℃)一段时间(例如,0.5-24小时)后与未处理的酶相比保持相似的活性(例如大于60%至80%)。
溶剂稳定的”是指是指单胺氧化酶多肽在暴露于不同浓度(例如,5%-99%)的溶剂(异丙醇、四氢呋喃、2-甲基四氢呋喃、丙酮、甲苯、乙酸丁酯、甲基叔丁醚等)一段时间(例如,0.5-24小时)后与未处理的酶相比保持相似的活性(大于例如60%至80%)。
pH稳定的”是指单胺氧化酶多肽在暴露于高或低pH(例如4.5-6或8至12)一段时间(例如,0.5-24小时)后与未处理的酶相比保持相似的活性(大于例如60%至80%)。
热稳定和溶剂稳定的”是指是热稳定和溶剂稳定的单胺氧化酶多肽。如本文在工程化单胺氧化酶上下文中所用的“衍生自”确定工程化所根据的起源单胺氧化酶和/或编码这种单胺氧化酶的基因。例如,SEQ ID NO:8的工程化单胺氧化酶是通过在多代中人工进化编码SEQ ID NO:2的黑曲霉单胺氧化酶的基因获得的。因此,这种工程化的单胺氧化酶“衍生自”SEQID NO:2的野生型单胺氧化酶。
亲水氨基酸或残基”是指具有表现出根据Eisenberg等人,1984,J.Mol.Biol.179:125-142的标准化的一致性疏水量表小于零的疏水性的侧链的氨基酸或残基。遗传编码的亲水氨基酸包括L-Thr(T)、L-Ser(S)、L-His(H)、L-Glu(E)、L-Asn(N)、L-Gln(Q)、L-Asp(D)、L-Lys(K)和L-Arg(R)。
酸性氨基酸或残基”是指当氨基酸包含在肽或多肽中时,具有表现出小于约6的pK值的侧链的亲水氨基酸或残基。酸性氨基酸在生理pH下由于氢离子的丢失而通常具有带负电荷的侧链。遗传编码的酸性氨基酸包括L-Glu(E)和L-Asp(D)。
碱性氨基酸或残基”是指当氨基酸包含在肽或多肽中时,具有表现出大于约6的pK值的侧链的亲水氨基酸或残基。碱性氨基酸在生理pH下由于与水合氢离子的缔合而通常具有带正电荷的侧链。遗传编码的碱性氨基酸包括L-Arg(R)和L-Lys(K)。
极性氨基酸或残基”是指具有如下的侧链的亲水氨基酸或残基:在生理pH下不带电荷,但是其具有其中两个原子所共同拥有的电子对被这两个原子之一更紧密地持有的至少一个键。遗传编码的极性氨基酸包括L-Asn(N)、L-Gln(Q)、L-Ser(S)和L-Thr(T)。
疏水氨基酸或残基”是指具有表现出根据Eisenberg等人,1984,J.Mol.Biol.179:125-142的标准化的一致性疏水量表大于零的疏水性的侧链的氨基酸或残基。遗传编码的疏水氨基酸包括L-Pro(P)、L-Ile(I)、L-Phe(F)、L-Val(V)、L-Leu(L)、L-Trp(W)、L-Met(M)、L-Ala(A)和L-Tyr(Y)。
芳族氨基酸或残基”是指具有包含至少一个芳环或杂芳环的侧链的亲水性或疏水性氨基酸或残基。遗传编码的芳族氨基酸包括L-Phe(F)、L-Tyr(Y)和L-Trp(W)。尽管L-His(H)由于其杂环氮原子的pKa而有时被归类为碱性残基或者由于其侧链包含杂芳环而被归类为芳族残基,但在本文中组氨酸被归类为亲水残基或“限制残基(constrained residue)”(参见下文)。
限制氨基酸或残基”是指具有限制的几何性质的氨基酸或残基。本文中,限制残基包括L-pro(P)和L-his(H)。组氨酸由于其具有相对小的咪唑环而具有限制的几何性质。脯氨酸由于其还具有五元环而具有限制的几何性质。
非极性氨基酸或残基”是指具有如下的侧链的疏水氨基酸或残基:在生理pH下不带电荷并且具有其中两个原子所共同拥有的电子对一般被这两个原子的每一个同等程度的持有的键(即侧链不是极性的)。遗传编码的非极性氨基酸包括L-Gly(G)、L-Leu(L)、L-Val(V)、L-Ile(I)、L-Met(M)和L-Ala(A)。
脂肪族氨基酸或残基”是指具有脂肪族烃侧链的疏水氨基酸或残基。遗传编码的脂肪族氨基酸包括L-Ala(A)、L-Val(V)、L-Leu(L)和L-Ile(I)。
半胱氨酸。”氨基酸L-Cys(C)的不寻常之处在于其可以与其他L-Cys(C)氨基酸或其他含硫烷基或巯基的氨基酸形成二硫键。“半胱氨酸样残基”包括半胱氨酸和含有可用于形成二硫键的巯基部分的其他氨基酸。L-Cys(C)(和具有含-SH侧链的其他氨基酸)以还原的游离-SH或氧化的二硫键形式存在于肽中的能力影响了L-Cys(C)是赋予肽净疏水特征还是亲水特征。虽然L-Cys(C)表现出根据Eisenberg(Eisenberg等人,1984,如上)的标准化的一致性量表0.29的疏水性,但应了解,为了本公开内容的目的,将L-Cys(C)归类为其自身的独特组中。
小氨基酸或残基”是指具有由共三个或更少的碳和/或杂原子(不包括α-碳和氢)构成的侧链的氨基酸或残基。小氨基酸或残基可以根据上述定义被进一步归类为脂肪族的、非极性的、极性的或酸性的小氨基酸或残基。遗传编码的小氨基酸包括L-Ala(A)、L-Val(V)、L-Cys(C)、L-Asn(N)、L-Ser(S)、L-Thr(T)和L-Asp(D)。
含羟基氨基酸或残基”是指含有羟基(-OH)部分的氨基酸。遗传编码的含羟基氨基酸包括L-Ser(S)、L-Thr(T)和L-Tyr(Y)。
保守的”氨基酸取代或突变是指具有相似侧链的残基的可互换性,并且因此通常包括用相同或相似的氨基酸定义类别中的氨基酸取代多肽中的氨基酸。然而,如本文所用,如果保守的突变可以代替地为脂肪族至脂肪族、非极性至非极性、极性至极性、酸性至酸性、碱性至碱性、芳族至芳族、或限制残基至限制残基的取代,则保守的突变不包括亲水至亲水、疏水至疏水、含羟基至含羟基或小残基至小残基的取代。此外,如本文所用,A、V、L或I可以保守地突变为另一脂肪族残基或另一非极性残基。下表1显示了示例性的保守取代。
表1:保守取代
Figure BDA0000154039570000481
非保守取代”是指用具有显著不同的侧链特性的氨基酸进行的多肽中氨基酸的取代或突变。非保守取代可以使用上面所列的定义组之间而不是之内的氨基酸。在一个实施方案中,非保守突变影响(a)取代区域中肽主链的结构(例如,脯氨酸取代甘氨酸)、(b)电荷或疏水性、或(c)侧链体积。
缺失”是指通过从参考多肽移除一个或多个氨基酸而对多肽进行的修饰。缺失可以包括移除1个或多个氨基酸、2个或更多个氨基酸、5个或更多个氨基酸、10个或更多个氨基酸、15个或更多个氨基酸、或20个或更多个氨基酸、多达构成参考酶的氨基酸总数的10%或多达构成参考酶的氨基酸总数的20%,同时保留酶活性和/或保留工程化单胺氧化酶的改良特性。缺失可以针对多肽的内部和/或端部。在多个实施方案中,缺失可以包含连续的区段或者可以是不连续的。
插入”是指通过从参考多肽添加一个或多个氨基酸而对多肽进行的修饰。在一些实施方案中,改良的工程化单胺氧化酶包括将一个或多个氨基酸插入天然存在的单胺氧化酶中以及将一个或多个氨基酸插入其他改良的单胺氧化酶多肽中。插入可以是在多肽的内部,或羧基端或氨基端。如本文所用的插入包括如本领域中已知的融合蛋白。插入可以是连续氨基酸区段或者被天然存在的多肽中的一个或多个氨基酸分隔开。
关于指定的参考序列的“与......不同”或“不同于”是指给定氨基酸或多核苷酸序列在与参考序列比对时的差异。一般地,可以在两条序列最佳比对时确定差异。差异包括与参考序列相比的氨基酸残基的插入、缺失或取代。
如本文所用的“片段”是指具有氨基端和/或羧基端缺失,但是其中剩余的氨基酸序列与序列的相应位置相同的多肽。片段可以是至少14个氨基酸长、至少20个氨基酸长、至少50个氨基酸长或更长以及多达全长单胺氧化酶多肽的70%、80%、90%、95%、98%和99%。
分离的多肽”是指与其天然伴随的其他污染物如蛋白、脂和多核苷酸基本上分离的多肽。该术语涵盖由它们的天然存在的环境或表达系统(例如,宿主细胞或体外合成)中移出或纯化的多肽。改良的单胺氧化酶可以存在于细胞中、存在于细胞培养基中,或以各种形式制备,例如裂解物或分离的制剂。如此,在一些实施方案中,改良的单胺氧化酶可以是分离的多肽。
基本上纯的多肽”是指其中多肽物质是存在的主要物质(即,以摩尔或重量计,其比组合物中的任何其他单独的大分子物质更丰富)的组合物,并且该组合物在主题物质以摩尔或%重量计构成至少约50%的存在的大分子物质时大体上是基本上纯化的组合物。一般地,基本上纯的单胺氧化酶组合物以摩尔数或%重量计占组合物中存在的全部大分子物质的约60%或更多、约70%或更多、约80%或更多、约90%或更多、约95%或更多和约98%或更多。在一些实施方案中,将主题物质纯化为基本上同质的(即,通过常规检测方法在组合物中不能检测到污染物质),其中组合物基本上由单一的大分子物质组成。溶剂物质、小分子(<500道尔顿)和元素铁物质不被认为是大分子物质。在一些实施方案中,分离的改良单胺氧化酶多肽是基本上纯的多肽组合物。
如本文所用的“严格杂交”是指其中核酸杂交物(hybrid)稳定的条件。如本领域的技术人员已知的,杂交物的稳定性是以杂交物的熔解温度(Tm)反映的。一般地,杂交物的稳定性取决于离子强度、温度、G/C含量、以及离液剂的存在。多核苷酸的Tm值可以使用预测熔解温度的已知方法计算(参见,例如Baldino等人,MethodsEnzymology 168:761-777;Bolton等人,1962,Proc.Natl.Acad.Sci.USA 48:1390;Bresslauer等人,1986,Proc.Natl.Acad.Sci USA 83:8893-8897;Freier等人,1986,Proc.Natl.Acad.SciUSA 83:9373-9377;Kierzek等人,Biochemistry 25:7840-7846;Rychlik等人,1990,Nucleic Acids Res 18:6409-6412(勘误,1991,Nucleic Acids Res19:698);Sambrook等人,如上);Suggs等人,1981,在Developmental BiologyUsing Purified Genes(使用纯化基因的发育生物学)(Brown等人,编辑),683-693页中,Academic Press;以及Wetmur,1991,Crit Rev Biochem MolBiol 26:227-259。所有出版物均通过引用并入本文)。在一些实施方案中,多核苷酸编码本文所公开的多肽并且在限定的条件下与编码本公开内容的工程化单胺氧化酶的序列的互补序列杂交,所述限定的条件如中度严格或高度严格的条件。
杂交严格性”指核酸的这种洗涤条件。一般地,杂交反应在较低严格性的条件下进行,随后进行不同的但是较高严格性的洗涤。术语“中度严格杂交”是指容许靶DNA结合与靶DNA具有约60%同一性,优选约75%同一性、约85%同一性;与靶多核苷酸具有大于约90%同一性的互补核酸的条件。示例性的中度严格条件是等同于下列的条件:在42℃下在50%甲酰胺、5×Denhart′s溶液、5×SSPE、0.2%SDS中杂交,随后42℃下在0.2×SSPE、0.2%SDS中洗涤。“高度严格性杂交”一般是指比在限定多核苷酸序列的溶液条件下确定的热熔解温度Tm低约10℃或更少的条件。在一些实施方案中,高度严格性条件是指仅容许在65℃下0.018M NaCl中形成稳定的杂交物的那些核酸序列杂交的条件。(即,如本文所预期的,如果杂交物在65℃下0.018M NaCl中不稳定,则其在高度严格性条件下将是不稳定的)。高度严格性条件通过下列提供:例如在等同于42℃下在50%甲酰胺、5×Denhart′s溶液、5×SSPE、0.2%SDS中的条件中杂交,随后65℃下在0.1×SSPE和0.1%SDS中洗涤。其他高度严紧格杂交条件以及中度严格条件在上文所引用的参考文献中描述。
异源的”多核苷酸是指通过实验室技术被引入宿主细胞的多核苷酸,并且包括从宿主细胞中移除,经受实验室操作,然后被再次引入宿主细胞的多核苷酸。
密码子优化的”是指将编码蛋白的多核苷酸密码子改变为在具体生物体中优先使用以便使所编码的蛋白在感兴趣的生物体中有效地表达的那些密码子。尽管由于大部分氨基酸由几种密码子(称为“同义物”或“同义”密码子)代表而使遗传密码是简并的,但熟知的是特定生物体的密码子使用是非随机的并且偏爱特定的密码子三联体。这种密码子使用偏倚关于给定基因、共同功能或祖先起源(ancestra origin)的基因、相对于低拷贝数蛋白的高表达蛋白和生物体基因组的聚集蛋白编码区可能是更高的。在一些实施方案中,可以将编码单胺氧化酶的多核苷酸密码子优化以用于从被选择用于表达的宿主生物体中最佳地制备。
优选的最佳的高密码子使用偏倚密码子”可互换地是指如下的密码子:其与编码相同氨基酸的密码子相比在蛋白编码区以更高的频率使用。优选的密码子可以就下列方面而确定:在单个基因中的密码子使用、一组共同功能或起源的基因的密码子使用、高表达的基因的密码子使用、在整个生物体中聚集的蛋白编码区的密码子频率、相关生物体的聚集的蛋白编码区的密码子频率或它们的组合。频率随基因表达水平增加的密码子通常是用于表达的最佳密码子。已知用于确定密码子频率(例如,密码子使用、相对的同义密码子使用)和特定生物体中密码子偏好的多种方法,包括多变量分析,例如使用聚类分析或相应分析和用于基因的有效密码子数(参见GCG CodonPreference,Genetics Computer Group WisconsinPackage;CodonW,John Peden,University of Nottingham;McInerney,J.O,1998,Bioinformatics 14:372-73;Stenico等人,1994,Nucleic Acids Res.222437-46;Wright,F.,1990,Gene 87:23-29)。越来越多的生物体的密码子使用表是可用的(参见,例如Wada等人,1992,Nucleic Acids Res.20:2111-2118;Nakamura等人,2000,Nucl.Acids Res.28:292;Duret,等人,如上;Henaut和Danchin,“Escherichia coli and Salmonella(大肠杆菌和沙门氏菌),”1996,Neidhardt,等人编辑,ASM Press,Washington D.C.,第2047-2066页。获得密码子使用的数据来源可以依赖于能够编码蛋白的任何可用的核苷酸序列。这些数据集包括实际上已知的编码表达的蛋白的核酸序列(例如,完整蛋白编码序列-CDS)、表达序列标签(ESTS)或基因组序列的预测编码区(参见,例如,Mount,D.,Bioinformatics:Sequence andGenomeAnalysis(生物信息学:序列和基因组分析),第8章,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,N.Y.,2001;Uberbacher,E.C.,1996,MethodsEnzymol.266:259-281;Tiwari等人,1997,Comput.Appl.Biosci.13:263-270)。
控制序列”在本文中定义为包括对于表达本公开内容的多肽是必需的或有利的所有组分。每种控制序列对于编码多肽的核酸序列来说可以是固有的或外来的。这种控制序列包括但不限于:前导序列、多聚腺苷酸化序列、前肽序列、启动子、信号肽序列和转录终止子。最低程度上,控制序列包含启动子、转录和翻译终止信号。控制序列可以为了引入促进控制序列与编码多肽的核酸序列的编码区连接的特定限制位点的目的而具有连接序列。
可操作地连接”在本文中被定义为一种构造,其中控制序列被适当地放置在相对于DNA序列的编码序列的位置处以便使控制序列指导多核苷酸和/或多肽的表达。
启动子序列”是宿主细胞所识别的用于表达编码区的核酸序列。控制序列可以包含适当的启动子序列。启动子序列含有介导多肽表达的转录控制序列。启动子可以是在选择的宿主细胞中显示转录活性的任何核酸序列,包括突变的、截短的和杂合的启动子,并且可以从编码对宿主细胞同源或异源的胞外或胞内多肽的基因获得。
“-(C1-C10)烷基”意指具有1至10个碳原子的直链或支链的非环状烃。代表性直链-(C1-C10)烷基包括:-甲基、-乙基、-正丙基、-正丁基、-正戊基、-正己基、-正庚基、-正辛基、-正壬基和-正癸基。支链烷基意指诸如-甲基、-乙基或-丙基的一个或多个直链-(C1-C8)烷基取代了直链烷基的-CH2-基团中的一个或两个氢。支链非环状烃意指诸如-甲基、-乙基或-丙基的一个或多个直链-(C1-C10)烷基取代了直链非环状烃的-CH2-基团中的一个或两个氢。代表性的支链-(C1-C10)烷基包括异丙基、仲丁基、异丁基、叔丁基、异戊基、新戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲基丙基、1,2-二甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1-乙基丁基、2-乙基丁基、3-乙基丁基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-甲基己基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、1,2-二甲基戊基、1,3-二甲基戊基、1,2-二甲基己基、1,3-二甲基己基、3,3-二甲基己基、1,2-二甲基庚基、1,3-二甲基庚基、和3,3-二甲基庚基。
“-(C1-C6)烷基”意指具有1至6个碳原子的直链或支链非环状烃。代表性的直链-(C1-C6)烷基包括:-甲基、-乙基、-正丙基、-正丁基、-正戊基和-正己基。代表性的支链(C1-C6)烷基包括异丙基、-仲丁基、-异丁基、-叔丁基、-异戊基、-新戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲基丙基、1,2-二甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1-乙基丁基、2-乙基丁基、3-乙基丁基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基和3,3-二甲基丁基。
“-(C1-C4)烷基”意指具有1至4个碳原子的直链或支链非环状烃。代表性的直链-(C1-C4)烷基包括:-甲基、-乙基、-正丙基和-正丁基。代表性的支链-(C1-C4)烷基包括-异丙基、-仲丁基、-异丁基和-叔丁基。
“-(C1-C3)烷基”意指具有1至3个碳原子的直链或支链非环状烃。代表性的直链(C1-C3)烷基包括-甲基、-乙基和-正丙基。代表性的支链-(C1-C3)烷基包括-异丙基。
“-(C1-C2)烷基”意指具有1个或2个碳原子的直链非环状烃。代表性的直链-(C1-C2)烷基包括-甲基和-乙基。
“-(C2-C10)烯基”意指具有2至10个碳原子并且包含至少一个碳-碳双键的直链或支链的非环状烃。支链烯基意指诸如-甲基、-乙基或-丙基的一个或多个直链-(C1-C8)烷基取代了直链烯基的-CH2-或-CH=基团中的一个或两个氢。代表性的直链和支链(C2-C10)烯基包括:-乙烯基、-丙烯基、1-丁烯基、-2-丁烯基、-异丁烯基、-1-戊烯基、-2-戊烯基、-3-甲基-1-丁烯基、2-甲基-2-丁烯基、-2,3-二甲基-2-丁烯基、-1-己烯基、-2-己烯基、-3-己烯基、-1-庚烯基、-2-庚烯基、-3-庚烯基、-1-辛烯基、-2-辛烯基、-3-辛烯基、-1-壬烯基、-2-壬烯基、-3-壬烯基、-1-癸烯基、-2-癸烯基、-3-癸烯基以及类似基团。
“-(C2-C6)烯基”意指具有2至6个碳原子并且包含至少一个碳-碳双键的直链或支链的非环状烃。代表性的直链和支链-(C2-C6)烯基包括:-乙烯基、-丙烯基、-1-丁烯基、-2-丁烯基、-异丁烯基、-1-戊烯基、-2-戊烯基、-3-甲基-1-丁烯基、-2-甲基-2-丁烯基、-2,3-二甲基-2-丁烯基、-1-己烯基、-2-己烯基、-3-己烯基以及类似基团。
“-(C2-C10)炔基”意指具有2至10个碳原子并且包含至少一个碳-碳三键的直链或支链的非环状烃。支链炔基意指诸如-甲基、-乙基或-丙基的一个或多个直链-(C1-C8)烷基取代了直链炔基的-CH2-基团中的一个或两个氢。代表性的直链和支链-(C2-C10)炔基包括-乙炔基、-丙炔基、-1-丁炔基、-2-丁炔基、-1-戊炔基、-2-戊炔基、-3-甲基-1-丁炔基、-4-戊炔基、-1-己炔基、-2-己炔基、-5-己炔基、-1-庚炔基、-2-庚炔基、-6-庚炔基、-1-辛炔基、-2-辛炔基、-7-辛炔基、-1-壬炔基、-2-壬炔基、-8-壬炔基、-1-癸炔基、-2-癸炔基、-9-癸炔基以及类似基团。
“-(C2-C6)炔基”意指具有2至6个碳原子并且包含至少一个碳-碳三键的直链或支链的非环状烃。代表性的直链和支链(C2-C6)炔基包括:-乙炔基、-丙炔基、-1-丁炔基、-2-丁炔基、-1-戊炔基、-2-戊炔基、-3-甲基-1-丁炔基、-4-戊炔基、-1-己炔基、-2-己炔基、-5-己炔基以及类似基团。
“-(C1-C6)烷氧基”意指具有1个或更多个醚基团和1至6个碳原子的直链或支链非环状烃。代表性的直链和支链(C1-C6)烷氧基包括-甲氧基、-乙氧基、-甲氧基甲基、-2-甲氧基乙基、-5-甲氧基戊基、-3-乙氧基丁基以及类似基团。
“-(C3-C12)环烷基”意指具有3至12个碳原子的饱和的单环烃。代表性的(C3-C12)环烷基是:-环丙基、-环丁基、-环戊基、-环己基、-环庚基、-环辛基、-环壬基、-环癸基和-环十二烷基。
“-(C4-C8)环烷基”或“4至8元环烷基环”意指具有4至8个碳原子的饱和的单环烃。代表性的-(C4-C8)环烷基是-环丁基、-环戊基、-环己基、-环庚基和-环辛基。
“-(C3-C8)环烷基”意指具有3至8个碳原子的饱和的单环烃。代表性的-(C3-C8)环烷基包括-环丙基、-环丁基、-环戊基、-环己基、-环庚基和-环辛基。
“-(C3-C7)环烷基”意指具有3至7个碳原子的饱和的单环烃。代表性的(C3-C7)环烷基包括-环丙基、-环丁基、-环戊基、-环己基和-环庚基。
“(6至10元)杂二环”或“(6至10元)二环杂环”意指饱和的、不饱和的非芳族的或芳族的6至10元二环、杂环。-(6-至10元)杂二环含有独立地选自下列的1至4个杂原子:可以被季铵化的氮;氧;和硫,包括亚砜和砜。-(6至10元)杂二环可以经由氮和碳原子连接。代表性的-(6至10元)杂二环包括:-3-氮杂二环[3.1.0]己烷、-喹啉基(quinolinyl)、-异喹啉基(isoquinolinyl)、-色酮基、-香豆素基、-吲哚基、-吲嗪基、苯并[b]呋喃基、苯并[b]噻吩基、-吲唑基、-嘌呤基、-4H-喹嗪基、异喹啉基(isoquinolyl)、-喹啉基(quinolyl)、-酞嗪基、-萘啶基、-咔唑基、-β-咔啉基、-二氢吲哚基、-异二氢吲哚基、-1,2,3,4-四氢喹啉基、-1,2,3,4-四氢异喹啉基、吡咯并吡咯基以及类似基团。
“-CH2(卤)”意指其中甲基的一个氢被卤素取代的甲基。代表性-CH2(卤)基团包括-CH2F、-CH2Cl、-CH2Br和-CH2I。
“-CH2(卤)2”意指其中甲基的两个氢被卤素取代的甲基。代表性的-CH(卤)2基团包括-CHF2、-CHCl2、-CHBr2、-CHBrCl、-CHClI和-CHI2
“-C(卤)3”意指其中甲基的每个氢都被卤素取代的甲基。代表性的-C(卤)3基团包括-CF3、-CCl3、-CBr3和-CI3
“-卤素”或“-卤”意指-F、-Cl、-Br或-I。
本文所用的“氧代”、“=O”以及类似术语意指与碳或另一元素双键键合的氧原子。
当第一基团被“一个或多个第二基团取代”时,第一基团的一个或多个氢原子被相应数目的第二基团取代。当第二基团的数目为两个或更多时,各第二基团可以是相同的或不同的。
在一个实施方案中,第一基团被最多三个第二基团取代。
在另一实施方案中,第一基团被一个或两个第二基团取代。
在另一实施方案中,第一基团仅被一个第二基团取代。
如本文所用术语“立体异构体”、“立体异构形式”以及类似术语是用于单个分子的所有异构体的一般术语,它们仅在它们的原子在空间中的方向上不同。它包括对映体和具有彼此不为镜像的多于一个的手性中心的化合物的异构体(“非对映体”)。
术语“手性中心”是指四个不同的基团所连接的碳原子。
术语“对映体”或“对映体的”是指在其镜像上不可重叠并且因此是光学活性的分子,其中对映体使偏振光平面以一个方向旋转并且其镜像使偏振光平面以相反的方向旋转。
术语“外消旋的”是指光学上无活性的对映体的等份混合物。
术语“拆分”是指分子的两种对映体形式之一的分离或浓缩或排除。
如本文所用的“基本上对映体纯”意指化合物的指定对映体以比相同化合物的另一对映体更高的程度或度存在。因此,在具体实施方案中,基本上对映体纯的化合物以比相同化合物的另一对映体80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%对映体过量存在。
如本文所用的“基本上立体异构纯”意指化合物的指定对映体或非对映体以比相同化合物的另一对映体或非对映体更高的程度或度存在。如上文关于“立体选择性”所提到的,对映体过量和非对映体过量是立体异构体过量的类型。因此,在具体实施方案中,基本上立体异构纯的化合物以比相同化合物的另一对映体或非对映体80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%立体异构体过量存在。
5.4制备本公开内容的杂二环化合物的方法
本公开内容的杂二环化合物是使用下面所公开的生物催化方法,利用本文所公开的单胺氧化酶作为生物催化剂来装配的。
方案1
Figure BDA0000154039570000571
方案1描绘由本公开内容的单胺氧化酶催化的反应,通过该反应仲胺即根据结构式I的杂二环化合物被氧化为相应的结构式II(a)的亚胺化合物。
方案2
反应(1):
Figure BDA0000154039570000572
反应(2):2O2+2酶-FAD-H2→2酶-FAD-H2O2
反应(3):2H2O2→2H2O+O2
方案2描绘三个基础反应,这三个基础反应在一起提供方案1中所描绘的总体净反应。在方案2的第一个反应中,通过本公开内容的单胺氧化酶(其与黄素腺嘌呤核苷酸辅因子(FAD)形成复合体)将仲胺即根据结构式I的杂二环化合物立体选择性地氧化为相应的结构式II(a)亚胺化合物以提供相应的基本上对映体纯的结构式II的亚胺和还原的单胺氧化酶FAD复合体(酶-FAD-H2)。在第二步中,通过分子氧将还原的单胺氧化酶(酶-FAD-H2复合体)重新氧化,产生作为副产物的过氧化氢(H2O2)。在第三个反应(其不通过单胺氧化酶催化)中,过氧化氢(H2O2)分解为水和氧。
底物结构式I的仲胺是可商购获得的或者使用本领域中已知的方法和试剂或者根据本公开内容容易地由本领域中已知的方法和试剂修改的方法和试剂容易地合成的(参见,例如Delalu等人(1999)J.HeterocyclicChem.36,681;WO 2007/022459;和WO 2007/075790;以及其中所引用的参考文献)。
过氧化氢是能够不可逆地灭活单胺氧化酶的强氧化剂。因此,在某些实施方案中,可使用组分来促进上述方案2的步骤3中所描绘的歧化反应,在该反应中,过氧化氢(H2O2)被分解为分子氧和水。在某些实施方案中,该组分选自化学剂,例如但不限于Pd、Fe以及类似物,而在其他实施方案中,该组分是酶,例如酶过氧化氢酶。在具体的实施方案中,反应混合物还包含催化方案2的步骤3的歧化反应的过氧化氢酶,在该反应中两分子的过氧化氢被分解,提供两分子的水和一个分子氧。在具体的实施方案中,过氧化氢酶是黑曲霉过氧化氢酶,它以约0.01%至约1%(w/v)、约0.05%至约0.5%(w/v)或约0.1%至约0.2%(w/v)的浓度包括在反应中。
在其中结构式I的化合物是挥发性液体的情况下,为了利于处理,可以将其作为盐提供。在此实施方案的一个方面,通过将1当量的乙酸添加到游离碱溶解于如庚烷中的10%溶液中而将胺底物转化为乙酸盐。收集沉淀的盐,用溶剂(例如,从其中沉淀盐的溶剂,如庚烷)洗涤并在减压下在室温下(约21℃)干燥。
如在方案1中所指出的,最终的氧化剂是分子氧。鉴于氧在水中的溶解度有限并且根据该溶解度随温度和含盐量(溶质浓度)增加而降低,必须通过气液传质由气相补充用于反应的溶液中的分子氧。通常,为实际反应速率而提供的优选的单胺氧化酶的活性和量足以使反应受气液传质的速率限制。如所熟知的,气液传质的速率依赖于气体在液体中的分压、气体在液体中的溶解度和气液界面面积。因此,可以通过提供强烈的气液混合的工程化环境来增加受气液传质速率限制的反应的速率,包括通过喷雾、空心轴叶轮抽吸(hollow shaft impeller aspiration)、逆流气液循环、垂直的蛇形管流以及类似方法。此外,在任何工程化环境中,可以通过增加氧分压来增加受氧气气液传质速率限制的反应的速率,所述增加氧分压通过增加总气压进行或者增加气体中的氧分数(例如用纯化的氧富集或代替空气)进行或者通过两者进行。在具体的实施方案中,连续监测溶氧浓度和/或从气相耗氧的速率,并调节进氧速率、分压、混合效率或它们的组合以提供有益的反应速率或直到完成的总体反应时间。
在某些实施方案中,反应混合物还可以包含至少一种消泡剂。在具体的实施方案中,消泡剂是可商购获得的材料,例如但不限于于Antifoam-204或Antifoam Y-30(Sigma,St.Louis MO)或类似物。在其他实施方案中,反应可以包含多于一种消泡剂。消泡剂可以约0.01%至约1%(若是固体为w/v,或者若是液体为v/v)、约0.05%至约0.5%、或约0.1%至约0.2%的浓度包含在反应中。
在某些实施方案中,可以从反应混合物分离氧化的结构式II的亚胺化合物,将其纯化并表征。在下文所述的其他实施方案中,可以将结构式II的亚胺化合物转化为另一加成物或中间体并且用于后续步骤而不分离或纯化。
方案3
Figure BDA0000154039570000591
在某些实施方案中,本公开内容的单胺氧化酶可能受到产物结构式II的亚胺的抑制。因此,在具体的实施方案中,其中结构式I的化合物被氧化为结构式II的化合物的反应还包含将与结构式II的亚胺化合物反应形成加成物的试剂,所述加成物具有降低的或消除的抑制本公开内容的单胺氧化酶的能力,如方案3中所描绘的。在此实施方案的一个方面,在反应开始添加该试剂或间断地或连续地添加该试剂,添加的量高至足以防止抑制量的结构式II的亚胺化合物积累但又低至足以避免酶抑制量的该试剂的积累。在一个实施方案中,该试剂为亚硫酸氢钠,其可以作为偏亚硫酸氢钠方便地提供,偏亚硫酸氢钠在水中水解为亚硫酸氢钠。亚硫酸氢盐与结构式II的亚胺化合物反应提供了结构式III的亚硫酸盐加成物。在某些实施方案中,将亚硫酸氢钠以使得这种试剂被“瞬时”消耗的速率连续地添加至反应中,并且可能的结构式II的抑制性亚胺产物被“诱捕”为较低抑制性或无抑制性的结构式III的亚硫酸盐加成化合物。
无论单胺氧化酶被亚胺产物抑制与否,添加亚硫酸氢盐以使亚胺产物反应还提供实际方法的工程化选择。本发明的某些亚胺是高挥发性的,并且在它们之中,一些是恶臭的和/或有毒的。它们作为游离碱的限制需要封闭的反应、没有气体流、或化学诱捕的有效凝聚(例如通过亚硫酸氢盐溶液)。生成它们的亚硫酸氢盐加成物(氨基磺酸盐)的原位反应消除了这些工程化限制,同时还提供了在同一反应容器中用氰化物进行后续反应的选择。
结构式III的亚硫酸氢盐加成化合物的形成在增加的pH下可以被逆转,由此再产生相应的结构式II的亚胺。因此,在某些实施方案中,通过添加碱如10N NaOH将pH升至约13再产生结构式II的亚胺来猝灭方案3的反应,所述结构式II的亚胺可以用例如甲基叔丁醚(“MBTE”)萃取,并且在某些实施方案中通过蒸馏来分离,得到为无色油的结构式II的亚胺。
在某些实施方案中,部分监测和控制添加结构式I的底物、螯合剂(例如,亚硫酸氢钠)和pH控制剂(例如,NaOH)的速率以最小化或消除单胺氧化酶的底物抑制和产物抑制,该单胺氧化酶用作将结构式I的化合物转化为结构式II的化合物的生物催化剂。
方案4
在另一实施方案中,将NaCN添加至方案3的反应物中,并容许pH升至约pH 10,由此将结构式III的亚硫酸盐加成物立体选择性地转化为结构式IV(a)的反式氨基腈化合物,如方案4中所描绘的。在此实施方案的方面中,将约1至约3当量、约1至约2当量、约1.05至约1.5当量或约1.1至约1.2当量的NaCN(相对于结构式II的亚胺化合物)添加到反应中以将结构式III的亚硫酸盐加成物转化为结构式IV(a)的反式氨基腈化合物。此外,式III的化合物的反应产生结构式IV(b)的顺式氨基腈化合物。
可以使用下列物质从反应混合物(有机溶剂:含水反应混合物为1∶1)中萃取结构式IV(a)的反式氨基腈化合物:例如,2-甲基四氢呋喃、MTBE或乙酸异丙酯。可以从有机溶剂萃取物例如有机萃取物中回收反式氨基腈化合物,任选的中间体的进一步澄清物可在减压下浓缩,得到结构式IV的氨基腈化合物。
方案5
Figure BDA0000154039570000612
在某些实施方案中,使结构式II的亚胺化合物反应形成方案5中所描绘的二聚体结构(参见,例如,Int.J.Chem.Kinet.1998,30(2),129-136),从而最小化或消除本公开内容的单胺氧化酶的产物抑制。无论单胺氧化酶被亚胺产物抑制与否,二聚化都还可以提供实际方法的工程化选择。二聚体的挥发性若存在的话也远远低于相应的亚胺,大大减轻了对工程化限制挥发性亚胺的需要。此外,二聚体通常可以通过过滤、萃取或蒸气蒸馏而从反应混合物容易地回收,并且通常可以直接用于方法的后续步骤中。可选择地,通常可以将二聚体溶解在酸性溶液中以提供单体亚胺盐溶液,该单体亚胺盐溶液适合用于后续步骤来产生期望的二环脯氨酸类似物和衍生物。
方案6
Figure BDA0000154039570000621
已知在一些条件下,吡咯烷单体化合物(例如,3,4-二氢-2H-吡咯)的亚胺形成二聚体,然后形成热力学有利的三聚体结构。因此,某些结构式II(a)的化合物不仅可以形成二聚体,而且随后继续完全形成三聚体(例如,式II(c)的化合物);或者形成三聚体与单体和二聚体化合物的某种混合物。
Figure BDA0000154039570000622
形成这种三聚体的有利性可能依赖于取代基。然而,预期结构式II(c)的这种三聚体化合物在用于本公开内容的反应中时与二聚体相比表现出极小的反应性差异。因此,不受机制的束缚,预计进行结构式II(c)的三聚体形成的任何结构式II(a)的化合物将表现出与二聚体形式等价的反应性。
在萃取到溶剂如MTBE或甲苯中之后,可以使根据方案5形成的二聚体与NaCN和酸(例如,柠檬酸、乙酸或盐酸)接触或与HCN接触(在0℃),得到结构式IV(a)的反式氨基腈化合物和式IV(b)的顺式氨基腈化合物。
方案7
Figure BDA0000154039570000631
可以使根据例如方案4或方案6制备的结构式IV(a)的反式氨基腈化合物与含水酸(例如,HCl或H2SO4)接触,以提供结构式VI的氨基酸。其中部分R5是叔丁基的结构式V的相应叔丁酯是通过使结构式VI的胺化合物与酸(例如甲烷磺酸)和异丁烯或叔丁酯(例如,乙酸叔丁酯)接触制备的,如方案7中所描绘。
方案8
Figure BDA0000154039570000632
在另一实施方案中,可以使根据例如方案4或方案6制备的结构式IV(a)的反式氨基腈化合物在Pinner反应中与HCl和甲醇接触,得到其中部分R5是-CH3的结构式V的甲酯,如方案8中所显示的。
方案9
Figure BDA0000154039570000633
方案9描绘由结构式I的仲胺制备根据结构式V和VI的化合物的总过程,其中结构式II的亚胺产物在其转化为结构式IV的氨基腈的过程中作为结构式III的亚硫酸盐加成物保持在水溶液中。
方案10
Figure BDA0000154039570000641
方案10描绘由结构式I的仲胺制备根据结构式V和VI的化合物的总过程,其中结构式II的亚胺产物在其转化为结构式IV的氨基腈的过程中被二聚化为结构式II(b)的化合物。
方案11
方案11描绘由结构式I的仲胺制备根据结构式VI和结构式V(其中部分R5是叔丁基)的化合物的总过程,该过程结合了方案4和7的反应。
方案12
Figure BDA0000154039570000651
方案12描绘由结构式I的仲胺制备根据结构式V(其中部分R5是-CH3)的化合物的总过程,该过程结合了方案4和8的反应。
方案13
Figure BDA0000154039570000652
方案13描绘由结构式I的仲胺制备根据结构式V(其中部分R5是叔丁基)的化合物的总过程,该过程结合了方案6和7的反应。
方案14
Figure BDA0000154039570000653
方案14描绘由结构式I的仲胺制备根据结构式V(其中部分R5是-CH3)的化合物的总过程,该过程结合了方案6和8的反应。
方案15
Figure BDA0000154039570000661
方案15描绘了由结构式I的仲胺制备根据结构式VIII的化合物的总过程,该过程包括了方案4的反应。
方案16
Figure BDA0000154039570000662
方案16描绘了由结构式I的仲胺制备根据结构式VII的化合物的总过程,该过程包括了方案6的反应。
在另一实施方案中,涉及结构式IV(a)的反式氨基腈化合物的方案7-16的任何过程可以用结构式IV(b)的顺式氨基腈化合物进行。当对应于方案7-16的反应使用结构式IV(b)的顺式氨基腈化合物进行时,形成所得的结构式V(b)、VI(b)和VII(b)的顺式氨基酸和酰胺。
Figure BDA0000154039570000663
不受机制的束缚,认识到在形成方案8、9、10、11、12、13、14、15和16的结构式V、VI、VII的化合物的反应期间形成了酰亚胺酯(imidate)中间体。因此,在另一实施方案中,本公开内容提供结构式VIII的酰亚胺酯化合物,其中R6是H或烷基。
Figure BDA0000154039570000671
因此,在上述方法的一些实施方案中,结构式VIII的酰亚胺酯化合物可用于制备结构式V、VI和VII的化合物。
5.5单胺氧化酶
本公开内容提供了能够将底物结构式I的化合物立体选择性地氧化或转化为结构式II的化合物的工程化单胺氧化酶。在具体的实施方案中,本公开内容提供能够将底物化合物(1)立体选择性地氧化或转化为化合物(2)的工程化单胺氧化酶。在其他实施方案中,本公开内容提供能够将底物化合物(3)立体选择性地氧化或转化为化合物(4)的工程化单胺氧化酶。在两种情况下,本公开内容的单胺氧化酶在与天然存在的野生型黑曲霉单胺氧化酶(SEQ ID NO:2)或米曲霉单胺氧化酶(SEQ ID NO:32)或它们的杂交物(SEQ ID NO:6)相比时,或与其他工程化单胺氧化酶(例如,SEQ ID NO:8的单胺氧化酶)相比时,还表现出改良的特性。期望改良的酶特性包括但不限于:酶活性、热稳定性、pH活性谱、辅因子需求、对抑制剂(例如产物抑制)的不应性、立体特异性、立体选择性、溶剂稳定性、溶解性和在宿主细胞中的稳定性和表达水平。改良可以涉及单一的酶特性如酶活性或不同酶特性例如酶活性和立体选择性的组合。
编码天然存在的黑曲霉和米曲霉的单胺氧化酶的多核苷酸序列以及由此相应氨基酸序列对于黑曲霉可从Genbank登录号L38858获得并且对于米曲霉可从Genbank登录号XM 001822832获得。
在一些实施方案中,本文所公开的单胺氧化酶可以具有对参考序列(例如,天然存在的多肽或工程化多肽)的大量修饰以产生改良的单胺氧化酶特性。在这种实施方案中,对氨基酸序列的修饰数可以包括一个或多个氨基酸、2个或更多个氨基酸、3个或更多个氨基酸、4个或更多个氨基酸、5个或更多个氨基酸、6个或更多个氨基酸、8个或更多个氨基酸、10个或更多个氨基酸、15个或更多个氨基酸、或20个或更多个氨基酸、多达参考酶序列氨基酸总数的10%、多达参考酶序列氨基酸总数的20%、或多达参考酶序列氨基酸总数的30%。在一些实施方案中,产生改良的单胺氧化酶特性的对天然存在的多肽或工程化多肽的修饰数可以包括约1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、1-15、1-20、1-21、1-22、1-23、1-24、1-25、或约1-30个对参考序列的修饰。修饰可以包括插入、缺失、取代、或它们的组合。
在一些实施方案中,修饰包括对参考序列的氨基酸取代。可以产生改良的单胺氧化酶特性的取代可以位于一个或多个氨基酸、2个或更多个氨基酸、3个或更多个氨基酸、4个或更多个氨基酸、5个或更多个氨基酸、6个或更多个氨基酸、8个或更多个氨基酸、10个或更多个氨基酸、或20个或更多个氨基酸、多达参考酶序列氨基酸总数的10%、多达参考酶序列氨基酸总数的20%、或多达参考酶序列氨基酸总数的30%。在一些实施方案中,产生改良的单胺氧化酶特性的对天然存在的多肽或工程化多肽的取代数可以包括约1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10、1-15、1-20、1-21、1-22、1-23、1-24、1-25、或约1-30个对参考序列的氨基酸取代。
在一些实施方案中,与野生型或另一工程化多肽相比,单胺氧化酶的改良特性是关于其立体选择性增加,即,在本文中,用于将结构式I的化合物氧化为结构式II的化合物,或在具体实施方案中将化合物(1)氧化或转化为化合物(2)或将化合物(3)氧化为化合物(4)的产物的立体异构体过量的增加。在一些实施方案中,单胺氧化酶的改良特性是关于其将更高百分比的底物转化或还原为产物的能力增加。在一些实施方案中,单胺氧化酶的改良特性是关于其将底物转化为产物的速率增加。这种酶活性的改良可以通过使用与野生型或其他参考序列相比较少的改良单胺氧化酶来氧化或转化相同量的产物的能力来证明。在一些实施方案中,单胺氧化酶的改良特性是关于其稳定性或热稳定性。在一些实施方案中,单胺氧化酶具有多于一种的改良特性。
在一些实施方案中,本公开内容的单胺氧化酶能够将底物(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)转化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2),其中立体异构体过量百分比为至少约95%并且与具有SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:6的氨基酸序列的参考多肽相比速率有所改善。具有这种特性的示例性多肽包括但不限于包含对应于SEQ ID NO:4、SEQ ID NO:8和SEQ ID NO:10的氨基酸序列的多肽。
在一些实施方案中,本公开内容的单胺氧化酶能够将底物(3aR,6aS)-八氢环戊[c]吡咯,化合物(3)转化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯,化合物(4),其中立体异构体过量百分比为至少约95%并且与具有SEQID NO:2、SEQ ID NO:32或SEQ ID NO:6的氨基酸序列的参考多肽相比速率有所改善。具有这种特性的示例性多肽包括但不限于包含对应于SEQ IDNO:10、14、16、18、20和36的氨基酸序列的多肽。
下面的表2和3提供了本文所公开的SEQ ID NO列表及相关活性。除非另外指明,否则下面的序列基于野生型黑曲霉单胺氧化酶序列(SEQ IDNO:1和SEQ ID NO:2)。在下面的表2和3中,每行列出了两个SEQ IDNO,其中奇数序列是指编码偶数序列所提供的氨基酸序列的核苷酸序列。列出突变(即,残基改变)数目列是指与SEQ ID NO:1和SEQ ID NO:2的野生型黑曲霉单胺氧化酶氨基酸序列相比的氨基酸取代数目。每个表后是说明文字,指明各表中符号“+”“++”“+++”和“++++”的意义。
表2:序列表和关于将化合物(1)转化为化合物(2)方面的相应活性改良:
Figure BDA0000154039570000691
表3:序列表和关于将化合物(3)转化为化合物(4)方面的相应活性改良:
Figure BDA0000154039570000701
在一些实施方案中,本公开内容的单胺氧化酶包含与包含SEQ IDNO:2序列的参考序列相比至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列,条件是多肽包含其中对应于残基位置289的氨基酸残基是缬氨酸,对应于残基位置348的氨基酸残基是谷氨酰胺,对应于残基位置382的氨基酸残基是亮氨酸,并且对应于残基465的氨基酸是甘氨酸的氨基酸序列。在一些实施方案中,这些单胺氧化酶可以具有对SEQ ID NO:12的氨基酸序列的一个或多个修饰。所述修饰可以包括取代、缺失和插入。取代可以是非保守取代、保守取代或非保守取代和保守取代的组合。
在一些实施方案中,本公开内容的单胺氧化酶包含与包含SEQ IDNO:2序列的参考序列相比至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列,条件是多肽包含其中对应于残基位置289的氨基酸残基是缬氨酸,对应于残基位置348的氨基酸残基是谷氨酰胺,对应于残基位置365的氨基酸残基是色氨酸,并且对应于残基465的氨基酸是甘氨酸的氨基酸序列。在一些实施方案中,这些单胺氧化酶可以具有对SEQ ID NO:14的氨基酸序列的一个或多个修饰。所述修饰可以包括取代、缺失和插入。取代可以是非保守取代、保守取代或非保守取代和保守取代的组合。
在一些实施方案中,本公开内容的单胺氧化酶包含与包含SEQ IDNO:2序列的参考序列相比至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列,条件是多肽包含其中对应于位置99的残基的氨基酸残基是谷氨酸,对应于残基289的残基是缬氨酸,对应于残基位置348的氨基酸残基是谷氨酰胺,对应于残基位置365的氨基酸残基是色氨酸,并且对应于残基位置465的氨基酸残基是甘氨酸的氨基酸序列。在一些实施方案中,这些单胺氧化酶可以具有对SEQ ID NO:16的氨基酸序列的一个或多个修饰。所述修饰可以包括取代、缺失和插入。取代可以是非保守取代、保守取代或非保守取代和保守取代的组合。
在一些实施方案中,本公开内容的单胺氧化酶包含与包含SEQ IDNO:2序列的参考序列相比至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列,条件是多肽包含其中对应于残基位置99的氨基酸残基是谷氨酸,对应于位置135的残基是谷氨酰胺,对应于残基289的残基是缬氨酸,对应于残基位置348的氨基酸残基是谷氨酰胺,对应于残基位置365的氨基酸残基是色氨酸,并且对应于残基位置465的氨基酸残基是甘氨酸的氨基酸序列。在一些实施方案中,这些单胺氧化酶可以具有对SEQ ID NO:18的氨基酸序列的一个或多个修饰。所述修饰可以包括取代、缺失和插入。取代可以是非保守取代、保守取代或非保守取代和保守取代的组合。
在一些实施方案中,本公开内容的单胺氧化酶包含与包含SEQ IDNO:2序列的参考序列相比至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的氨基酸序列,条件是多肽包含其中对应于残基位置99的氨基酸残基是谷氨酸,对应于位置135的残基是谷氨酰胺,对应于位置284的残基是天冬氨酸,对应于残基289的残基是缬氨酸,对应于残基位置348的氨基酸残基是谷氨酰胺,对应于位置356的氨基酸残基是缬氨酸,对应于残基位置365的氨基酸残基是色氨酸,并且对应于残基位置465的氨基酸残基是甘氨酸的氨基酸序列。在一些实施方案中,这些单胺氧化酶可以具有对SEQ ID NO:20的氨基酸序列的一个或多个修饰。所述修饰可以包括取代、缺失和插入。取代可以是非保守取代、保守取代或非保守取代和保守取代的组合。
在一些实施方案中,改良的单胺氧化酶包含与对应于如表2和3中所列的SEQ ID NO:4、8、10、12、14、16、18、20或36的氨基酸序列至少约85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%相同的氨基酸序列,其中所述改良的单胺氧化酶氨基酸序列包括表2和3的氨基酸序列中所呈现的任一组特定的氨基酸取代组合。在一些实施方案中,这些单胺氧化酶可以在其他氨基酸残基处另外具有约1-2、1-3、1-4、1-5、1-6、1-7、1-8、1-9、1-10或1-20个突变。突变可以包括插入、缺失、取代、或它们的组合。在一些实施方案中,另外的突变包括保守取代。
如熟悉的技术人员将了解的,本文所述的多肽并不限于遗传编码的氨基酸。除遗传编码的氨基酸外,本文所述的多肽可以整体地或部分地包含天然存在的氨基酸和/或合成的非编码氨基酸。本文所描述的单胺氧化酶可以包含的某些常遇到的非编码氨基酸包括但不限于:遗传编码的氨基酸的D-立体异构体;2,3-二氨基丙酸(Dpr);α-氨基异丁酸(Aib);ε-氨基己酸(Aha);δ-氨基戊酸(Ava);N-甲基甘氨酸或肌氨酸(MeGly或Sar);鸟氨酸(Orn);瓜氨酸(Cit);叔丁基丙氨酸(Bua);叔丁基甘氨酸(Bug);N-甲基异亮氨酸(MeIle);苯基甘氨酸(Phg);环己基丙氨酸(Cha);正亮氨酸(Nle);萘基丙氨酸(Nal);2-氯苯丙氨酸(Ocf);3-氯苯丙氨酸(Mcf);4-氯苯丙氨酸(Pcf);2-氟苯丙氨酸(Off);3-氟苯丙氨酸(Mff);4-氟苯丙氨酸(Pff);2-溴苯丙氨酸(Obf);3-溴苯丙氨酸(Mbf);4-溴苯丙氨酸(Pbf);2-甲基苯丙氨酸(Omf);3-甲基苯丙氨酸(Mmf);4-甲基苯丙氨酸(Pmf);2-硝基苯丙氨酸(Onf);3-硝基苯丙氨酸(Mnf);4-硝基苯丙氨酸(Pnf);2-氰基苯丙氨酸(Ocf);3-氰基苯丙氨酸(Mcf);4-氰基苯丙氨酸(Pcf);2-三氟甲基苯丙氨酸(Otf);3-三氟甲基苯丙氨酸(Mtf);4-三氟甲基苯丙氨酸(Ptf);4-氨基苯丙氨酸(Paf);4-碘苯丙氨酸(Pif);4-氨基甲基苯丙氨酸(Pamf);2,4-二氯苯丙氨酸(Opef);3,4-二氯苯丙氨酸(Mpcf);2,4-二氟苯丙氨酸(Opff);3,4-二氟苯丙氨酸(Mpff);吡啶-2-基丙氨酸(2pAla);吡啶-3-基丙氨酸(3pAla);吡啶-4-基丙氨酸(4pAla);萘-1-基丙氨酸(1nAla);萘-2-基丙氨酸(2nAla);噻唑基丙氨酸(taAla);苯并噻吩基丙氨酸(bAla);噻吩基丙氨酸(tAla);呋喃基丙氨酸(fAla);高苯丙氨酸(hPhe);高酪氨酸(hTyr);高色氨酸(hTrp);五氟苯丙氨酸(5ff);苯乙烯丙氨酸(styrylkalanine,sAla);蒽基丙氨酸(authrylalanine,aAla);3,3-二苯基丙氨酸(Dfa);3-氨基-5-苯基戊酸(phenypentanoic acid,Afp);青霉胺(Pen);1,2,3,4-四氢异喹啉-3-羧酸(Tic);β-2-噻吩基丙氨酸(Thi);蛋氨酸亚砜(Mso);N(w)-硝基精氨酸(nArg);高赖氨酸(hLys);磷酸甲基苯丙氨酸(pmPhe);磷酸丝氨酸(pSer);磷酸苏氨酸(pThr);高天冬氨酸(hAsp);高谷氨酸(hGlu);1-氨基环戊-(2或3)-烯-4羧酸;哌可酸(PA),氮杂环丁烷-3-羧酸(ACA);1-氨基环戊烷-3-羧酸;烯丙基甘氨酸(aOly);炔丙基甘氨酸(pgGly);高丙氨酸(hAla);正缬氨酸(nVal);高亮氨酸(hLeu)、高缬氨酸(hVal);高异亮氨酸(hIle);高精氨酸(hArg);N-乙酰基赖氨酸(AcLys);2,4-二氨基丁酸(Dbu);2,3-二氨基丁酸(Dab);N-甲基缬氨酸(MeVal);高半胱氨酸(hCys);高丝氨酸(hSer);羟脯氨酸(Hyp)和高脯氨酸(hPro)。本文所述的单胺氧化酶可以包含的其他的非编码氨基酸对于本领域的技术人员来说将是明显的(参见,例如,在Fasman,1989,CRC Practical Handbook of Biochemistry and Molecular Biology(CRC生物化学和分子生物学实践手册),CRC Press,Boca Raton,FL,在第3-70页和其中所引用的参考文献中所提供的多种氨基酸,该文献及其参考文献全部都通过引用并入)。这些氨基酸可以为L-构型或D-构型。
本领域的技术人员将认识到本文所公开的单胺氧化酶还可以包含具有侧链保护基团的氨基酸或残基。这种被保护的氨基酸在这种情况下属于芳族类别,它们的非限制性实例包括(保护基团在括号中列出)但不限于:Arg(tos)、Cys(甲基苄基)、Cys(硝基吡啶硫酰基)、Glu(δ-苄基酯)、Gln(呫吨基)、Asn(N-δ-呫吨基)、His(bom)、His(苄基)、His(tos)、Lys(fmoc)、Lys(tos)、Ser(O-苄基)、Thr(O-苄基)和Tyr(O-苄基)。
本文所述的单胺氧化酶可以包含的构象上受限的非编码氨基酸可以包括但不限于N-甲基氨基酸(L-构型);1-氨基环戊-(2或3)-烯-4-羧酸;哌可酸;氮杂环丁烷-3-羧酸;高脯氨酸(hPro);和1-氨基环戊烷-3-羧酸。
如上所述,可以将引入天然存在的多肽中来产生工程化单胺氧化酶的各种修饰靶向于特定的酶特性。
5.6编码工程化单胺氧化酶的多核苷酸
在另一方面,本公开内容提供编码本文所公开的工程化单胺氧化酶的多核苷酸。所述多核苷酸可与控制基因表达的一个或多个异源调节序列可操作地连接以产生能够表达多肽的重组多核苷酸。可以将含有编码工程化单胺氧化酶的异源多核苷酸的表达构建体引入适当的宿主细胞中以表达相应的单胺氧化酶多肽。
由于知道对应于各种氨基酸的密码子,所以蛋白序列的可用性提供了能够编码主题物的所有多核苷酸的说明。其中相同的氨基酸被可选的密码子或同义密码子编码的遗传密码的简并性容许制备极大量的核酸,它们全部编码本文所公开的改良的单胺氧化酶。因此,在鉴定了具体的氨基酸序列的情况下,本领域的技术人员能够通过以不改变蛋白氨基酸序列的方式简单地修饰一个或多个密码子序列来制备任何数目的不同核酸。在此方面,本公开内容特定地涵盖每一个可能的多核苷酸变异,所述多核苷酸变异可以通过选择基于可能的密码子选择的组合而制备,并且对于本文所公开的任何多肽,所有这些变异被认为是特定地公开的,所述多肽包括表2和3中所呈现的氨基酸序列。
在一些实施方案中,多核苷酸包含编码具有如下的氨基酸序列的单胺氧化酶的核苷酸序列:与本文所述的参考工程化单胺氧化酶的任一个相比具有至少约80%或更多的序列同一性、约85%或更高的序列同一性、约90%或更高的序列同一性、约95%或更高的序列同一性、约96%或更高的序列同一性、约97%或更高的序列同一性、约98%或更高的序列同一性、或99%或更高的序列同一性。在一些实施方案中,多核苷酸编码包含选自下列的氨基酸序列的工程化单胺氧化酶:SEQ ID NO:4、SEQ ID NO:8、SEQ IDNO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:16、SEQ ID NO:18、SEQ ID NO:20、或SEQ ID NO:36。
在多个实施方案中,优选选择适合蛋白在其中表达的宿主细胞的密码子。例如,使用在细菌中使用的优选密码子来在细菌中表达基因,使用在酵母中使用的优选密码子来在酵母中表达;并且使用在哺乳动物中使用的优选密码子来在哺乳动物细胞中表达。举例来说,SEQ ID NO:1的多核苷酸被密码子优化以便在大肠杆菌中表达,但是另外还编码天然存在的黑曲霉单胺氧化酶。
在某些实施方案中,不需要替代所有的密码子来优化单胺氧化酶的密码子使用,因为天然序列将包含优选的密码子并且因为优选密码子的使用可能不是所有氨基酸残基都需要的。因此,编码单胺氧化酶的密码子优化的多核苷酸可以在全长编码区的约40%、50%、60%、70%、80%或大于90%的密码子位置含有优选的密码子。
在一些实施方案中,编码工程化单胺氧化酶的多核苷酸选自:SEQ IDNO:3、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQID NO:15、SEQ ID NO:17、SEQ ID NO:19、或SEQ ID NO:35。在一些实施方案中,多核苷酸能够在高度严格条件下与包含SEQ ID NO:5或SEQ IDNO:31的多核苷酸杂交,其中能够在高度严格条件下杂交的多核苷酸编码功能单胺氧化酶。
在其他实施方案中,多核苷酸包含如下的多核苷酸:编码本文所述的单胺氧化酶,但是在核苷酸水平上与编码工程化单胺氧化酶的参考多核苷酸具有约80%或更高的序列同一性、约85%或更高的序列同一性、约90%或更高的序列同一性、约95%或更高的序列同一性、约98%或更高的序列同一性、或99%或更高的序列同一性。在一些实施方案中,参考多核苷酸选自下列序列所表示的多核苷酸序列:SEQ ID NO:3、SEQ ID NO:7、SEQID NO:9、SEQ ID NO:11、SEQ ID NO:13、SEQ ID NO:15、SEQ ID NO:17、SEQ ID NO:19、或SEQ ID NO:35。
可以多种方式操作编码改良的单胺氧化酶的分离的多核苷酸以提供多肽的表达。依据表达载体,分离的多核苷酸在插入载体之前的操作可能是期望的或必需的。利用重组DNA方法修饰多核苷酸和核酸序列的技术是本领域中熟知的。指南提供在Sambrook等人,2001,Molecular Cloning:ALaboratory Manual(分子克隆:实验室手册),第3版,Cold Spring HarborLaboratory Press;和Current Protocols in Molecular Biology(分子生物学最新实验方案),Ausubel.F.编辑,Greene Pub.Associates,1998,更新至2006。
对于细菌宿主细胞,用于指导本公开内容的核酸构建体转录的合适启动子包括从下列基因中获得的启动子:大肠杆菌lac操纵子、天蓝色链霉菌(Streptomyces coelicolor)琼脂糖酶基因(dagA)、枯草芽孢杆菌(Bacillussubtilis)果聚糖蔗糖酶基因(sacB)、地衣芽孢杆菌(Bacillus licheniformis)α-淀粉酶基因(amyL)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)麦芽糖淀粉酶基因(amyM)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)α-淀粉酶基因(amyQ)、地衣芽孢杆菌青霉素酶基因(penP)、枯草芽孢杆菌xylA和xylB基因以及原核β-内酰胺酶基因(Villa-Kamaroff等人,1978,Proc.Natl Acad.Sci.USA 75:3727-3731);以及tac启动子(DeBoer等人,1983,Proc.Natl Acad.Sci.USA 80:21-25)。其他启动子描述于Scientific American,1980,242:74-94中的“Useful proteins from recombinant bacteria(来自重组细菌的有用蛋白)”;和Sambrook等人,如上。
对于丝状真菌宿主细胞,用于指导本公开内容的核酸构建体转录的合适启动子包括从下列酶的基因获得的启动子:米曲霉TAKA淀粉酶、米赫根毛霉(Rhizomucor miehei)天冬氨酸蛋白酶、黑曲霉中性α-淀粉酶、黑曲霉酸稳定的α-淀粉酶、黑曲霉或泡盛曲霉(Aspergillus awamori)葡萄糖淀粉酶(glaA)、米赫根毛霉脂肪酶、米曲霉碱性蛋白酶、米曲霉磷酸丙糖异构酶、构巢曲霉乙酰胺酶和尖孢镰刀菌(Fusarium oxysporum)胰蛋白酶样蛋白酶(WO 96/00787);以及NA2-tpi启动子(来自黑曲霉中性α-淀粉酶基因和米曲霉磷酸丙糖异构酶基因的启动子的杂合体)以及它们的突变启动子、截短启动子和杂合启动子。
在酵母宿主中,有用的启动子可以来自下列酶的基因:酿酒酵母(Saccharomyces cerevisiae)烯醇化酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)和酿酒酵母3-磷酸甘油酸激酶。用于酵母宿主细胞的其他有用启动子由Romanos等人,1992,Yeast 8:423-488描述。
控制序列还可以是合适的转录终止子序列,转录终止子序列是被宿主细胞识别以终止转录的序列。终止子序列与编码多肽的核酸序列的3’-端可操作地连接。在选择的宿主细胞中有功能的任何终止子可用于本文所公开的方法中。
例如,用于丝状真菌宿主细胞的示例性转录终止子可以从下列的基因获得:米曲霉TAKA淀粉酶、黑曲霉葡萄糖淀粉酶、构巢曲霉邻氨基苯甲酸合酶、黑曲霉α-葡萄糖苷酶和尖孢镰刀菌胰蛋白酶样蛋白酶。
用于酵母宿主细胞的示例性终止子可以从下列的基因获得:酿酒酵母烯醇化酶、酿酒酵母细胞色素C(CYC1)和酿酒酵母甘油醛-3-磷酸脱氢酶。用于酵母宿主细胞的其他有用终止子由Romanos等人,1992,如上描述。
控制序列还可以是合适的前导序列,前导序列是对于宿主细胞翻译重要的mRNA的非翻译区。前导序列与编码多肽的核酸序列的5’-端可操作地连接。可以使用在选择的宿主细胞中有功能的任何前导序列。用于丝状真菌宿主细胞的示例性前导序列从下列的基因获得:米曲霉TAKA淀粉酶和构巢曲霉磷酸丙糖异构酶。用于酵母宿主细胞的合适前导序列从下列的基因获得:酿酒酵母烯醇化酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α-因子和酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
控制序列还可以是多聚腺苷酸化序列,多聚腺苷酸化序列是与核酸序列的3’-端可操作地连接并且在被转录时被宿主细胞识别为向被转录的mRNA添加多聚腺苷残基的信号的序列。在选择的宿主细胞中有功能的任何多聚腺苷酸化序列可用于本文所公开的方法中。用于丝状真菌宿主细胞的示例性多聚腺苷酸化序列可以从下列的基因获得:米曲霉TAKA淀粉酶、黑曲霉葡萄糖淀粉酶、构巢曲霉邻氨基苯甲酸合酶、尖孢镰刀菌胰蛋白酶样蛋白和黑曲霉α-葡萄糖苷酶。可用于酵母宿主细胞的多聚腺苷酸化序列由Guo和Sherman,1995,Mol Cell Bio 15:5983-5990描述。
控制序列还可以是编码与多肽的氨基端连接并指导编码的多肽进入细胞分泌途径的氨基酸序列的信号肽编码区。核酸序列编码序列的5’端可以固有地含有在翻译阅读框中与编码分泌多肽的编码区区段天然连接的信号肽编码区。可选择地,编码序列的5′端可以含有对编码序列为外来的信号肽编码区。在编码序列不是天然含有信号肽编码区时可能需要外来信号肽编码区。
可选择地,外来信号肽编码区可以简单替代天然信号肽编码区以增强多肽的分泌。然而,指导表达的多肽进入选择的宿主细胞的分泌途径的任何信号肽编码区可用于本文所公开的方法中。
细菌宿主细胞的有效信号肽编码区是从下列的基因获得的信号肽编码区:芽孢杆菌(Bacillus)NClB 11837麦芽糖淀粉酶、嗜热脂肪芽孢杆菌α-淀粉酶、地衣芽孢杆菌枯草菌素、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)和枯草芽孢杆菌prsA。其他的信号肽由Simonen和Palva,1993,MicrobiolRev 57:109-137描述。
用于丝状真菌宿主细胞的有效信号肽编码区可以是从下列的基因获得的信号肽编码区:米曲霉TAKA淀粉酶、黑曲霉中性淀粉酶、黑曲霉葡萄糖淀粉酶、米赫根毛霉天冬氨酸蛋白酶、特异腐质霉(Humicola insolens)纤维素酶和绵毛状腐质霉(Humicola lanuginosa)脂肪酶。
可用于酵母宿主细胞的信号肽可以来自酿酒酵母α因子和酿酒酵母转化酶的基因。其他有用的信号肽编码区由Romanos等人,1992,如上描述。
控制序列还可以是编码位于多肽氨基端的氨基酸序列的前肽编码区。所得的多肽被称为前酶(proenzyme)或前多肽(或在一些情况下,酶原)。前多肽一般是无活性的并且其可以通过自前多肽催化裂解或自催化裂解前肽而转化为成熟的活性多肽。前肽编码区可以从下列的基因获得:枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌中性蛋白酶(nprT)、酿酒酵母α因子、米赫根毛霉天冬氨酸蛋白酶和嗜热毁丝霉(Myceliophthorathermophila)乳糖酶(WO 95/33836)。
在信号肽和前肽区均存在于多肽的氨基端时,前肽区位于多肽的氨基端相邻的位置并且信号肽区位于前肽区的氨基端相邻的位置。
还可能期望的是添加调节序列,该调节序列容许相对于宿主细胞生长调节多肽表达。调节系统的实例是响应于化学或物理刺激物而引起基因表达开启或关闭的那些调节系统,所述化学或物理刺激物包括调节化合物的存在。在原核宿主细胞中,合适的调节序列包括lac、tac和trp操纵子系统。在酵母宿主细胞中,合适的调节系统包括:例如,ADH2系统或GAL1系统。在丝状真菌中,合适的调节序列包括TAKA α淀粉酶启动子、黑曲霉葡萄糖淀粉酶启动子和米曲霉葡萄糖淀粉酶启动子。
调节序列的其他实例是容许基因扩增的那些调节序列。在真核系统中,这些调节序列包括在氨甲喋呤的存在下扩增的二氢叶酸还原酶基因和具有重金属时扩增的金属硫蛋白基因。在这些情况下,编码本公开内容的单胺氧化酶的核酸序列将与调节序列可操作地连接。
因此,在另一实施方案中,本公开内容还涉及包含编码工程化单胺氧化酶或其变体的多核苷酸和一个或多个表达调节区的重组表达载体,所述表达调节区如启动子和终止子、复制起点等,这取决于它们要引入的宿主的类型。可以将上述各种核酸和控制序列连接在一起以产生重组表达载体,该重组表达载体可包括一个或多个方便的限制性位点以容许编码多肽的核酸序列在这些位点插入或取代。可选择地,可以通过将本公开内容的核酸序列或包含该序列的核酸构建体插入到合适的表达载体中来表达本公开内容的核酸序列。在制备表达载体中,编码序列位于载体中使得编码序列与用于表达的适当控制序列可操作地连接。
重组表达载体可以是可以方便地进行重组DNA程序并且可以使得多核苷酸序列表达的任何载体(例如,质粒或病毒)。载体的选择通常取决于载体与该载体要引入其中的宿主细胞的相容性。载体可以是线型质粒或闭合的环状质粒。
表达载体可以是自主复制的载体,即,作为染色体外实体存在的不依赖于染色体复制而复制的载体,例如,质粒、染色体外元件、微型染色体或人工染色体。载体可以含有用于确保自我复制的任何部件(means)。可选择地,载体可以是在被引入宿主细胞中时,整合到基因组中并与其所整合进的染色体一起被复制的载体。此外,可以使用单个载体或质粒、或一起含有要引入宿主细胞基因组的总DNA的两个或更多个载体或质粒、或者转座子。
本公开内容的表达载体优选含有一个或多个可选择标记物,该标记物容许容易地选择转化的细胞。可选择标记物是产物能提供杀生物剂或病毒抗性、重金属抗性、营养缺陷型的原养型以及类似特性的基因。细菌可选择标记物的实例是来自枯草芽孢杆菌或地衣芽孢杆菌的dal基因或赋予如下抗生素抗性的标记物:例如氨苄西林抗性、卡那霉素抗性、氯霉素抗性(实施例1)或四环素抗性。用于酵母宿主细胞的合适的标记物是ADE2、HIS3、LEU2、LYS2、MET3、TRP1和URA3。
用于丝状真菌宿主细胞的可选择标记物包括但不限于:amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰转移酶)、bar(丝膦菌素乙酰基转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)、pyrG(乳清酸核苷-5′-磷酸脱羧酶)、sC(硫酸腺苷转移酶)和trpC(邻氨基苯甲酸合酶)以及它们的等同物。用于曲霉细胞的实施方案包括构巢曲霉或米曲霉的amdS和pyrG基因以及吸水链霉菌(Streptomyces hygroscopicus)的bar基因。
本公开内容的表达载体优选含有容许载体整合到宿主细胞基因组中或者容许载体在所述细胞中不依赖于基因组而自主复制的元件。对于向宿主细胞基因组中整合,载体可能依赖于编码多肽的核酸序列或载体的任何其他元件以通过同源重组或非同源重组将载体整合到基因组中。
可选择地,表达载体可以含有用于指导通过同源重组向宿主细胞基因组中整合的其他核酸序列。所述其他核酸序列能够在染色体中的精确位置将载体整合到宿主细胞基因组中。为了增加在精确位置整合的可能性,整合元件应优选含有足够数目的与相应的靶序列高度同源的核酸以增强同源重组的可能性,所述足够数目例如100至10,000个碱基对,优选400至10,000个碱基对,并且最优选800至10,000个碱基对。整合元件可以是与宿主细胞基因组中的靶序列同源的任何序列。此外,整合元件可以是非编码的或编码的核酸序列。另一方面,可以通过非同源重组将载体整合到宿主细胞基因组中。
对于自主复制,载体可以还包含复制起点,复制起点使得载体能够在所研究的宿主细胞中自主复制。细菌复制起点的实例是P15A ori或质粒pBR322、pUC19、pACYC177(该质粒具有P15A ori)的复制起点、或容许在大肠杆菌中复制的pACYC184以及容许在芽胞杆菌中复制的pUB110、pE194、pTA1060或pAMβ1。用于酵母宿主细胞中的复制起点的实例是2微米复制起点、ARS1、ARS4、ARS1和CEN3的组合、以及ARS4和CEN6的组合。复制起点可以是具有使其机能在宿主细胞中温度敏感的突变的复制起点(参见,例如Ehrlich,1978,Proc Natl Acad Sci.USA75:1433)。
可以将多于1拷贝的本公开内容的核酸序列插入到宿主细胞中以增加基因产物的产生。核酸序列拷贝数的增加可以如下来获得:通过将至少一个额外拷贝的序列整合到宿主细胞基因组中;或通过在细胞含有扩增拷贝的可选择标记物基因时随核酸序列包括可扩增的可选择标记物基因,并且从而可以通过在合适的选择剂存在下培育细胞来选择额外拷贝的核酸序列。
用于本文所公开的方法的许多表达载体是可商购获得的。合适的商业表达载体包括:来自Sigma-Aldrich Chemicals,St.Louis MO.的p3xFLAGTMTM表达载体,它包括用于在哺乳动物宿主细胞中表达的CMV启动子和hGH多聚腺苷酸化位点以及用于在大肠杆菌中扩增的pBR322复制起点和氨苄霉素抗性标记物。其他合适的表达载体是可从Stratagene,LaJolla CA商购获得的pBluescriptII SK(-)和pBK-CMV、自pBR322(GibcoBRL)、pUC(Gibco BRL)、pREP4、pCEP4(Invitrogen)或pPoly衍生的质粒(Lathe等人,1987,Gene 57:193-201)。
5.7表达单胺氧化酶的宿主细胞
在另一方面,本公开内容提供包含编码本公开内容的改良单胺氧化酶的多核苷酸的宿主细胞,所述多核苷酸与用于在宿主细胞中表达单胺氧化酶的一个或多个控制序列可操作地连接。用于表达由本公开内容的表达载体编码的单胺氧化酶多肽的宿主细胞是本领域中熟知的并且包括但不限于:细菌细胞,如大肠杆菌、克菲尔乳杆菌(Lactobacillus kefir)、短乳杆菌(Lactobacillus brevis)、小乳杆菌(Lactobacillus minor)、链霉菌和鼠伤寒沙门氏菌(Salmonella typhimurium)细胞;真菌细胞,如酵母细胞(例如,酿酒酵母或巴斯德毕赤酵母(Pichia pastoris)(ATCC登录号201178));昆虫细胞,如果蝇(Drosophila)S2和灰翅夜蛾(Spodoptera)Sf9细胞;动物细胞,如CHO、COS、BHK、293和Bowes黑素瘤细胞;以及植物细胞。用于上述宿主细胞的适当培养基和生长条件是本领域中熟知的。
可以通过本领域中已知的多种方法将表达单胺氧化酶的多核苷酸引入细胞中。技术包括但不限于:电穿孔、生物射弹粒子轰击、脂质体介导的转染、氯化钙转染和原生质体融合。将多核苷酸引入细胞中的多种方法对于熟悉的技术人员来说是明显的。
示例性的宿主细胞是大肠杆菌(Escherichia coli)W3110。表达载体通过将编码改良单胺氧化酶的多核苷酸可操作地连接到质粒pCK110900中来制造,所述质粒pCK110900与受lacI阻遏物控制的lac启动子可操作地连接。表达载体还含有P15a复制起点和氯霉素抗性基因。通过使细胞进行氯霉素选择来分离在大肠杆菌W3110中含有主题多核苷酸的细胞。
5.8产生工程化单胺氧化酶的方法
在一些实施方案中,为制备本公开内容的改良单胺氧化酶多核苷酸和多肽,从黑曲霉或米曲霉获得(或衍生)催化氧化反应的天然存在的单胺氧化酶。在一些实施方案中,将母体多核苷酸序列密码子优化以增强单胺氧化酶在特定宿主细胞中的表达。作为例示,由基于可在Genbank数据库中获得的黑曲霉单胺氧化酶序列的已知氨基酸序列(Genbank登录号L38858)制备的寡核苷酸构建编码黑曲霉野生型单胺氧化酶多肽的母体多核苷酸序列。将指定为SEQ ID NO:1的母体多核苷酸序列进行密码子优化以便在大肠杆菌中表达,并且将密码子优化的多核苷酸克隆到表达载体中,将单胺氧化酶基因的表达置于lac启动子和lacI阻遏基因的控制下。鉴定在大肠杆菌中表达活性单胺氧化酶的克隆并对基因测序以确定它们的身份。指定的序列(SEQ ID NO:2)是用作工程化单胺氧化酶的大部分实验和文库构建的起点的母体序列,所述工程化单胺氧化酶是由黑曲霉单胺氧化酶进化的。
如上面所讨论的,工程化单胺氧化酶可以通过使编码天然存在的单胺氧化酶的多核苷酸进行诱变和/或定向进化方法而获得。示例性的定向进化技术是如下列文献中所描述的诱变和/或DNA改组:Stemmer,1994,ProcNatl Acad Sci USA 91:10747-10751;WO 95/22625;WO 97/0078;WO97/35966;WO 98/27230;WO 00/42651;WO 01/75767和美国专利6,537,746。可以使用的其他定向进化程序包括但不限于:交错延伸方法(StEP)、体外重组(Zhao等人,1998,Nat.Biotechnol.16:258-261)、诱变PCR(Caldwell等人,1994,PCR Methods Appl.3:S136-S140)和盒式诱变(Black等人,1996,Proc Natl Acad Sci USA 93:3525-3529)。
筛选诱变处理之后获得的克隆中具有期望的改良酶特性的工程化单胺氧化酶。由表达文库测量酶活性可以使用标准生物化学技术进行,例如但不限于可以使用公布的用于测量单胺氧化酶的方法或其改造方法进行,例如但不限于Zhou等人(Zhou等人“A One-Step Fluorometric Methodfor the Continuous Measurement of Monoamine Oxidase Activity(单胺氧化酶活性连续测量的一步式荧光法),”1997Anal.Biochem.253:169-74)和Szutowicz等人(Szutowicz等人,“Colorimetric Assay for MonoamineOxidase in Tissues Using Peroxidase and2,2′-Azino(3-ethtylbenzthaizoline-6-sulfonic Acid)as Chromogen(使用过氧化物酶和2,2′-连氮基(3-乙基苯并噻唑啉-6-磺酸)作为色原进行的组织中单胺氧化酶的比色测定),”1984,Anal.Biochem.138:86-94)所公开的那些方法。酶活性的比较是使用限定的酶制剂、在设定条件下的限定的测定和一种或多种限定的底物进行的,如本文进一步详细描述的;或者使用例如Zhou和Szutowicz的方法进行。一般地,当比较裂解物时,测定细胞数和测定的蛋白的量并且使用相同的表达系统和相同的宿主细胞来将宿主细胞产生的酶和裂解物中存在的酶的量的差异最小化。在期望改良的酶特性是热稳定性时,可以在使酶制剂经受限定的温度并测量热处理后剩余的酶活性的量来测量酶活性。然后分离含有编码单胺氧化酶的多核苷酸的克隆,将该克隆测序以鉴定核苷酸序列改变(若存在),并将其用于在宿主细胞中表达酶。
当已知工程化多肽的序列时,编码酶的多核苷酸可以根据已知的合成方法通过标准的固相方法来制备。在一些实施方案中,可以分别合成最多约100个碱基的片段,然后将它们连接(例如,通过酶连接或化学连接方法或聚合酶介导的方法)以形成任何期望的连续序列。例如,可以通过化学合成使用如下的方法来制备本文所公开的多核苷酸和寡核苷酸:例如Beaucage等人,1981,Tet Lett 22:1859-69所描述的经典的亚磷酰胺方法;或Matthes等人,1984,EMBO J.3:801-05所描述的方法,例如,如同该方法在自动化合成方法中所通常实践的一样。根据亚磷酰胺方法,在例如自动化DNA合成仪中合成寡核苷酸,将其纯化、退火、连接并克隆在适当的载体中。此外,基本上任何核酸可以从多种商业来源的任一种获得,例如The Midland Certified Reagent Company,Midland,TX、The GreatAmerican Gene Company,Ramona,CA、ExpressGen Inc.Chicago,IL、OperonTechnologies Inc.,Alameda,CA以及许多其他商业来源。
可以使用用于蛋白纯化的熟知技术的任一种或多种将在宿主细胞中表达的工程化单胺氧化酶从所述细胞和或培养基中回收,所述熟知技术包括但不限于:溶菌酶处理、超声处理、过滤、盐析、超速离心以及色谱。用于裂解和从诸如大肠杆菌的细菌中高效提取蛋白的合适的溶液可以商品名CelLytic BTM从St.Louis MO的Sigma-Aldrich商购获得。
用于分离单胺氧化酶的色谱技术包括但不限于:反相色谱高效液相色谱、离子交换色谱、凝胶电泳和亲和色谱。用于纯化特定酶的条件将部分取决于诸如静电荷、疏水性、亲水性、分子量、分子形状等因素,并且对于本领域技术人员来说将是明显的。
在一些实施方案中,可以使用亲和技术来分离改良的单胺氧化酶。对于亲和色谱纯化,可以使用与单胺氧化酶特异性结合的任何抗体。对于抗体制备,可以通过用化合物注射来免疫多种宿主动物,包括但不限于:家兔、小鼠、大鼠等。可以借助于侧链官能团或与侧链官能团连接的连接物来将化合物连接到合适的载体如BSA上。可以依据宿主物种使用多种佐剂来增加免疫反应,所述佐剂包括但不限于:Freund’s(完整的和不完整的)、矿物胶如氢氧化铝、表面活性物质如溶血卵磷脂、复合多元醇、聚阴离子、肽、油乳液、匙孔血蓝蛋白、二硝基苯酚和可能有用的人佐剂如BCG(卡介苗)和短小棒状杆菌(Corynebacterium parvum)。
5.9使用工程化单胺氧化酶的方法以及用其制备的化合物
本文所描述的单胺氧化酶可以催化结构式I的底物化合物氧化为结构式II(a)的立体异构产物:
Figure BDA0000154039570000851
其中,每个A、M和M’如上所述。
在具体的实施方案中,本文所述的单胺氧化酶可以催化底物(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)氧化为立体异构产物(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2):
Figure BDA0000154039570000852
在将底物化合物(1)氧化为产物化合物(2)的这种方法的一些实施方案中,与SEQ ID NO:2的野生型黑曲霉序列相比,单胺氧化酶多肽必须具有至少下列氨基酸取代:(1)残基465是甘氨酸、(2)残基289是缬氨酸、(3)残基384是谷氨酰胺、以及(4)残基382是亮氨酸。
在另一具体实施方案中,本文所述的单胺氧化酶催化底物(3aR,6aS)-八氢环戊[c]吡咯,化合物(3)氧化为立体异构产物(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯,化合物(4),化合物(4)可以进一步进行二聚化形成化合物(5):
Figure BDA0000154039570000861
在将底物化合物(3)氧化为产物化合物(4)的这种方法的一个实施方案中,与SEQ ID NO:1的野生型黑曲霉序列相比,单胺氧化酶多肽必须具有下列氨基酸取代的至少一种:(1)残基465是甘氨酸、(2)残基289是缬氨酸、(3)残基384是谷氨酰胺、以及(4)残基365是色氨酸。在将底物化合物(3)还原为产物化合物(4)的这种方法的另一实施方案中,与SEQ ID NO:1的野生型黑曲霉序列相比,单胺氧化酶多肽必须具有下列氨基酸取代的至少两个:(1)残基465是甘氨酸、(2)残基289是缬氨酸、(3)残基384是谷氨酰胺、(4)残基365是色氨酸、以及(3)残基99是谷氨酸。在另一实施方案中,与SEQ ID NO:1的野生型黑曲霉序列相比,单胺氧化酶必须具有下列氨基酸取代的至少三个:(1)残基465是甘氨酸、(2)残基289是缬氨酸、(3)残基384是谷氨酰胺、(4)残基365是色氨酸、(5)残基99是谷氨酸以及(4)残基135是谷氨酰胺。在又一实施方案中,与SEQ ID NO:1的野生型黑曲霉序列相比,单胺氧化酶必须具有至少下列氨基酸取代:(1)残基465是甘氨酸、(2)残基289是缬氨酸、(3)残基99是谷氨酸、以及(4)残基135是谷氨酰胺和/或残基248是天冬氨酸。
在将底物氧化为产物的这种方法的一个实施方案中,底物被氧化为大于约99%立体异构体过量的产物,其中单胺氧化酶包含对应于下列的序列:SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ IDNO:14、SEQ ID NO:16、SEQ ID NO:18、或SEQ ID NO:20。
在将底物还原为产物的这种方法的另一实施方案中,在用大于约25g/L的底物和小于约5g/L的多肽进行时,在小于约24小时内至少约50%的底物被转化为产物,其中多肽包含对应于下列的氨基酸序列:SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:10、SEQ ID NO:12、SEQ ID NO:14、SEQ IDNO:16、SEQ ID NO:18、或SEQ ID NO:20。
在其他实施方案中,本文所提供的单胺氧化酶的任一种可用于制备合成Schering 505034((1R,2S,5S)-N-(4-氨基-1-环丁基-3,4-二氧代丁-2-基)-3-((S)-2-(3-叔丁基脲基)-3,3-二甲基丁酰基)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-甲酰胺))的中间体,Schering 505034是可用于治疗病毒感染的蛋白酶抑制剂(Malcolm等人(2006)Antimicrob.Agents Chemother.50(3):1013-20)。合成Schering 505034的重要步骤是将结构式I的化合物转化为结构式II的化合物,或者更具体地,将化合物(1)转化为化合物(2)。因此,本公开内容提供用于制备Schering 505034的方法,所述方法包括使用本公开内容的单胺氧化酶多肽将化合物(1)转化为化合物(2)的步骤。本文所公开的用于制备Schering 505034的方法还可包括结合上述方案3、4、5、6、8、9、10、12和14而描绘和描述的一个或多个步骤。
在其他实施方案中,本文所提供的单胺氧化酶的任一种可用于制备合成VX-950((N-((S)-1-环己基-2-((S)-1-((1S,3aR,6aS)-1-((R)-3-(2-(环丙氨基)-2-氧代乙酰基)己酰基)六氢环戊[c]吡咯-2(1H)-基)-3,3-二甲基-1-氧代丁-2-基氨基)-2-氧代乙基)吡嗪-2-甲酰胺的中间体,VX-950是可用于治疗病毒感染的蛋白酶抑制剂(Perni等人(2006)Antimicrob.AgentsChemother.50(3):899-909)。合成VX-950的重要步骤是将结构式I的化合物转化为结构式II的化合物,或者更具体地,将化合物(3)转化为化合物(4)。因此,本公开内容提供用于制备VX-950的方法,所述方法包括使用本公开内容的单胺氧化酶多肽将化合物(3)转化为化合物(4)的步骤。本文所公开的用于制备VX-950的方法还可包括结合上述方案3、4、5、6、7、9、10、11和13而描绘和描述的一个或多个步骤。
如本领域的技术人员已知的,单胺氧化酶催化的氧化反应通常需要辅因子。本文所述的单胺氧化酶催化的氧化反应通常也需要辅因子黄素腺嘌呤核苷酸(FAD)。如本文所用,术语“辅因子”是指与单胺氧化酶组合起作用的非蛋白化合物。一般地,将可以与单胺氧化酶非共价或共价连接的氧化形式的辅因子添加至反应混合物中。氧化的FAD形式可以通过分子氧而由还原形式FAD-H2再生。在另一实施方案中,氧化的FAD形式可以由NAD(P)再生以提供FAD和NAD(P)H。NAD(P)继而可以通过使用NAD(P)H-依赖性醇脱氢酶/酮还原酶将酮还原为醇而再生。
本文所述的单胺氧化酶催化的氧化反应一般在溶剂中进行。合适的溶剂包括水、有机溶剂(例如,乙酸乙酯、乙酸丁酯、1-辛醇(octacnol)、庚烷、辛烷、甲基叔丁醚(MTBE)、甲苯以及类似有机溶剂)和离子液体(例如,1-乙基4-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑六氟磷酸盐以及类似离子液体)。在一些实施方案中,使用含水溶剂,包括水和含水助溶剂系统。
示例性的含水助溶剂系统具有水和一种或多种有机溶剂。一般地,选择含水助溶剂系统的有机溶剂组分使得该有机溶剂组分不会完全灭活单胺氧化酶。可以通过利用如本文所述的那些酶活性测定,在候选溶剂系统中用感兴趣的限定底物测量指定的工程化单胺氧化酶的酶活性来容易地鉴定适当的助溶剂系统。
含水助溶剂系统的有机溶剂组分可以与含水组分混溶,得到单一的液相;或者可以与含水组分部分混溶或不混溶,得到两个液相。一般地,在采用含水助溶剂系统时,将其选择为双相性的,其中水分散在有机溶剂中或者反之亦然。一般地,在采用含水助溶剂系统时,期望的是选择可以容易地与水相分离的有机溶剂。一般地,助溶剂系统中水与有机溶剂的比通常在有机溶剂比水为约90∶10至约10∶90(v/v)的范围内和有机溶剂比水为80∶20与20∶80(v/v)之间的范围内。助溶剂系统可以在添加到反应混合物之前预形成,或者其可以在反应容器中原位形成。
含水溶剂(水或含水助溶剂系统)可以是pH缓冲的或未缓冲的。一般地,氧化可以在约10或以下,通常在约5至约10的范围内的pH下进行。在一些实施方案中,氧化在约9或以下,通常在约5至约9的范围内的pH下进行。在一些实施方案中,氧化在约8或以下,通常在约5至约8的范围内,并且通常在约6至约8的范围内的pH下进行。氧化还可以在约7.8或以下、或7.5或以下的pH下进行。可选择地,氧化可以在中性pH,即约7下进行。
在氧化反应过程中,反应混合物的pH可以改变。典型的结构式I的胺在中性pH和约中性pH下是质子化的,而结构式II的亚胺产物在中性pH和约中性pH下则通常不是质子化的。因此,在其中反应在中性pH或约中性pH下进行的典型实施方案中,质子化的胺向非质子化的亚胺的氧化将质子释放到水溶液中。可以通过在反应过程中添加碱来将反应混合物的pH维持在期望pH下或期望pH范围内。可选择地,可以使用包含缓冲液的含水溶剂控制pH。维持期望的pH范围的合适的缓冲液是本领域中已知的并且包括:例如,磷酸盐缓冲液、三乙醇胺缓冲液以及类似缓冲液。还可以使用缓冲或碱添加的组合。
用于中和酸的合适碱是:有机碱,例如胺、醇盐以及类似有机碱;和无机碱,例如氢氧化物盐(例如,NaOH)、碳酸盐(例如,K2CO3)、碳酸氢盐(例如,NaHCO3)、碱性磷酸盐(例如,K2HPO4、Na3PO4)以及类似无机碱。用于中和在反应过程中由胺氧化为亚胺而释放的质子的优选的碱是胺底物本身。在转化过程同时添加碱可以手动进行,同时监测反应混合物pH,或者更方便地,通过使用自动滴定器作为pH固定器(pH stat)。还可以使用部分缓冲能力和碱添加的组合进行过程控制。通常,以水溶液添加在氧化过程中添加到未缓冲的或部分缓冲的反应混合物中的碱。
在进行本文所述的立体选择性氧化反应中,可以将工程化单胺氧化酶以下列形式添加到反应混合物中:纯化的酶、用编码单胺氧化酶的基因转化的全细胞、和/或这种细胞的细胞提取物和/或裂解物。用编码工程化单胺氧化酶的基因转化的全细胞或其细胞提取物和/或裂解物可以多种不同的形式采用,包括固体(例如,冻干的、喷雾干燥的以及类似形式)或半固体(例如,粗糊料)。
可以通过沉淀(硫酸铵、聚乙烯亚胺、热处理或类似方法)部分纯化细胞提取物或细胞裂解物,随后在冻干之前是脱盐程序(例如,超滤、透析和类似方法)。可以通过使用诸如戊二醛的已知交联剂的交联或固定于固相(例如,Eupergit C和类似物)来稳定任一细胞制剂。
可以将固体反应物(例如,酶、盐等)以多种不同形式提供到反应中,包括:粉末(例如,冻干的、喷雾干燥的和类似形式)、溶液、乳液、悬浮液以及类似形式。可以使用本领域普通技术人员已知的方法和设备容易地将反应物冻干或喷雾干燥。例如,可以将蛋白溶液在-80℃以小份冷冻,然后将其添加到预冷冻的冻干室中,随后施加真空。从样品中移除水之后,在释放真空并取回冻干样品之前,通常将温度升至4℃持续2小时。
氧化反应中所用的反应物的量一般将依据所需的产物的量以及同时采用的单胺氧化酶底物的量而变化。一般地,使用约50mg/升至约5g/升的单胺氧化酶时可以使用约5克/升至50克/升的浓度的底物。本领域普通技术人员将容易地了解如何改变这些量来使它们适合期望的产力水平和产物规模。可以通过常规实验容易地确定任选试剂如过氧化氢酶、消泡剂和亚硫酸氢钠或偏亚硫酸氢钠的适当量。
反应物添加的顺序不是严格的。可以将反应物在同一时间一起添加到溶剂(例如,单相溶剂、双相含水助溶剂系统以及类似溶剂)中,或者可选择地,在不同的时间点,一些反应物可以分别添加,并且一些反应物一起添加。在某些实施方案中,可以将反应的一种或多种组分以将单胺氧化酶的底物和/或产物抑制最小化或消除的水平连续添加(“进料”)至反应中。在某些实施方案中,可以在反应过程中间断地添加单胺氧化酶,例如约每隔1小时、约每隔2小时、约每隔3小时或约每隔4小时添加。
进行本文所述的单胺氧化酶催化的氧化反应的合适条件包括可以通过常规实验容易地优化的大量条件,所述常规实验包括但不限于使工程化单胺氧化酶和底物在实验pH和温度下接触并通过例如本文所提供的实施例中描述的方法检测产物。
单胺氧化酶催化的氧化通常在约5℃至约75℃的范围内的温度下进行。对于一些实施方案,反应在约20℃至约55℃的范围内的温度下进行。在其他的实施方案中,反应在约20℃至约45℃的范围内、约30℃至约45℃的范围内或约40℃至约45℃的范围内的温度下进行。反应还可以在环境温度下(约21℃)进行。
一般容许氧化反应进行到直至获得基本上完全的或接近完全的底物氧化。可以使用检测底物和/或产物的已知方法来监测底物至产物的氧化。合适的方法包括气相色谱、HPLC以及类似方法。转化产率一般大于约50%、还可以大于约60%、还可以大于约70%、还可以大于约80%、还可以大于约90%并且通常大于约97%。
6.实施例
本公开内容的多种特征和实施方案在下列代表性实施例中示例,这些实施例旨在示例性的并且不旨在限制。
实施例1:野生型单胺氧化酶基因获取和表达载体构建.
基于报道的单胺氧化酶氨基酸序列和如在美国临时申请系列第60/848,950号的实施例1中所述的密码子优化算法将单胺氧化酶编码基因设计为在大肠杆菌(W3110fhuA或UM2)中表达,所述美国临时申请系列第60/848,950号通过引用并入本文。使用由例如42个核苷酸构成的寡核苷酸合成基因,并将该基因克隆到受lac启动子控制的表达载体pCK110900(如在美国专利申请公布20060195947的图3中所描绘的)中。表达载体还含有P15a复制起点和氯霉素抗性基因。使用标准方法将所得质粒转化到大肠杆菌W3110中。密码子优化的基因的实例以及编码多肽列于表4中。使用本领域中已知的方法或其改造方法确定野生型单胺氧化酶的活性,所述方法包括Zhou等人(Zhou等人“A One-Step FluorometricMethod for the Continuous Measurement of Monoamine Oxidase Activity(单胺氧化酶活性连续测量的一步式荧光法),”1997Anal.Biochem.253:169-74)和Szutowicz等人(Szutowicz等人,“Colorimetric Assay forMonoamine Oxidase in Tissues Using Peroxidase and2,2′-Azino(3-ethtylbenzthaizoline-6-sulfonic Acid)as Chromogen(使用过氧化物酶和2,2′-连氮基(3-乙基苯并噻唑啉-6-磺酸)作为色原进行的组织中单胺氧化酶的比色测定),”1984,Anal.Biochem.138:86-94)所公开的那些方法。酶活性的比较是使用限定的酶制剂、在设定条件下的限定的测定和一种或多种限定的底物进行的,如本文进一步详细描述的;或者使用例如Zhou和Szutowicz的方法进行的。一般地,当比较裂解物时,测定细胞数和测定的蛋白的量并且使用相同的表达系统和相同的宿主细胞来将宿主细胞产生的酶和裂解物中存在的酶的量的差异最小化。
Figure BDA0000154039570000921
将编码本公开内容的工程化单胺氧化酶的多核苷酸同样地克隆到用于在大肠杆菌W3110中表达的载体pCK110900中。
实施例2:单胺氧化酶粉末的产生;摇瓶程序.
如下从摇瓶培养物制备单胺氧化酶粉末:将含有带感兴趣的单胺氧化酶基因的质粒的单个大肠杆菌微生物菌落接种到含有30μg/ml氯霉素和1%葡萄糖的50ml Luria Bertani肉汤中。使细胞在30℃的培养箱中生长过夜(至少16小时),同时以250rpm振荡。将培养物稀释到在1升烧瓶中的250ml 2XYT(16g/L细菌用胰蛋白胨、10g/L酵母提取物、5g/L NaCl,pH 7.0)、1mM MgSO4、30μg/ml氯霉素中至600nm处的光密度(OD600)为0.2,并容许其在30℃下生长。在培养物的OD600为0.6至0.8时用1mMIPTG诱导单胺氧化酶基因的表达并孵育过夜(至少16小时)。通过离心(5000rpm,15分钟,4℃)收获细胞并弃去上清液。用等体积的冷(4℃)100mM三乙醇胺(盐酸盐)缓冲液,pH 7.0(任选包含2mM MgSO4)重悬细胞团粒,并如上通过离心收获。将洗涤的细胞重悬在两体积的冷三乙醇胺(盐酸盐)缓冲液,pH 7.0中并以12000psi通过弗氏压碎器两次,同时保持温度在4℃。通过离心(9000rpm,45分钟,4℃)移除细胞碎片。收集澄清的裂解物上清液并储存在-20℃下。冻干冷冻的澄清裂解物,得到粗单胺氧化酶的干燥粉末。
实施例3:单胺氧化酶的制备;发酵程序.
如下通过发酵制备单胺氧化酶粉末:在充气搅拌的15L发酵罐中,使6.0L的生长培养基升至温度为30℃,所述生长培养基含有0.88g/L硫酸铵、0.98g/L柠檬酸钠;12.5g/L三水磷酸氢二钾、6.25g/L磷酸二氢钾、6.2g/LTastone-154酵母提取物、0.083g/L柠檬酸铁铵和8.3ml/L的微量元素溶液,该微量元素溶液含有2g/L二水氯化钙、2.2g/L七水硫酸锌、0.5g/L一水硫酸锰、1g/L七水硫酸亚铜、0.1g/L四水钼酸铵和0.02g/L十水四硼酸钠。用指数生长晚期的大肠杆菌W3110培养物接种发酵罐,所述大肠杆菌W3110培养物含有具有感兴趣的单胺氧化酶基因的质粒,其如实施例3所述在摇瓶中生长至0.5至2.0的起始OD600。以500至1500rpm搅拌发酵罐,并以1.0-15.0L/分钟向发酵容器中供给空气以维持30%饱和或更高的溶氧水平。通过添加20%v/v氢氧化铵将培养物的pH控制在7.0。通过添加进料溶液维持培养物的生长,所述进料溶液含有:500g/L结晶葡萄糖、12g/L氯化铵和10.4g/L七水硫酸镁。在培养物达到OD600为50后,通过添加异丙基-β-D-硫代半乳糖苷(IPTG)至终浓度为1mM诱导单胺氧化酶表达。使培养物再生长14小时。将培养物冷却至4℃并维持在4℃直至收获。通过在4℃下Sorval RC12BP离心机中以5000G离心40分钟来收获细胞。将收获的细胞直接用于随后的下游回收过程或将其储存在4℃下直到如此使用。
在细胞直接用于下游回收过程时,在4℃下将细胞团粒以每体积湿细胞糊料2体积的100mM三乙醇胺(盐酸盐)缓冲液,pH6.8重悬。通过使用12000psig的压力将悬浮液通过装备有两级匀浆阀组件的匀浆器来使胞内单胺氧化酶从细胞中释放。在破裂后立即将细胞匀浆冷却至4℃。将10%w/v聚乙烯亚胺溶液,pH 7.2添加至裂解物中至终浓度为0.5%w/v并搅拌30分钟。通过在标准的实验室离心机中以5000G离心30分钟来澄清所得悬浮液。滗去澄清的上清液并使用分子量截留为30Kd的纤维素超滤膜浓缩10倍。将最终的浓缩物分散到浅容器中,在-20℃下冷冻并冻干成粉末。将单胺氧化酶粉末储存在-80℃下。
实施例4:6,6-二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)转化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2)的分析方法
通过下面所述的手性GC方法测定6,6-二甲基-3-氮杂二环[3.1.0]己烷的转化和6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯产物的立体异构纯度。洗脱顺序为:底物(1)(保留时间约7分钟),期望的(1R,2S)-亚胺(2)(约10.6分钟),不期望的(1S,2R)亚胺(约11.0分钟)柱子:Supelco Betadex 225(部件号24348),0.25mm×30m×0.25um;炉温:85℃等温;载流:1.1ml/分钟;进样体积:4μL;以及分流进样:100∶1;进样器温度=200℃;FID检测。
实施例5:八氢环戊[c]吡咯,化合物(3)转化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯,化合物(4)的分析方法
使用下面所述的手性GC方法测定八氢环戊[c]吡咯的转化和产物的立体异构纯度。洗脱顺序为:底物(3)(保留时间约2.7分钟),期望的(3aS,6aR)亚胺(4)(约5.5分钟),不期望的(3aR,6aS)-亚胺(约5.8分钟)。亚胺(4)的二聚体在进样口中热解(thermolyze)为亚胺。柱子:Supelco Betadex225(部件号24348),0.25mm×30m×0.25um;炉温:120℃等温;载流:1.1ml/分钟;进样体积:4μL;以及分流进样:100∶1;进样器温度=200℃;FID检测。
实施例6:野生型单胺氧化酶氧化化合物(1)6,6-二甲基-3-氮杂二环[3.1.0]己烷的评定
对本文所公开的野生型单胺氧化酶进行了它们将6,6二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)氧化为6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2)的能力的筛选。在空气下向50-mL 3颈烧瓶中添加25mL 100mMpH 3.0磷酸钾缓冲液和330μL 6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到均匀的溶液。经由浓H3PO4将pH调节至大约7.3。向经pH调节的溶液中添加60μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的150mg具有SEQ ID NO 2(黑曲霉)或SEQ IDNO 32(米曲霉)的野生型单胺氧化酶粉末(通过实施例2的摇瓶方法制备)。在空气下搅拌所得的浅黄色溶液24小时。经由受反馈控制而以1-5μL逐份添加1N NaOH来将pH维持在7.2。(胺反应物在中性pH下是质子化的;亚胺产物则不是。所以必须中和释放质子的作用以维持pH)。
用10N NaOH将pH增至大约14来猝灭反应,采用用于分相的离心用CDCl3萃取混合物。来自使用黑曲霉野生型单胺氧化酶的反应的CDCl3溶液的1H-NMR分析表明约20%的胺(1)转化为亚胺(2)。与使用黑曲霉野生型单胺氧化酶的反应相比,使用米曲霉野生型单胺氧化酶的反应消耗了两倍量的NaOH溶液,这表明转化了约两倍的量的胺(1)。.
根据实施例4的方法的手性GC分析显示了期望的(1R,5S)-亚胺(2)。未检测出不期望的(1S,5R)-亚胺对映体。
这个实施例证明这些野生型单胺氧化酶对化合物(1)6,6二甲基-3-氮杂二环[3.1.0]己烷具有低活性,并且将化合物(1)转化为期望的(1R,5S)-亚胺(2)。
实施例7:野生型单胺氧化酶氧化八氢环戊[c]吡咯,化合物(3)的评定
对本文所公开的野生型单胺氧化酶进行了它们将(八氢环戊[c]吡咯,化合物(3)氧化为(3aS,6aR)1,3a,4,5,6,6a六氢环戊[c]吡咯),化合物(4)的能力的筛选。在空气下向50-mL 3颈烧瓶中添加25mL 100mM pH 8.0磷酸钾缓冲液和375mg的盐酸八氢环戊[c]吡咯并用1N NaOH将pH调节为大约7.3。向经pH调节的溶液中添加60μL黑曲霉过氧化氢酶悬浮液(购自Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的150mg具有SEQ ID NO 2(黑曲霉)的野生型单胺氧化酶粉末(通过实施例2的摇瓶方法制备)。在空气下搅拌所得的浅黄色溶液24小时。经由受反馈控制而以1-5μL逐份添加1N NaOH来将pH维持在7.2。24小时后观察到少量或没有NaOH消耗。用10N NaOH将pH增至大约14来猝灭反应,用CDCl3萃取混合物。经由离心(6000rpm 5分钟)分相后,CDCl3溶液的1H-NMR分析表明极少或没有胺(3)转化为亚胺(4)。
这个实施例证明野生型单胺氧化酶对八氢环戊[c]吡咯,化合物(3)即便存在任何活性也具有极小的活性。
实施例8:高通量测定单胺氧化酶对6,6-二甲基-3-氮杂二环[3.1.0]己烷,化合物(1)的活性
将通过定向进化获得的并且含有进化的单胺氧化酶基因的质粒文库转化到大肠杆菌中并在含有1%葡萄糖和30μg/mL氯霉素(CAM)的Luria-Bertani(LB)肉汤上铺板。在30℃下孵育至少16小时之后,使用
Figure BDA0000154039570000951
自动菌落挑取器(Genetix USA,Inc.,Beaverton,OR)将菌落挑取至含有下列物质的96孔浅孔微量滴定板中:180μL Terrific肉汤(TB)、1%葡萄糖、30μg/mL氯霉素(CAM)和2mM MgSO4。使细胞在30℃下200rpm震荡下生长过夜。然后将20μL的这种培养物转移到含有下列物质的96孔深孔板中:350μL Terrific肉汤(TB)、2mM MgSO4和30μg/mL CAM。在30℃下250rpm震荡下孵育深孔板2.5至3小时(OD6000.6-0.8)之后,通过添加异丙基βD硫代半乳糖苷(IPTG)至终浓度为1mM诱导细胞培养物的重组基因表达。然后在30℃下250rpm震荡下孵育板15-23小时。
通过离心沉淀细胞,重悬于400μL裂解缓冲液中并通过在室温下震荡至少2小时裂解细胞。裂解缓冲液含有50mM磷酸钠缓冲液,pH 7.0、1mg/mL溶菌酶和500μg/mL硫酸多粘菌素(polymixin)B。通过离心沉淀细胞碎片。
通过将20μL适当稀释的澄清的裂解物上清液转移到96孔深孔微量滴定板的孔中来测量单胺氧化酶活性,96孔深孔微量滴定板的孔中具有含下列物质的180μL测定混合物:50mM磷酸钠缓冲液(pH 7.5)、4U/ml黑曲霉过氧化氢酶(Sigma-C3515)和以其乙酸盐提供的40mM 6,6-二甲基-3-氮杂二环[3.1.0]己烷。密封测定板并在室温下震荡4小时。通过添加500μL 1∶1的乙腈∶水猝灭反应并将板离心。离心后,将150μL上清液转移到浅孔板中用于通过根据实施例4的方法进行HPLC分析。
HPLC条件:40℃的2.1×75mm Zorbax Eclipse XDB C-183.5微米粒度的柱子,0.5mL/分钟的60∶4040mM乙酸铵/乙腈的流动相。亚胺在约1分钟(254nm)洗脱。仅可以检测到亚胺并且使用亚胺信号的绝对峰面积进行变体的活性分级。
可选择地,用100μL 10N NaOH猝灭测定反应并用1∶1v/v MTBE萃取并通过实施例4的方法进行手性GC分析。
实施例9:高通量测定单胺氧化酶对八氢环戊[c]吡咯,化合物(3)的活性
如实施例8中所述在96孔板上制备含有单胺氧化酶变体的裂解物。
通过将50μL澄清的裂解物转移到96孔深孔微量滴定板的孔中来测量单胺氧化酶的活性,96孔深孔微量滴定板的孔中具有含下列物质的450μL测定混合物:100mM磷酸钠缓冲液(pH 7.5)、4U/ml黑曲霉过氧化氢酶(Sigma-C3515)和50mM八氢环戊[c]吡咯。密封测定板并在室温下震荡16小时。将板离心并将100μL上清液猝灭在浅孔板孔中的100μL乙腈中以用于根据实施例5的HPLC分析。
通过添加100μL乙腈猝灭反应并将板离心。离心后,100μL上清液为100μL乙腈并将其转移到浅孔板中用于通过根据实施例4的方法进行HPLC分析。
HPLC条件:0℃的2.1×75mm Zorbax Eclipse XDB C-183.5微米粒度的柱子,0.5mL/分钟的70∶3040mM乙酸铵/乙腈的流动相。亚胺在约1.3分钟(254nm)洗脱。仅可以检测到亚胺并且使用亚胺信号的绝对峰面积进行变体的分级。
可选择地,用100μL 10N NaOH猝灭测定反应并用1∶1v/v MTBE萃取并进行实施例5的手性GC分析。
这个实施例描述了用于鉴定在氧化八氢环戊[c]吡咯,化合物(3)方面被改良的单胺氧化酶变体的方法。
实施例10:(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,化合物(2)的制备级生产
在约25℃下向配备有300rpm的顶置式搅拌器的500-mL 4颈烧瓶中添加150mL的Milli-Q水和1.2mL(大约1.0g;大约9毫摩尔)的6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为11.8的均匀溶液。逐份添加Na2S2O5直至达到pH 7.5。向该无色溶液中添加300μL Antifoam-204(Sigma目录号A-6226)和600μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515),得到pH 7.5的无色溶液。向此溶液中添加1.5g具有SEQID NO 10的单胺氧化酶粉末(通过根据实施例3的发酵制备),得到黄色溶液。插入空气喷射探针(air sparging probe)(气流速率约60mL/分钟),并且反应混合物的pH开始立即降低。经由受反馈控制的2N NaOH进料维持pH。大约30分钟后,pH保持稳定并且不再进行碱进料。又10分钟(共40分钟)之后,将120mL 6,6-二甲基-3-氮杂二环[3.1.0]己烷NaHSO3溶液(通过添加20.8g 6,6-二甲基-3-氮杂二环[3.1.0]己烷至150mL dH2O中并添加足够的Na2S2O5至达到pH 7.2制备)以0.25mL/分钟的速率添加至反应中。反应混合物的pH开始立即下降并重新开始进料2N NaOH。在大约8小时(9小时的总反应时间)后完成6,6-二甲基-3-氮杂二环[3.1.0]己烷和NaHSO3的溶液的添加。继续碱添加并且在完成底物添加之后增加碱添加速率。取200μL小份,用200μL 8N NaOH(使氨基磺酸盐分解为游离的亚胺)猝灭并用600μL CDCl3萃取。CDCl3提取物的1H-NMR分析显示底物(1)完全转化为氮杂二环[3.1.0]己-2-烯,化合物(2)(1H-NMR(300MHz,CDCl3)谱:δ7.42(s,1H,N=C-H),3.81(dd;J=6.1,17.8;1H),3.50(dd;J=2.1,17.8;1H),2.06(m;1H),1.62(m,1H),1.03(s,3),0.80(s,3H))。
手性GC分析显示了(1R,5S)对映体(2),而没有可检测的(1S,2R)对映体。
反应混合物“原样”用于氨基腈的氰化反应)。
实施例11:在静态空气层下单胺氧化酶催化6,6-二甲基-3-氮杂二环[3.1.0]己烷(1)去对称化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯(2).
在空气下向50-mL 3颈烧瓶中添加25mL 100mM pH 3.0磷酸钾缓冲液和330μL 6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到均匀的溶液。使用浓H3PO4将pH调节至大约7.5。向经pH调节的溶液中添加60μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的150mg具有SEQ ID NO 4、SEQ ID NO 6或SEQ ID NO 8的单胺氧化酶粉末(通过实施例2的方法制备)。在空气下搅拌所得的浅黄色溶液24小时。经由受反馈控制而以1-5μL逐份添加1N NaOH来将pH维持在7.4。然后用10N NaOH将pH增至大约14来猝灭反应。用CDCl3萃取混合物样品。经由离心(6000rpm 5分钟)分相后,1H-NMR分析表明至少95%的胺(1)转化为亚胺(2)。通过实施例4的方法进行的手性GC分析显示了(1R,5S)-亚胺对映体(2)。没有检测到(1S,2R)对映体。
实施例12:在氧气层下单胺氧化酶催化6,6-二甲基-3-氮杂二环[3.1.0]己烷(1)去对称化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯(2)
在空气下向50-mL 3颈烧瓶中添加25mL 100mM pH 3.0磷酸钾缓冲液和330μL 6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到均匀的溶液。用浓H3PO4将pH调节至大约7.5。向经pH调节的溶液中添加60μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的150mg SEQ ID NO 4、SEQ ID NO 6或SEQ ID NO 8的多肽的单胺氧化酶粉末(通过实施例2的方法制备)。通过用氧气流冲洗顶空并将所得浅黄色溶液在空气下搅拌24小时。经由受反馈控制而以1-5μL逐份添加1N NaOH来将pH维持在7.4。用10N NaOH将pH增至大约14来猝灭反应。用CDCl3萃取混合物样品。经由离心(6000rpm 5分钟)分相后,1H-NMR分析表明至少95%的胺(1)转化为亚胺(2)。通过实施例4的方法进行的手性GC分析显示了(1R,5S)-亚胺对映体(2)。没有检测到(1S,2R)对映体。
实施例13:在亚硫酸氢盐存在下空气喷射的情况下单胺氧化酶催化6,6-二甲基-3-氮杂二环[3.1.0]己烷(1)去对称化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯(2)
向100-mL烧瓶中添加40mL的dH2O和1.8mL的6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为大约11.4的均匀溶液。向此溶液中添加2.7g的Na2S2O5,得到均匀溶液并通过添加约1mL的8N NaOH将pH调节为大约7.5。向此溶液中添加60μL的Antifoam-204(Sigma,目录号A-6226)、120μL的黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在10mL 100mM pH 8.0的磷酸钾缓冲液中的300mg SEQ ID NO:8的多肽的单胺氧化酶粉末(通过实施例2的方法制备)。通过多孔玻璃将空气喷射反应混合物中并于室温(约21℃)下在空气喷射下搅拌所得浅黄色溶液24小时。经由受反馈控制的以1μL逐份添加2.5N NaOH来将pH维持在7.4。用10N NaOH将pH增至大约14来猝灭反应并将亚胺-亚硫酸氢盐加成物(氨基磺酸盐)分解为游离亚胺并通过萃取到MTBE中来萃取分离产物。相分离之后,经由蒸馏分离(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,产率为86%。在CDCl3中的1H-NMR分析(如实施例10中)确定化合物(1)转化为了亚胺化合物(2)。通过实施例4的方法进行的手性GC分析显示了(1R,5S)-亚胺对映体(2)。没有检测到(1S,2R)对映体。
用1.0当量在D2O中的NaHSO3处理如此获得的(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯。1H-NMR分析表明了向亚硫酸氢盐加成物的定量转化,(1H-NMR(300MHz,D2O)谱:δ4.8(d,J=1,1H(NC(H)SO3;主要非对映体),4.5(d,J=5,1H(NC(H)SO3;次要非对映体),3.4-3.6(m,2H;次要非对映体),3.25(dd,J=3,10,1H;主要非对映体),3.05(dd,1H;J=1,10;主要非对映体),1.65(m,1H;主要和次要非对映体),1.55(m,1H,主要和次要非对映体),1.22(s,3H;次要非对映体),1.15(s,3H;次要非对映体),1.10(s,3H,主要非对映体),1.00(s,3H;次要非对映体)。
实施例14:在空气喷射并同时添加底物和亚硫酸氢盐情况下单胺氧化酶催化6,6-二甲基-3-氮杂二环[3.1.0]己烷(1)去对称化为(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯(2).
在室温(约21℃)下向配备有300rpm的顶置式搅拌器的500-mL 4颈烧瓶中添加150mL的Milli-Q水和1.2mL(大约1.0g;大约9毫摩尔)的6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为11.8的均匀溶液。逐份添加Na2S2O5直至达到pH 7.5。向该无色溶液中添加300μL Antifoam-204(Sigma目录号A-6226)和600μL黑曲霉过氧化氢酶悬浮液(SigmaA1drich;目录号C-3515),得到pH 7.5的无色溶液。向此溶液中添加1.5g SEQ ID NO:8的多肽的单胺氧化酶粉末(通过实施例3的方法制备),得到黄色溶液。插入空气喷射探针并将空气以约60mL/分钟的速率喷射反应中并且注意到反应混合物的pH开始立即降低。经由受反馈控制的2NNaOH添加维持pH。约30分钟后,pH保持稳定并且不再进行碱添加。又10分钟(共40分钟)之后,将120mL 6,6-二甲基-3-氮杂二环[3.1.0]己烷NaHSO3溶液(20.8g 6,6-二甲基-3-氮杂二环[3.1.0]己烷与150mL dH2O和足够的Na2S2O5至达到pH 7.2)以0.25mL/分钟的速率添加至反应混合物中。反应混合物的pH开始立即下降并重新开始添加2N NaOH。在约8小时(9小时的总反应时间)后完成6-二甲基-3-氮杂二环[3.1.0]己烷/NaHSO3的添加。继续碱添加并且在完成底物添加之后增加碱添加速率。用10NNaOH将pH增至大约14来猝灭反应(并分解亚胺-亚硫酸氢盐加成物),用MTBE萃取混合物。相分离之后,经由MTBE溶液的蒸馏分离(1R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己-2-烯,产率为72%。在CDCl3中的1H-NMR分析(如实施例10中)确定化合物(1)转化为了亚胺化合物(2)。通过实施例4的方法进行的手性GC分析显示了(1R,5S)-亚胺对映体(2)。没有检测到(1S,2R)对映体。
实施例15:(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备(静态底物模式)。
向100-mL烧瓶中添加40mL的dH2O和1.8mL的6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为大约11.4的均匀溶液。向此溶液中添加2.7gNa2S2O5,得到均匀溶液并用约1mL 8N NaOH将pH调节为约7.5。向此溶液中添加60μL Antifoam-204(Sigma目录号A-6226)、120μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在10mL 100mM pH8.0的磷酸钾溶液中的300mg SEQ ID NO 8的多肽的单胺氧化酶粉末(通过实施例2的方法制备)。通过多孔玻璃将空气以约10mL/分钟的速率喷射反应混合物中并于室温(约21℃)下在空气下搅拌所得浅黄色溶液24小时。整个过程中,经由受反馈控制而以1μL逐份添加2.5N NaOH来将pH维持在7.4。24小时后,添加1.0g(1.3当量)NaCN至反应混合物中,然后加入(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-磺酸盐。在室温下(约21℃)再搅拌15分钟,然后用MTBE萃取混合物。(还可以使用2-Me-THF进行萃取。)在相分离和溶剂移除之后,分离到1.78g(90%产率)浅黄色固体的(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈。在CDCl3中的1H-NMR确定了(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备(1H-NMR(300MHz,CDCl3)谱:δ3.92(d,J=1.2,1H,NC(H)(CN)),3.25(m,1H),2.96(dd,J=2.1,17.0),1.48(dd;J=1,2,12.2;1H),1.42(m,1H),1.13(s,3H),1.11(S,3H))。
当如此制备包含(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-磺酸盐的反应混合物并在室温下用3.0当量的NaCN处理该反应混合物12小时时,在具有期望的反式((1R,2S,5S)立体异构体的混合物中观察到约25%的非期望的顺式立体异构体(1R,2R,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈。在CDCl3中的1H-NMR显示出在4.22ppm下为双重态(J=4.2)的顺式-氨基腈次甲基质子。
实施例16:(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备(连续底物添加模式)。
步骤1.在室温(约21℃)下向配备有顶置式搅拌器(300rpm)的500-mL4颈烧瓶中添加150mL Milli-Q水和1.2mL(大约1.0g和9毫摩尔)6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为11.8的均匀溶液。逐份添加Na2S2O5直至pH达到7.5。向该无色溶液中添加300μL Antifoam-204(Sigma目录号A-6226)和600μL黑曲霉过氧化氢酶悬浮液(SigmaAldrich;目录号C-3515),得到pH 7.5的无色溶液。向此溶液中添加300mg具有SEQ ID NO 12的单胺氧化酶粉末(通过实施例3的方法制备),得到黄色溶液。插入空气喷射探针(气流速率约60mL/分钟),并且反应混合物的pH开始立即降低。经由受反馈控制的2N NaOH添加维持pH。大约40分钟后,pH保持稳定并且不再进行碱添加。又10分钟(共50分钟)之后,将150mL 6,6-二甲基-3-氮杂二环[3.1.0]己烷NaHSO3溶液(26.1g 6,6-二甲基-3-氮杂二环[3.1.0]己烷与160mL dH2O和足够的Na2S2O5至达到pH 7.2)以0.12mL/分钟的速率添加至反应混合物中。反应混合物的pH开始立即下降并重新开始添加2N NaOH。在大约21小时(大约22小时的总反应时间)后完成6.6-二甲基-3-氮杂二环[3.1.0]己烷/NaHSO3添加。在底物添加完成之后,以增加的速率继续碱添加。24小时后,通过1H NMR分析判断反应完成。
步骤2.在24小时后,通过1H NMR分析判断反应完成,将10.0g NaCN(1.11当量)添加到反应混合物中,得到pH 9.9的乳白色反应混合物。24小时后,通过1H NMR分析判断反应完成。30分钟后,用300mL MTBE萃取反应物。排掉下层水相(大约250mL)并将上层有机层通过6g(2”直径×1/4”高)
Figure BDA0000154039570001021
过滤。用300mL MTBE冲洗并使用
Figure BDA0000154039570001023
冲洗中所用的MTBE萃取水相。合并有机相并使用旋转蒸发器在40℃下于减压下浓缩1小时,得到白色固体。将白色固体在减压下进一步干燥30分钟,得到23.9g(95%产率)(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈。
实施例17:6,6-甲基-3-氮杂二环[3.1.0]己烷-2-羧酸甲酯的制备
通过PCT国际申请公布WO 2007/075790中所述的程序将根据实施例16或17制备的(1R,2S,5S)-6,6-甲基-3-氮杂二环[3.1.0]己烷-2-腈转化为相应的基本上对映体纯的(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-羧酸甲酯。
实施例18:(1R,2S,5S)-6,6-甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备,NaCN当量和反应时间对氨基腈的反/顺异构体比的影响。
该程序与实施例15中直到添加NaCN之前的程序相同,不同的是通过实施例3的方法制备SEQ ID NO 8的单胺氧化酶粉末。24小时后,如表5中所示逐份添加NaCN至反应混合物(1.0当量NaCN是720mg 95%NaCN)。在每个预定的时间间隔之后,取出200μL小份,用1mL CDCl3萃取并然后通过1H-NMR分析。反/顺异构体比((1R,5S)-6,6-甲基-3-氮杂二环[3.1.0]己烷-2-腈的期望的2S和不期望的2R差向异构体之间的比率)通过氨基腈次甲基质子共振的1H-NMR积分(反式异构体=3.92ppm处的双峰;顺式异构体=4.22ppm处的双峰)来测定。
表5
Figure BDA0000154039570001031
1.ND=未测定。2.>100意味着未检测到顺式次甲基共振。
在最后的小份之后,用100mL乙酸乙酯萃取反应混合物并通过粗砂过滤,得到清楚的相分离。添加20mL庚烷至有机相。经由在40℃下的旋转真空蒸发1小时来蒸发有机相以便干燥。1H-NMR分析表明反/顺异构体比保持在12∶1。
实施例19;(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备,方法稳固性
步骤1.在室温(约21℃)下向配备有顶置式搅拌器(300rpm)的500-mL4颈烧瓶中添加150mL的Milli-Q水和1.2mL(大约1.0g和9毫摩尔)的6,6-二甲基-3-氮杂二环[3.1.0]己烷,得到pH为11.8的均匀溶液。逐份添加Na2S2O5直至pH达到7.5。向该无色溶液中添加300μL Antifoam-204(Sigma目录号A-6226)和600μL黑曲霉过氧化氢酶悬浮液(SigmaAldrich;目录号C-3515),得到pH 7.5的无色溶液。向此溶液中添加300mg具有SEQ ID NO 12的单胺氧化酶粉末(通过实施例3的方法制备),得到黄色溶液。插入空气喷射探针(气流速率约60mL/分钟),并且反应混合物的pH开始立即降低。经由受反馈控制的2N NaOH添加维持pH。大约40分钟后,pH保持稳定并且不再进行碱添加。又10分钟(共50分钟)之后,将150mL 6,6-二甲基-3-氮杂二环[3.1.0]己烷NaHSO3溶液(26.1g 6,6-二甲基-3-氮杂二环[3.1.0]己烷与160mL dH2O和足够的Na2S2O5至达到pH 7.2)以0.12mL/分钟的速率添加至反应混合物中。反应混合物的pH开始立即下降并重新开始添加2N NaOH。在大约21小时(大约22小时的总反应时间)后完成6.6-二甲基-3-氮杂二环[3.1.0]己烷/NaHSO3添加。在底物添加完成之后,以增加的速率继续碱添加。24小时后,通过1H NMR分析判断反应完成。
步骤2.24小时之后,添加13.5g NaCN(1.5当量)至反应混合物中,得到pH9.9的乳白色反应混合物。在室温下搅拌混合物15分钟和45分钟后取出200μL小份,用1mL CDCl3萃取小份并通过1H-NMR分析萃取物。在两个时间点,顺式立体异构体都低于1H-NMR检测限。
在NaCN添加后约60分钟,用300mL MTBE萃取反应物。排掉下层水相(大约250mL)并将上层有机层通过6g(2”直径×1/4”高)
Figure BDA0000154039570001041
过滤。用300mL MTBE冲洗并使用冲洗中所用的MTBE萃取水相。合并有机层并使用旋转蒸发器在40℃下于减压下浓缩1小时,得到白色固体。将白色固体在减压下进一步干燥30分钟,得到22.5g(90%产率)(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈。顺式(2R)差向异构体低于1H-NMR检测限。
此实施例说明这种氨基腈在室温下pH 9.9和存在0.5当量过量氰化物的条件下1小时后仍然呈立体异构纯的形式。
实施例20:(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈的制备,方法稳固性
步骤1.该程序与实施例18的步骤1相同。
步骤2.24小时之后,添加11.0g NaCN(1.22当量)至反应混合物中,得到pH9.9的乳白色反应混合物。在室温下搅拌10分钟后,取出200μL小份,用1mL CDCl3萃取。萃取溶液的1H-NMR分析表明完全转化为(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-腈,即反式氨基腈,而没有可检测的顺式2R立体异构体。
在室温下再搅拌反应混合物16小时。16小时后的1H-NMR分析表明反/顺氨基腈比率为约15∶1(反/顺异构体比率通过氨基腈次甲基质子的1H-NMR积分测定:反式=3.92ppm处的双峰;顺式=4.22ppm处的双峰)。
实施例21:在静态空气下单胺氧化酶催化八氢环戊[c]吡咯去对称化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯
在空气下向50-mL 3颈烧瓶中添加25mL 100mM pH 8.0磷酸钾缓冲液和375mg的盐酸八氢环戊[c]吡咯,随后通过添加1N NaOH将pH调节为大约7.5。向经pH调节的溶液中添加60μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的150mg具有SEQ ID NO 4的单胺氧化酶粉末(通过实施例2的方法制备)。在空气下搅拌所得的浅黄色溶液24小时,在此期间,经由受反馈控制而以1-5μL逐份添加1N NaOH将pH维持在7.4。用10N NaOH使pH达到大约14来猝灭反应并通过萃取到CDCl3中来分离产物,通过1H-NMR分析转化,显示出1,3a,4,5,6,6a-六氢环戊[c]吡咯的形成。
当以高通量筛选鉴定用于此实施例的具有SEQ ID NO.4的单胺氧化酶时,实施例5的手性GC测定方法显示其将八氢环戊[c]吡咯氧化为所需的(3aR,6aS)-亚胺(4)。没有检测到(3aS,6aR)对映体。
实施例22:(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈的制备
在空气下向50-mL 3颈烧瓶中添加25mL 100mM pH 8.0磷酸钾缓冲液和400mg的盐酸八氢环戊[c]吡咯、500mg Na2S2O5并用10N NaOH将pH调节为大约7.5。向经pH调节的溶液中添加30μL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和在pH 8.0的磷酸钾缓冲液中的300mg具有SEQ ID NO 10的单胺氧化酶粉末(通过实施例2的方法制备)。在空气下搅拌所得的浅黄色溶液24小时,在此期间,经由受反馈控制而以1-5μL逐份添加1N NaOH将pH维持在7.5。在搅拌48小时后,添加300mg NaCN至反应混合物中,将pH升至约9.9。在室温下(约21℃)再搅拌1小时,然后用乙酸乙酯萃取。相分离和溶剂蒸发后,分离出316mg八氢环戊[c]吡咯-1-腈(82%产率)。1H-NMR显示出约90%的(1S,3aR,6aS),“反式”和约10%的(1R,3aR,6aS)差向异构体,“顺式”。(1H-NMR(300MHz,CDCl3)谱:δ3.95(d,J=6.6,顺式氨基腈次甲基H),3.62(d,J=1.2;反式氨基腈次甲基H),3.15(m,1H),2.71(m,2H),2.62(m,1H),1.63-1.92(m,3H),1.55(m,1H),1.22-1.45(m,3H))。
实施例23:(3aR,6aS)-1,3a,4,5,6,6a-六氢环戊[c]吡咯,化合物(4)及其相应的二聚体,化合物(5)的制备级生产。
向20℃加套和300rpm搅拌的3-L 3颈烧瓶中添加500mL dH2O和20mL在水中的25wt%八氢环戊[c]吡咯溶液。用浓H3PO4将pH调节至大约7.6,得到无色的均匀溶液。向此溶液中添加2.0mL黑曲霉过氧化氢酶悬浮液(Sigma Aldrich;目录号C-3515)和5.0g SEQ ID NO:16的多肽的单胺氧化酶粉末(通过实施例3的方法制备),得到浅黄色溶液。以大约0.2L/分钟的干燥空气吹扫容器的顶空。通过受反馈控制以20-100μL逐份添加在水中的25wt%八氢环戊[c]吡咯溶液来将反应的pH维持在7.5直至已添加380mL。(在中性溶液中的胺是质子化的;亚胺不是。反应释放了质子,但是必须将其中和以维持pH。在此实施例中,胺本身是用作pH-固定器滴定剂的碱。)在添加了380mL在水中的25wt%八氢环戊[c]吡咯溶液之后,通过受反馈控制添加1N NaOH维持pH来完成反应(对应于初始的5g(45mmol)底物。在不再观察到NaOH消耗之后,取出浆液小份,过滤并将固体空气干燥。
溶解在多种溶剂中的固体的1H-NMR谱显示出在溶液中不同比例的亚胺(3aR,6aS)八氢环戊[c]吡咯(4)和其二聚体(5)。D6-DMSO中的1H-NMR(300MHz)显示二聚体而未检测到游离亚胺(谱:δ3.11(t,J=8.2;1H),2.45(m,1H),2.33(m,1H),1.85(dd,J=7.2,8.1,1H),1.31-1.58(m,7H))。CDCl3中的1H-NMR(300MHz)显示了亚胺和二聚体的混合物(谱:δ3.22(m,1H),2.65(m,1H),2.30-2.40(m,2H),1.89(m,1H),1.50-1.70(m,5H),1.43(m,1H))。17%D3PO4/D2O(300MHz)中的1H-NMR仅显示出质子化的亚胺单体(谱:δ7.6-8.2(br,1H),3.5-3.8(br,1H),2.8-3.5(br,2H),2.2-2.8(br,1H),0.5-1.7(br,6H))。
向大体积的反应混合物中添加100mL浓HCl,得到pH约0的黄色悬浮液(将二聚体分解为质子化亚胺)。将黄色悬浮液在4℃下以8000离心10分钟。滗去所得黄色上清液并将其返回至反应容器中。将白色糊料(通过离心沉淀)重悬于100mL dH2O中并通过滤纸过滤。用dH2O(1×100mL)冲洗残余物。将如此获得的含有盐酸(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯的所有酸性水溶液合并并直接用于生成氨基腈的氰化反应。
当以高通量筛选鉴定用于此实施例的具有SEQ ID NO.16的单胺氧化酶时,实施例5的手性GC测定显示其将八氢环戊[c]吡咯氧化为所需的(3aR,6aS)-亚胺(4)。没有检测到(3aS,6aR)对映体。
实施例24:在静态空气或氧气下单胺氧化酶催化八氢环戊[c]吡咯去对称化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯及其相应二聚体;经由萃取的产物分离
向20℃加套和300rpm搅拌的3-L 3颈烧瓶中添加500mL dH2O和20mL在水中的25wt%八氢环戊[c]吡咯溶液。用浓H3PO4将pH调节为大约7.6,得到无色的均匀溶液,向该溶液中添加2.0mL黑曲霉过氧化氢酶悬浮液(Novozyme;“Catalyzyme 101”)和5.0g SEQ ID NO:16的多肽的单胺氧化酶粉末(通过实施例3的方法制备),得到浅黄色溶液。以大约0.2L/分钟的干燥空气吹扫容器的顶空。通过受反馈控制以20-100μL逐份添加在水中的25wt%八氢环戊[c]吡咯溶液来将反应的pH维持在7.5直至已添加380mL。(在中性溶液中的胺是质子化的;亚胺不是。反应释放了质子,但是必须将其中和以维持pH。在此实施例中,胺本身是用作pH-固定器滴定剂的碱。)在添加了380mL在水中的25wt%八氢环戊[c]吡咯溶液之后,通过添加1N NaOH维持pH来完成反应(对应于初始的5g(45mmol)底物。在不再观察到NaOH消耗之后,添加1800mL MTBE至不均匀的反应混合物中,然后将其加热至45℃。通过
Figure BDA0000154039570001081
过滤之后,弃去下层水相,并用10%柠檬酸萃取上层有机相,并且将含有盐酸(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯的酸性水溶液直接用于根据实施例29的方法制备(1R,2S,5S)-6,6-二甲基-3-氮杂二环[3.1.0]己烷-2-羧酸。
实施例25:(3aR,6aS)八氢环戊[c]吡咯的二聚体,化合物(3)的制备级制备
在空气下向30℃加套和300rpm搅拌的500mL 3颈烧瓶中添加100mL dH2O和2.0mL在水中的25wt%八氢环戊[c]吡咯溶液(0.5g底物)。用浓H3PO4将pH调节至大约7.8,得到无色的均匀溶液。向此溶液中添加0.2mL黑曲霉过氧化氢酶悬浮液(Novozyme“Catalyzyme 101)和0.25gSEQ ID NO 36的多肽的单胺氧化酶粉末(通过实施例3的方法制备)。反应的pH开始立即降低并且经由受反馈控制添加在水中的25wt%八氢环戊[c]吡咯溶液来将pH维持在pH 7.7。2小时之后,再添加0.25g单胺氧化酶粉末。(3aR,6aS)八氢环戊[c]吡咯的二聚体开始从反应物中沉淀并且在实验持续期间反应混合物变为白色浆液。又2小时(共4小时)之后,用约0.6mL/分钟的氧气吹扫顶空,并且在实验持续期间维持氧气吹扫。24小时的总反应时间之后,再添加0.5g单胺氧化酶。48.5小时的总反应时间后,添加了共32.3mL在水中的25wt%八氢环戊[c]吡咯溶液(反应的总底物为8.58g)。将反应混合物转移到配备有短径蒸馏头的500mL单颈烧瓶中并将装置放置于加热套中。在加热加热套至160℃之后,二聚体开始蒸汽蒸馏到浸泡在冰浴中的接收烧瓶中。汽相的温度为约96℃。约30分钟后,已蒸馏出约1/2的反应物质并且汽相的温度为约98℃。在此时停止蒸馏。将在接收烧瓶中的白色固体在水中的悬浮液通过粗烧结漏斗(coarsefritted funnel)过滤并容许白色固体空气干燥2小时,得到7.17g(84%产率)的(3aR,6aS)八氢环戊[c]吡咯二聚体。
实施例26:在静态空气下单胺氧化酶催化八氢环戊[c]吡咯去对称化为(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯及其相应二聚体;经由蒸汽蒸馏的产物分离
向20℃加套和300rpm搅拌的3-L 3颈烧瓶中添加500mL dH2O和20mL在水中的25wt%八氢环戊[c]吡咯溶液。用浓H3PO4将pH调节为大约7.6,得到无色的均匀溶液,向此溶液中添加2.0mL黑曲霉过氧化氢酶悬浮液(Novozyme;“Catalyzyme 101”)和5.0g SEQ ID NO:16的多肽的单胺氧化酶粉末(通过实施例3的方法制备),得到浅黄色溶液。以大约0.2L/分钟的干燥空气吹扫容器的顶空。经由受反馈控制以20-100μL逐份添加在水中的25wt%八氢环戊[c]吡咯溶液来将反应的pH维持在7.5。(3aR,6aS)八氢环戊[c]吡咯的二聚体开始从反应物中沉淀并且反应混合物变为白色浆液。在已添加了380mL在水中的25wt%八氢环戊[c]吡咯溶液之后,经由蒸汽蒸馏(头温度仍为约98℃)从反应混合物中分离产物。接收罐含有(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯二聚体在水中的悬浮液。添加1.1-1.2当量的浓HCl至接收罐中分解二聚体,并得到盐酸(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯在水中的均匀溶液。此溶液直接用于在实施例27中制备(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈。
实施例27:(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈的制备
将实施例26中制备的盐酸(3aS,6aR)-1,3a,4,5,6,6a-六氢环戊[c]吡咯的酸性水溶液冷却至0℃并以300rpm搅拌。向0℃的冷冻溶液中以3mL/分钟添加在100mL dH2O中的50g NaCN(氰化物对盐酸盐溶液的中和原位产生HCN)。在开始NaCN添加后2小时,添加1000mL甲苯(在冰浴中预冷的),得到两相混合物,向此两相混合物中以10mL/分钟添加饱和K2CO3溶液直到水相的pH达到9.8。然后使用插管移除下层水相,并在弃掉之前用漂白剂(破坏剩余的氰化物)处理。在室温下(约21℃)将上层有机悬浮液/乳液在大约15分钟内通过
Figure BDA0000154039570001091
545的20g床(约1/4”高×约3”直径)过滤,得到约1000mL无色有机相和约300mg黄色水相以及大约100mL“残相(rag phase)”(位于上层有机相和下层水相之间的中间层)。用甲苯2×100mL冲洗
Figure BDA0000154039570001101
垫。在分液漏斗中合并溶液并排出水相和残层(rag layer),并用漂白剂处理以便弃去。从有机相中取出小份的有机溶剂并蒸发至干燥。1H-NMR(300MHz,CDCl3)分析显示(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈(“反式”)及其1R差向异构体(“顺式”)以约30∶1比率存在(1H-NMR(300MHz,CDCl3)谱:δ3.95(d,J=6.6,顺式氨基腈次甲基H),3.62(d,J=1.2;反式氨基腈次甲基H),3.15(m,1H),2.71(m,2H),2.62(m,1H),1.63-1.92(m,3H),1.55(m,1H),1.22-1.45(m,3H))。将有机相冷却至大约0℃并用250mL浓盐酸(在冰浴中预冷)萃取两次,然后出现清楚和立即的相分离。(由于萃取是放热的,所以有必要预冷萃取溶液。溶液的温度由约4℃升至约室温)。将合并的含有盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈的浓HCl提取物(共大约600mL)合并并直接用于在实施例28中制备盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸。
6.1实施例28:盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸的制备
将来自实施例27的盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-腈溶液加热至回流持续24小时,这之后蒸发掉大约300mL水/HCl并将剩余溶液冷却至大约50-60℃。向此温溶液中添加500mL甲苯并将剩余的水(大约100-120mL)作为甲苯共沸物蒸馏掉。在移除全部的水之后,将所得的棕色固体和浅黄色甲苯的粘浆悬浮液冷却至室温(约21℃)。在过滤漏斗上收集固体并用甲苯冲洗(2×200mL)。将褐色固体空气干燥2小时并在真空下进一步干燥过夜,得到与NH4Cl副产物1∶1混合的159g(自八氢环戊[c]吡咯的总体产率为72%))的盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸。
溶解于D2O中的盐混合物的1H-NMR显示了大约17∶1的反/顺异构体(1S/1R)比率。(1H-NMR(300MHz,D2O)谱:δ4.32(d,J=5.5;顺式氨基酸次甲基),3.85(d,J=2.3;反式氨基酸次甲基),3.50(m,1H),3.65-3.88(m,3H),1.20-1.80(m,6H))。
6.2实施例29:由盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸制备(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯草酸1∶1盐。
步骤1:向配备有磁力搅拌棒的1650mL厚壁玻璃耐压瓶(Ace Glass,Inc.,8648-157)中装入在实施例28中制备的75g(306.9mmol)盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸/氯化铵混合物、375mL二氯甲烷和497mL乙酸叔丁酯。在环境温度下(约21℃)剧烈搅拌所得混合物以破坏大的聚集物,得到搅拌无阻的悬浮液(free-stirring suspension)。使用盐水-冰浴将此悬浮液冷却至0℃的内部温度并在15分钟内逐滴添加75.4mL(1162mmol)甲磺酸,在此期间将内部温度升至5℃。密封耐压瓶,并在18小时内容许反应混合物在剧烈搅拌下升温至环境温度(约21℃),在此期间反应混合物变为在琥珀色溶液中的白色无机盐悬浮液。将混合物在冰浴中冷却并仔细将耐压瓶通气并开盖。将混合物转移到3L烧瓶中并边搅拌边在冰浴中冷却。在35分钟内添加400mL在水中的50%(重量∶重量)NaOH至混合物中,同时保持其温度低于20℃。停止搅拌并容许分相。将有机相(约850mL)移入单独的容器中。用375mL二氯甲烷萃取剩余水相和残层(pH 13,约800mL)。合并有机相(约1250mL)并用水(2×225mL)洗涤。过滤所得有机相以移除残层和任何不溶性材料,通过旋转真空蒸发移除任何溶剂,得到48.3g深琥珀色油。该油的1H NMR谱显示为(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯。
根据相同程序进行的第二次制备产生50.6g反式-(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯油。
步骤2:将来自根据步骤1的两次制备的97.9g(463.3mmol)(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯溶解在750mL乙酸叔丁酯中并装入配备有顶置式机械搅拌装置、温度计、添加漏斗和回流冷凝器的3L四颈烧瓶中。在环境温度(约21℃)下搅拌的同时,在37分钟内逐滴添加44.0g(488.6mmol)草酸在750mL 2-丙醇中的溶液,将混合物的温度升至31℃。在添加约50mL草酸溶液之后固体开始沉淀,并且在添加450mL之后得到粘稠的悬浮液。添加500mL草酸盐溶液后,将沉淀的固体再溶解,得到深黄色溶液。在添加600mL草酸溶液之后固体开始迅速再次沉淀并且持续直到草酸添加结束。然后将此悬浮液加热至78℃,得到稀悬浮液,容许其边搅拌边被动地冷却至环境温度(约21℃)。自冷却开始后16小时,通过过滤收集沉淀的固体并用异丙醇(450mL)、乙酸异丙酯(450mL)和甲基叔丁基甲醚(450mL)连续洗涤。在真空炉(30℃,25″真空,N2气流)中干燥固体,得到为稠密的褐色自由流动粉末的118.1g(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯草酸1∶1盐(自盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸的产率为64%)(通过GC分析为99.7%纯度),其表现出(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯草酸(1∶1)盐的预期1H-NMR谱。
(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯草酸(1∶1)盐的重结晶:将来自上面步骤2的褐色粉末(118.1g,391.9mmol)和异丙醇(1950mL)装入配备有机械搅拌装置、温度计和回流冷凝器的3L四颈烧瓶中。将悬浮液搅拌并加热至74℃至将盐完全溶解,得到黄色溶液。减慢搅拌并容许溶液被动地冷却至环境温度(约21℃)。自冷却开始20小时后,通过过滤收集沉淀的固体并用异丙醇(1L)、乙酸异丙酯(1L)和甲基叔丁基甲醚(1L)连续洗涤。在真空炉(40℃,28″真空,N2气流)干燥固体,得到微细米白色针状的110.45g(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸叔丁酯草酸1∶1盐(自盐酸(1S,3aR,6aS)-八氢环戊[c]吡咯-1-羧酸的产率为59.7%),通过GC分析为99.9%纯度)。手性GC分析仅显示了期望的(1S,3aR,6aS)-立体异构体。未检测到其(2S)-差向异构体。
本公开内容中引用的所有的专利、专利公布、杂志和其他参考文献均通过引用整体并入本文。
Figure IDA0000154039600000021
Figure IDA0000154039600000031
Figure IDA0000154039600000041
Figure IDA0000154039600000071
Figure IDA0000154039600000081
Figure IDA0000154039600000111
Figure IDA0000154039600000121
Figure IDA0000154039600000131
Figure IDA0000154039600000141
Figure IDA0000154039600000151
Figure IDA0000154039600000161
Figure IDA0000154039600000171
Figure IDA0000154039600000181
Figure IDA0000154039600000221
Figure IDA0000154039600000231
Figure IDA0000154039600000241
Figure IDA0000154039600000251
Figure IDA0000154039600000261
Figure IDA0000154039600000271
Figure IDA0000154039600000291
Figure IDA0000154039600000311
Figure IDA0000154039600000321
Figure IDA0000154039600000331
Figure IDA0000154039600000341
Figure IDA0000154039600000361
Figure IDA0000154039600000371
Figure IDA0000154039600000391
Figure IDA0000154039600000401
Figure IDA0000154039600000411
Figure IDA0000154039600000421
Figure IDA0000154039600000431
Figure IDA0000154039600000451
Figure IDA0000154039600000461

Claims (18)

1.一种基本上立体异构纯的化合物,所述化合物是根据结构式II(a)、II(b)、III(a)或IV(a)的化合物:
Figure FDA0000154039560000011
包括其盐和水合物,其中:
A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在。
2.根据权利要求1所述的化合物,其中A选自由下列组成的组:-CH2-、-CH(CH3)-、-CH(C2H5)-、-C(CH3)2-、-C(C2H5)2-、-CF2-、-CCl2-、-CBr2-、-C(CF3)2-、-CH(COOH)-、-C(COOH)2-、-CH(NH2)-和-CH(CH2NHC(NH)NH2)-。
3.根据权利要求1所述的化合物,其中A是-CH2-。
4.根据权利要求1所述的化合物,其中A是-C(CH3)2-。
5.根据权利要求1所述的化合物,其中A是-C(CF3)2-。
6.根据权利要求1所述的化合物,其中所述基本上立体异构纯的化合物选自由下列组成的组:
Figure FDA0000154039560000021
7.根据权利要求1所述的化合物,其中所述基本上立体异构纯的化合物选自由下列组成的组:
Figure FDA0000154039560000022
8.根据权利要求1所述的化合物,其中所述基本上立体异构纯的化合物是:
Figure FDA0000154039560000023
9.一种混合物,包含一对权利要求1的基本上立体异构纯的化合物,其中所述的一对化合物选自:(i)结构式II(a)和II(b)的化合物;(ii)结构式III(a)和III(b)的化合物;以及(iii)结构式IV(a)和IV(b)的化合物。
10.如权利要求9所述的混合物,其中所述的一对化合物具有结构式III(a)和III(b)并且所述混合物中结构式III(a)的化合物的量大于所述混合物中结构式III(b)的化合物的量。
11.如权利要求10所述的混合物,其中结构式III(a)的化合物的量与结构式III(b)的化合物的量之比为至少5∶1。
12.如权利要求11所述的混合物,其中所述的一对化合物具有结构式IV(a)和IV(b)并且所述混合物中结构式IV(a)的化合物的量大于所述混合物中结构式IV(b)的化合物的量。
13.如权利要求12所述的混合物,其中结构式IV(a)的化合物的量与结构式IV(b)的化合物的量之比为至少10∶1。
14.一种制备基本上立体异构纯的化合物的方法,所述化合物为根据结构式VI的氨基酸化合物:
Figure FDA0000154039560000031
包括其盐,其中:
A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在,
所述方法包括使基本上对映体纯的根据结构式IV(a)的氨基腈化合物:
其中A、M和M’如对结构式VI的氨基酸化合物所定义,在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VI的氨基酸化合物的条件下与酸和水接触。
15.一种制备基本上立体异构纯的化合物的方法,所述化合物为根据结构式VI的氨基酸化合物:
Figure FDA0000154039560000033
包括其盐,其中:
A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
Figure FDA0000154039560000041
其中A、M和M’如对结构式VI的氨基酸化合物所定义,在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
Figure FDA0000154039560000042
其中A、M和M’如对结构式VI的氨基酸化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VI的氨基酸化合物的条件下与酸和水接触。
16.一种制备基本上对映体纯的化合物的方法,所述化合物为根据结构式V的氨基酯化合物:
Figure FDA0000154039560000043
包括其盐,其中:
R5是(C1-C6)烷基;
A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在;
所述方法包括使基本上立体异构纯的根据结构式VI的氨基酸化合物:
Figure FDA0000154039560000051
其中A、M和M’如对结构式V的氨基酯化合物所定义,在其中将根据结构式VI的氨基酸化合物转化为基本上对映体纯的根据结构式V的氨基酯化合物的条件下与酸和选自由R5-OH和R5OC(O)CH3组成的组的化合物接触。
17.一种制备基本上立体异构纯的化合物的方法,所述化合物为根据结构式V的氨基酯化合物:
Figure FDA0000154039560000052
包括其盐,其中:
R5是(C1-C6)烷基,A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
Figure FDA0000154039560000053
其中A、M和M’如对结构式V的氨基酯化合物所定义,在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
其中A、M和M’如对结构式V的氨基酯化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式V的氨基酯化合物的条件下与酸和醇接触。
18.一种制备基本上立体异构纯的化合物的方法,所述化合物为根据结构式VII的氨基酰胺化合物:
Figure FDA0000154039560000062
包括其盐,其中:
A是CR1R2,其中R1和R2各自独立地选自-H、-COOH、-X、-NH2、-CH2NHC(NH)NH2、-CX3、-CH3、-CH2CH3,并且其中X选自F、Cl和Br;
M和M’二者都不存在;
所述方法包括使立体异构纯的根据结构式III(a)的亚硫酸氢盐胺加成化合物、基本上立体异构纯的根据结构式III(b)的亚硫酸氢盐胺加成化合物或它们的混合物
Figure FDA0000154039560000063
其中A、M和M’如对结构式VII的氨基酰胺化合物所定义,在产生基本上立体异构纯的根据结构式IV(a)的氨基腈化合物的条件下与氰化物接触
Figure FDA0000154039560000071
其中A、M和M’如对结构式VII的氨基酰胺化合物所定义;以及
使结构式IV(a)的氨基腈化合物在其中将所述氨基腈化合物转化为基本上立体异构纯的根据结构式VII的氨基酰胺化合物的条件下与酸接触。
CN2012101130855A 2008-06-24 2009-06-23 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法 Pending CN102816106A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7524308P 2008-06-24 2008-06-24
US61/075,243 2008-06-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980133157.9A Division CN102131813B (zh) 2008-06-24 2009-06-23 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法

Publications (1)

Publication Number Publication Date
CN102816106A true CN102816106A (zh) 2012-12-12

Family

ID=41550950

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980133157.9A Active CN102131813B (zh) 2008-06-24 2009-06-23 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法
CN2012101130855A Pending CN102816106A (zh) 2008-06-24 2009-06-23 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200980133157.9A Active CN102131813B (zh) 2008-06-24 2009-06-23 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法

Country Status (10)

Country Link
US (4) US8178333B2 (zh)
EP (2) EP2307419B1 (zh)
JP (1) JP2011525533A (zh)
KR (1) KR20110048509A (zh)
CN (2) CN102131813B (zh)
AU (1) AU2009271325A1 (zh)
CA (1) CA2728226A1 (zh)
ES (1) ES2438576T3 (zh)
MX (1) MX2010014500A (zh)
WO (1) WO2010008828A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292825A (zh) * 2021-12-17 2022-04-08 武汉大学 一种托品酮的合成方法
CN114317631A (zh) * 2021-12-17 2022-04-12 武汉大学 单胺氧化酶在制备托品酮中的应用
CN114736882A (zh) * 2022-05-20 2022-07-12 苏州百福安酶技术有限公司 一种单胺氧化酶及其应用
WO2023015712A1 (zh) * 2021-08-10 2023-02-16 深圳瑞德林生物技术有限公司 一种s-尼古丁的制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811283B2 (en) * 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
EP2307419B1 (en) * 2008-06-24 2013-11-06 Codexis, Inc. Biocatalytic processes for the preparation of substantially stereomerically pure fused bicyclic proline compounds
US8828930B2 (en) 2009-07-30 2014-09-09 Merck Sharp & Dohme Corp. Hepatitis C virus NS3 protease inhibitors
US8686145B2 (en) 2010-02-25 2014-04-01 Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patientenzorg C/O Technology Transfer Officer VU & Vumc Process for the preparation of α-acyloxy β-formamido amides
JP2013010732A (ja) 2011-06-03 2013-01-17 Sumitomo Chemical Co Ltd プロリン化合物の製造方法
CN103450066B (zh) * 2012-05-30 2017-03-15 博瑞生物医药(苏州)股份有限公司 特拉匹韦中间体的制备方法
WO2013178682A2 (en) 2012-05-30 2013-12-05 Chemo Ibérica, S.A. Multicomponent process for the preparation of bicyclic compounds
ITMI20122205A1 (it) * 2012-12-20 2014-06-21 Dipharma Francis Srl Sintesi di un intermedio di un inibitore delle proteasi virali
WO2014096374A1 (en) 2012-12-21 2014-06-26 Sandoz Ag Process for the synthesis of pyrrolidines and pyrroles
ITMI20130706A1 (it) * 2013-04-30 2014-10-31 Dipharma Francis Srl Procedimento per la preparazione di un inibitore delle proteasi virali e suoi intermedi
CN104292146B (zh) * 2013-06-24 2017-04-26 上海医药工业研究院 特拉匹韦中间体及其制备方法
HUE053049T2 (hu) 2013-09-27 2021-06-28 Codexis Inc Enzimvariánsok automatizált szûrése
CN105441401B (zh) * 2014-09-01 2019-11-08 上海弈柯莱生物医药科技有限公司 一种单胺氧化酶及其在合成手性氮杂双环化合物中的应用
CN105624128B (zh) * 2014-11-26 2020-03-17 上海弈柯莱生物医药科技有限公司 一种固定化单胺氧化酶及其在合成手性氮杂双环化合物中的应用
WO2018144879A1 (en) * 2017-02-03 2018-08-09 Antidote Therapeutics, Inc. Novel nicotine degrading enzyme variants
CN116731991A (zh) * 2022-03-10 2023-09-12 青岛清原化合物有限公司 单胺氧化酶及其应用
US20230287361A1 (en) * 2022-03-11 2023-09-14 Codexis, Inc. Engineered monoamine oxidases for the preparation of stereomerically pure fused bicyclic proline compounds
WO2023185184A1 (zh) * 2022-03-31 2023-10-05 青岛清原化合物有限公司 一种单胺氧化酶及其应用
CN114751853B (zh) * 2022-04-11 2023-10-13 扬州联澳生物医药有限公司 6,6-二甲基-3-氮杂双环[3.1.0]己烷化合物的制备方法
CN114958938B (zh) * 2022-05-13 2023-12-08 金达威生物技术(江苏)有限公司 一种稠合二环脯氨酸甲酯盐酸盐的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288565B2 (en) * 2001-06-08 2007-10-30 Mitsubishi Chemical Corporation Azasugar compound
CN101910130A (zh) * 2007-11-28 2010-12-08 先灵公司 制备用于形成6,6-二甲基-3-氮杂双环[3.1.0]己烷化合物的中间体的脱卤化氢方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183857A (en) * 1978-07-06 1980-01-15 Shell Oil Company 3-Benzyl-3-azabicyclo(3.1.0)hexane-2,4-dione
CA1117125A (en) * 1978-03-01 1982-01-26 Ronald F. Mason 2-cyano-3-azabicyclo¬3.1.0|hexane compounds
US4225499A (en) 1978-07-06 1980-09-30 Shell Oil Company Process for preparing 3-azabicyclo(3.1.0)hexane-2-carbonitrile
CA1116615A (en) * 1978-09-27 1982-01-19 Ronald F. Mason Sulfonic acid salt of 2-cyano-3-azabicyclo[3.1.0]hexane
EP0010799B1 (en) 1978-10-27 1982-05-19 Shell Internationale Researchmaatschappij B.V. A process for the preparation of 3-azabicyclo(3.1.0)hexane derivatives and modifications thereof
CA1117128A (en) * 1978-10-27 1982-01-26 Derek A. Wood 2-cyano-3-azabicyclo(3.1.0)hexane
DE3174844D1 (en) * 1980-10-23 1986-07-24 Schering Corp Carboxyalkyl dipeptides, processes for their production and pharmaceutical compositions containing them
DE3211676A1 (de) 1982-03-30 1983-10-06 Hoechst Ag Neue derivate von cycloalka (c) pyrrol-carbonsaeuren, verfahren zu ihrer herstellung, diese enthaltende mittel und deren verwendung sowie neue cycloalka (c) pyrrol-carbonsaeuren als zwischenstufen und verfahren zu deren herstellung
DE3322530A1 (de) * 1983-06-23 1985-01-10 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von mono-, bi- und tricyclischen aminosaeuren
EP1304335B1 (en) 1990-04-04 2009-06-10 Novartis Vaccines and Diagnostics, Inc. Hepatitis C virus protease
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US6335160B1 (en) 1995-02-17 2002-01-01 Maxygen, Inc. Methods and compositions for polypeptide engineering
DE69523052T2 (de) 1994-06-03 2002-06-20 Novo Nordisk Biotech Inc Gereinigte myceliophthora laccasen und nukleinsäuren dafür kodierend
CN1151762A (zh) 1994-06-30 1997-06-11 诺沃诺尔迪斯克生物技术有限公司 非毒性、非产毒性、非致病性镰孢属表达系统及所用启动子和终止子
FI104465B (fi) 1995-06-14 2000-02-15 Valio Oy Proteiinihydrolysaatteja allergioiden hoitamiseksi tai estämiseksi, niiden valmistus ja käyttö
AU746786B2 (en) * 1997-12-08 2002-05-02 California Institute Of Technology Method for creating polynucleotide and polypeptide sequences
JPH11253162A (ja) 1998-03-10 1999-09-21 Mitsubishi Chemical Corp モノアミンオキシダーゼをコードするdna
US6562958B1 (en) * 1998-06-09 2003-05-13 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Acinetobacter baumannii for diagnostics and therapeutics
US6858018B1 (en) 1998-09-28 2005-02-22 Vyteris, Inc. Iontophoretic devices
SE521927C2 (sv) 1998-10-01 2003-12-16 Delsing Jerker Metod och anordning för interferometrimätning
US7504490B1 (en) * 1998-10-16 2009-03-17 Oscient Pharmaceuticals Corporation Nucleic acid and amino acid sequences relating to Apergillus fumigatus for diagnostics and therapeutics
JP4221100B2 (ja) 1999-01-13 2009-02-12 エルピーダメモリ株式会社 半導体装置
WO2001075767A2 (en) 2000-03-30 2001-10-11 Maxygen, Inc. In silico cross-over site selection
US7244721B2 (en) 2000-07-21 2007-07-17 Schering Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
HU229997B1 (en) 2000-07-21 2015-04-28 Dendreon Corp San Diego Peptides as ns3-serine protease inhibitors of hepatitis c virus
SV2003000617A (es) * 2000-08-31 2003-01-13 Lilly Co Eli Inhibidores de la proteasa peptidomimetica ref. x-14912m
US7214786B2 (en) * 2000-12-14 2007-05-08 Kovalic David K Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
EP1441720B8 (en) * 2001-10-24 2012-03-28 Vertex Pharmaceuticals Incorporated Inhibitors of serine protease, particularly hepatitis c virus ns3-ns4a protease, incorporating a fused ring system
US20040029129A1 (en) * 2001-10-25 2004-02-12 Liangsu Wang Identification of essential genes in microorganisms
US7314974B2 (en) * 2002-02-21 2008-01-01 Monsanto Technology, Llc Expression of microbial proteins in plants for production of plants with improved properties
GB0206415D0 (en) 2002-03-19 2002-05-01 Glaxo Group Ltd Deracemisation of amines
GB0211418D0 (en) 2002-05-17 2002-06-26 Glaxo Group Ltd Compounds
DE602004030239D1 (de) 2003-06-17 2011-01-05 Schering Corp Verfahren und zwischenprodukte zur herstellung von (1r,2s,5s)-6,6-dimethyl-3-azabicycloä3,1,0 ühexan-2-carboxylaten oder salzen davon
WO2005017135A1 (en) 2003-08-11 2005-02-24 Codexis, Inc. Improved ketoreductase polypeptides and related polynucleotides
DK2060570T3 (da) 2004-02-23 2012-04-30 Glaxo Group Ltd Som modulatorer af dopamin-d3-receptorer anvendelige azabicyclo(3.1.0)hexanderivater
ATE438622T1 (de) * 2004-02-27 2009-08-15 Schering Corp 3,4-(cyclopentyl)kondensierte prolinverbindungen als inhibitoren der ns3-serinprotease des hepatitis-c-virus
GB0426661D0 (en) * 2004-12-06 2005-01-05 Isis Innovation Pyrrolidine compounds
US8399615B2 (en) 2005-08-19 2013-03-19 Vertex Pharmaceuticals Incorporated Processes and intermediates
ATE463480T1 (de) 2005-08-19 2010-04-15 Vertex Pharma Verfahren und zwischenprodukte
WO2007023382A2 (en) * 2005-08-25 2007-03-01 Pfizer Inc. Pyrimidine amino pyrazole compounds, potent kinase inhibitors
US20080300251A1 (en) * 2005-09-05 2008-12-04 Sattigeri Jitendra A Derivatives of 3-Azabicyclo[3.1.0] Hexane as Dipeptidyl Peptidase-IV Inhibitors
CA2634397A1 (en) * 2005-12-22 2007-07-05 Schering Corporation Process for the preparation of 6,6-dimethyl-3-azabicyclo[3.1.0|-hexane compounds and enantiomeric salts thereof
JP5431956B2 (ja) * 2006-12-20 2014-03-05 メルク・シャープ・アンド・ドーム・コーポレーション 重亜硫酸塩中間体を使用した6,6−ジメチル−3−アザビシクロ[3.1.0]ヘキサン化合物の調製方法
EP2307419B1 (en) * 2008-06-24 2013-11-06 Codexis, Inc. Biocatalytic processes for the preparation of substantially stereomerically pure fused bicyclic proline compounds
US9198907B2 (en) 2009-04-06 2015-12-01 Ptc Therapeutics, Inc. Combinations of a HCV inhibitor such as bicyclic pyrrole derivatives and a therapeutic agent
WO2010117939A1 (en) 2009-04-06 2010-10-14 Schering Corporation Hcv inhibitor and therapeutic agent combinations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288565B2 (en) * 2001-06-08 2007-10-30 Mitsubishi Chemical Corporation Azasugar compound
CN101910130A (zh) * 2007-11-28 2010-12-08 先灵公司 制备用于形成6,6-二甲基-3-氮杂双环[3.1.0]己烷化合物的中间体的脱卤化氢方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015712A1 (zh) * 2021-08-10 2023-02-16 深圳瑞德林生物技术有限公司 一种s-尼古丁的制备方法
CN114292825A (zh) * 2021-12-17 2022-04-08 武汉大学 一种托品酮的合成方法
CN114317631A (zh) * 2021-12-17 2022-04-12 武汉大学 单胺氧化酶在制备托品酮中的应用
CN114292825B (zh) * 2021-12-17 2023-08-18 武汉大学 一种托品酮的合成方法
CN114317631B (zh) * 2021-12-17 2023-11-07 武汉大学 单胺氧化酶在制备托品酮中的应用
CN114736882A (zh) * 2022-05-20 2022-07-12 苏州百福安酶技术有限公司 一种单胺氧化酶及其应用
CN114736882B (zh) * 2022-05-20 2023-09-22 苏州百福安酶技术有限公司 一种单胺氧化酶及其应用

Also Published As

Publication number Publication date
KR20110048509A (ko) 2011-05-11
CN102131813B (zh) 2014-07-30
EP2307419A4 (en) 2012-07-04
US20120130087A1 (en) 2012-05-24
EP2307419A2 (en) 2011-04-13
US20100063300A1 (en) 2010-03-11
US8178333B2 (en) 2012-05-15
MX2010014500A (es) 2011-05-30
JP2011525533A (ja) 2011-09-22
AU2009271325A1 (en) 2010-01-21
CA2728226A1 (en) 2010-01-21
US20120289709A1 (en) 2012-11-15
CN102131813A (zh) 2011-07-20
ES2438576T3 (es) 2014-01-17
US20120244581A1 (en) 2012-09-27
US8859784B2 (en) 2014-10-14
US8574876B2 (en) 2013-11-05
EP2307419B1 (en) 2013-11-06
WO2010008828A2 (en) 2010-01-21
WO2010008828A3 (en) 2010-04-29
EP2481737A1 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102131813B (zh) 用于制备基本上立体异构纯的稠合二环脯氨酸化合物的生物催化方法
US11549132B2 (en) Biocatalysts and methods for hydroxylation of chemical compounds
CN102597226B (zh) 转氨酶反应
US11634695B2 (en) Vectors for expression of biocatalysts
CN102482648A (zh) 酮还原酶介导的产生α氯代醇的立体选择性途径
JP6719463B2 (ja) ケトン化合物およびアミン化合物の還元的アミノ化のための操作されたイミンレダクターゼおよび方法
HUE026367T2 (en) Biocatalysts of ezetimibe synthesis
WO2023173058A2 (en) Engineered monoamine oxidases for the preparation of stereomerically pure fused bicyclic proline compounds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121212