CN102779941B - 低功耗相变存储单元及其制备方法 - Google Patents

低功耗相变存储单元及其制备方法 Download PDF

Info

Publication number
CN102779941B
CN102779941B CN201210300829.4A CN201210300829A CN102779941B CN 102779941 B CN102779941 B CN 102779941B CN 201210300829 A CN201210300829 A CN 201210300829A CN 102779941 B CN102779941 B CN 102779941B
Authority
CN
China
Prior art keywords
phase
memory cell
change
change memory
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210300829.4A
Other languages
English (en)
Other versions
CN102779941A (zh
Inventor
吕业刚
宋三年
宋志棠
吴良才
饶峰
刘波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201210300829.4A priority Critical patent/CN102779941B/zh
Publication of CN102779941A publication Critical patent/CN102779941A/zh
Application granted granted Critical
Publication of CN102779941B publication Critical patent/CN102779941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明提供一种低功耗的相变存储单元及其制备方法,所述相变存储单元包括上下两个电极,该上下两个电极中至少一个为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。本发明还提供了制作低功耗相变存储器的方法,本发明所制作的相变存储器有效地将焦耳热抑制在相变材料区域,提高了加热效率,降低了器件功耗。

Description

低功耗相变存储单元及其制备方法
技术领域
本发明属于微电子技术领域,涉及一种微电子技术领域的相变存储单元及其制备方法,尤其涉及一种低功耗相变存储单元及其制备方法。
背景技术
与市场上主流的半导体存储技术相比,相变存储器具有很多优点,诸如高密度、低功耗、操作快、循环寿命长等,特别是在器件特征尺寸的微缩方面的优势尤为突出。因此,相变存储器被认为是下一代非挥发存储技术的最佳解决方案之一,在高密度、高速、低压、低功耗和嵌入式存储方面具有广阔的商用前景。
相变存储器以硫系化合物为存储介质,在电脉冲下产生的焦耳热使材料在晶态(低阻)与非晶态(高阻)之间相互转化实现信息的写入和擦除,信息的读出是通过测量存储器电阻值来实现的。当前相变存储器存在的主要问题是写电流过大。随着器件尺寸的缩小,晶体管的驱动能力也随之变小,难以满足相变储器的操作电流要求。
减小相变存储器的擦写操作电流通常有以下几种方法:一是选用低熔点和低热导率的相变材料。相变材料是相变存储器的核心,选用低熔点和低热导率的相变材料能够显著降低写操作电流。二是采用纳米复合相变材料。将相变材料与介质材料在纳米尺度内复合形成纳米复合材料。介质材料可以充当微加热中心并有效利用热量使相变材料发生相变,并且减少了有效编程体积,有助于减小擦写操作电流。三是采用人工构造类超晶格的多层相变薄膜或纳米线器件。四是优化器件结构减小相变材料与电极的接触面积。然而,在高密度的大前提下,将写电流进一步减小,以便MOS管驱动兼容,仍然是相变存储器发展必须面对的问题。
因而,如何提供一种写操作电流小及功耗低的相变存储器是当前技术领域需要解决的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种用于低功耗相变存储单元,用于解决现有技术中相变存储材料表现出的写操作电流大,功耗高的问题。
为实现上述目的及其他相关目的,本发明提供一种低功耗的相变存储单元,该相变存储单元包括上下两个电极,所述上下两个电极至少一个为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。
较佳地,上下两个电极均为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。
较佳地,所述导电材料选自TiN、Ti、Al、W、Ag、Au、Cu、TiW、HfN、WN、TaN及AlN中的任意两种。
较佳地,所述多层结构的厚度为30~500nm。
较佳地,所述相变存储器进一步包括位于下电极下方的介质材料层,所述介质材料为Si3N4层或SiO2层。
本发明还提供一种制备低功耗相变存储单元的方法,该方法包括以下步骤:
1)提供一半导体衬底后沉积绝缘层;
2)在该绝缘层上制备下电极;
3)沉积介质层,然后将下电极上方的介质层去除;
4)依次制备相变材料层和上电极
5)采用曝光-刻蚀工艺得到相变存储单元;
其中,制备下电极或/和上电极时,采用两种不同导电材料以纳米级厚度交替层状生长而成。
较佳的,采用磁控溅射法、化学气相沉积法或ALD来制备介质层、相变材料层、上电极及下电极。
本发明的相变存储单元,其特点是,所述的多层电极因为界面效应使得它的热导率较小,这样就更好地使相变材料聚热,减小了向电极部分的热扩散,提高了加热效率。因为焦耳热被充分用来加热相变材料,以至于较短的脉冲就可以使相变材料达到相变的温度点,这有利于降低“写”操作电流和功耗。因此,与传统的单层电极相变存储器相比,所述的多层电极相变存储器具有写操作电流小、功耗低的特点。
附图说明
图1为本发明的下电极为多层的相变存储单元的示意图。
图2a-2b为本发明的下电极为多层相变存储单元部分制备步骤结构示意图。
图3为本发明的上电极为多层的相变存储单元的示意图。
图4a-4c为为本发明的上电极为多层相变存储单元部分制备步骤结构示意图。
图5为本发明的多层上电极相变存储单元与传统相变存储单元在室温下的电阻与电压关系曲线。
图6为本发明的多层上电极相变存储单元与传统相变存储单元在120°C下的电阻与电压关系曲线。
图7为本发明的多层上电极相变存储单元在120°C下的疲劳性能测试结果。
元件标号说明
1、11        衬底
2、12        介质层
3、16        多层结构
31、32       下电极单层薄膜
4、14        绝缘层
5、15        相变材料层
6            过渡层
7、17        上电极
13           下电极
161、162     上电极单层薄膜
10、100      相变存储单元
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图7所示。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明的相变存储单元,自下向上包括半导体衬底,介质层,相变材料层及与相变材料层接触的上下电极。所述半导体衬底包括Si、SiC或SOI。
所述相变存储单元的上下电极至少一个是由多层电极材料构成的多层结构;所述多层电极材料是由两种不同的单层的电极材料以交替排列构成类超晶格的多层结构;该单层的电极材料选自TiN,Ti,Al,W,Ag,Au,Cu,TiW,HfN,TaN,WN及AlN中的任意一种形成单层薄膜;所述单层薄膜的厚度大致为1~10nm,多层结构总厚度为30~500nm。
所述相变存储单元的相变材料可以为具备相变特性的其他多层薄膜或纳米复合相变材料。所述介质层的材料为Si3N4或SiO2
本发明还提供一种制备低功耗相变存储器的方法,包括以下步骤:
(1)在沉积介质层的半导体衬底上制备下电极,采用曝光-刻蚀工艺得到圆柱形下电极;
(2)继续沉积介质层,采用抛光工艺将下电极上方的介质去除并露出下电极;
(3)依次制备相变材料层和上电极;
(4)采用曝光-刻蚀工艺得到相变存储单元。
其中,所述的上电极或下电极至少有一电极是多层结构。所述多层电极材料是由两种不同的单层的电极材料以交替排列构成类超晶格的多层结构。其中,采用磁控溅射法、化学气相沉积法或ALD来制备介质层、相变材料层及多层电极。刻蚀采用反应离子堆刻蚀。
下面以TiN与W形成类超晶格TiN/W多层电极为例来阐述本发明,但本发明绝非仅局限于该实施例。
实施例1
请参阅图1所示,一种低功耗的相变存储单元10,该相变存储单元包括衬底1,位于衬底1上的第一介质层2、位于该第一介质层2上的下电极3、包裹该下电极的第二介质层4、位于该下电极3和第二介质层4上的相变材料层5、位于该相变材料层5上的过渡层6以及位于该过渡层6上的上电极7。在本实施例中,所述下电极3为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构,其包括第一单层薄膜31和相邻的第二单层薄膜32。所述第一、第二介质层选自Si3N4或SiO2
上述结构的制备方法如下:
步骤1:依次用丙酮和酒精超声清洗Si(100)/SiO2衬底,并在80°C烘箱中烘干,在硅衬底上制备多层电极:将W和TiN以5nm的单层厚度轮流交替沉积,形成“W/TiN/W/TiN…”的多层电极结构,总厚度为600nm。如图2a所示。
步骤2:利用曝光-刻蚀工艺在多层电极上刻蚀出直径为190nm,高为500nm的圆柱形多层下电极,然后再沉积厚度为600nm的第二介质层(作为绝缘层)SiO2,利用抛光工艺将圆柱形多层电极上面的绝缘层去除。如图2b所示。
步骤3:在上述步骤后获得的结构上利用磁控溅射制备相变层(GaSbTe),将GaSb和Sb2Te3合金靶的射频功率分别设为25和20瓦,Ar流量设为20SCCM,待本底真空低于3×10-4帕斯卡,开启射频电源,打开Ar进气阀门,打开GaSb和Sb2Te3合金靶靶盖,溅射7min后,关闭射频电源和靶盖,得到GaSbTe薄膜的厚度约为50nm。
步骤4:在上述步骤后获得的结构上沉积厚度约为20nm的TiN作为过渡层,利用曝光-刻蚀工艺得到平面尺寸为1000×1000nm2的器件单元,再沉积Al电极,作为上电极,得到如图1所示的结构。
步骤5:利用曝光-刻蚀工艺,去除相邻器件单元之间的Al,得到可测试的相变存储单元。
实施例2
请参阅图3所示,一种低功耗的相变存储单元100,该相变存储单元包括衬底11,位于衬底1上的第一介质层12、位于该第一介质层12上的下电极13、包裹该下电极13的第二介质层14、位于该下电极13和第二介质层14上的相变材料层15、位于该相变材料层15上的多层结构16以及位于该多层结构16上的上电极17。在本实施例中,所述多层结构16为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。其包括第一单层薄膜161和相邻的第二单层薄膜161。所述第一、第二介质层选自Si3N4或SiO2
上述结构的制备方法如下:
步骤1:依次用丙酮和酒精超声Si(100)/SiO2基底,并在80°C烘箱中烘干,在硅衬底上制备金属电极(W),作为下电极,厚度为600nm。如图4a所示。
步骤2:利用曝光-刻蚀工艺在多层电极上刻蚀出直径为260nm,高为500nm的圆柱形下电极,然后再沉积厚度为600nm的绝缘层(SiO2),利用抛光工艺将圆柱形电极上面的绝缘层去除。如图4b所示。
步骤3:在上述步骤后获得的结构上利用磁控溅射制备相变层(GaSbTe),将GaSb和Sb2Te3合金靶的射频功率分别设为25和20瓦,Ar流量设为20SCCM,待本底真空低于3×10-4帕斯卡,开启射频电源,打开Ar进气阀门,打开GaSb和Sb2Te3合金靶靶盖,溅射7min后,关闭射频电源和靶盖,得到GaSbTe薄膜的厚度约为50nm。
步骤4:在上述步骤后获得的结构上制备多层电极结构:如图4c所示,将TiN和W以5nm的单层厚度依次轮流交替沉积,形成“TiN/W/TiN/W…”的多层电极,总厚度为50nm。利用曝光-刻蚀工艺得到平面尺寸为1000×1000nm2的器件单元,再沉积Al电极,作为上电极。
步骤5:利用曝光-刻蚀工艺,去除相邻器件单元之间的Al,得到可测试的相变存储单元,得到如图3所示的结构。
实施例3
本实施例和以上2个实施例的区别仅在于制备上下电极时,均制备成由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。
本发明中,对制备的多层相变存储单元进行了测试,以评估多层相变存储单元的电性能。
图5是非多层电极与多层电极相变存储单元的在20ns电脉冲下的电阻与电压关系曲线。相变存储器的功耗主要取决于写操作所消耗的能量。由图5可见,多层电极的写操作电压为2.8V左右,明显低于非多层电极的写操作电压3.5V。这说明基于多层电极的相变存储单元的功耗更低。
图6是制备的相变存储单元在120°C的工作环境下的电阻与电压关系曲线,施加的电脉冲宽度为50ns。由图6可见,基于多层电极的相变存储单元在高温下的写操作电压仍然低于非多层电极的相变存储单元,进一步验证了多层电极相变存储器具有低功耗的特点。由于多层电极引入的界面较多,在高温下,较大的界面应力可能会导致相变存储单元失效。为考证它的稳定性,将多层电极相变存储单元在120°C的高温工作环境下进行了疲劳测试。
图7是多层电极相变存储单元在120°C下的疲劳性能测试结果。在120°C下,多层电极相变存储单元能够反复擦写近106次。可见多层界面不会影响到相变存储单元的操作性能,这也说明多层电极相变存储单元具有稳定的电学操作性能。
综上所述,与传统的相变存储单元相比,本发明的多层电极相变存储单元的写操作电流更小,功耗更低。本发明提供的多层电极相变存储单元的制备方法及工艺简单,便于制作和大批量生产。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (4)

1.一种低功耗的相变存储单元,该相变存储单元包括上下两个电极,其特征在于:所述上下两个电极至少一个为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构,所述纳米级厚度设定为1~10nm;所述导电材料选自TiN、Ti、Al、W、Ag、Au、Cu、TiW、HfN、WN、TaN及AlN中的任意两种。
2.根据权利要求1所述的低功耗的相变存储单元,其特征在于:上下两个电极均为由两种不同导电材料以纳米级厚度交替层状生长而成的多层结构。
3.根据权利要求1所述的低功耗的相变存储单元,其特征在于:所述多层结构的厚度为30~500nm。
4.根据权利要求1所述的低功耗的相变存储单元,其特征在于:所述相变存储单元进一步包括位于下电极下方的介质材料层,所述介质材料为Si3N4层或SiO2层。
CN201210300829.4A 2012-08-22 2012-08-22 低功耗相变存储单元及其制备方法 Active CN102779941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210300829.4A CN102779941B (zh) 2012-08-22 2012-08-22 低功耗相变存储单元及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210300829.4A CN102779941B (zh) 2012-08-22 2012-08-22 低功耗相变存储单元及其制备方法

Publications (2)

Publication Number Publication Date
CN102779941A CN102779941A (zh) 2012-11-14
CN102779941B true CN102779941B (zh) 2015-02-18

Family

ID=47124788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210300829.4A Active CN102779941B (zh) 2012-08-22 2012-08-22 低功耗相变存储单元及其制备方法

Country Status (1)

Country Link
CN (1) CN102779941B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280814B (zh) * 2015-09-24 2018-06-12 宁波大学 一种相变存储单元及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207180A (zh) * 2006-12-15 2008-06-25 旺宏电子股份有限公司 多层电极结构
CN101542730A (zh) * 2007-06-05 2009-09-23 松下电器产业株式会社 非易失性存储元件和其制造方法、以及使用了该非易失性存储元件的非易失性半导体装置
CN101931049A (zh) * 2010-08-31 2010-12-29 中国科学院上海微系统与信息技术研究所 低功耗抗疲劳的相变存储单元及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029235B2 (ja) * 1993-12-29 2000-04-04 現代電子産業株式会社 半導体素子の電荷貯蔵電極形成方法
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US8022382B2 (en) * 2005-03-11 2011-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory devices with reduced programming current
KR20090037277A (ko) * 2007-10-10 2009-04-15 삼성전자주식회사 크로스 포인트 메모리 어레이
US8084842B2 (en) * 2008-03-25 2011-12-27 Macronix International Co., Ltd. Thermally stabilized electrode structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207180A (zh) * 2006-12-15 2008-06-25 旺宏电子股份有限公司 多层电极结构
CN101542730A (zh) * 2007-06-05 2009-09-23 松下电器产业株式会社 非易失性存储元件和其制造方法、以及使用了该非易失性存储元件的非易失性半导体装置
CN101931049A (zh) * 2010-08-31 2010-12-29 中国科学院上海微系统与信息技术研究所 低功耗抗疲劳的相变存储单元及制备方法

Also Published As

Publication number Publication date
CN102779941A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
CN106185799B (zh) 一种SiO2/Sb类超晶格纳米相变薄膜材料及其制备方法和应用
CN102810636A (zh) 具有类超晶格结构的相变存储单元及其制备方法
CN104934533B (zh) 用于高速低功耗相变存储器的Ge/Sb类超晶格相变薄膜材料及其制备方法
CN101572291B (zh) 一种实现多级存储的存储器单元结构及其制作方法
CN111463346B (zh) 一种ots选通材料、ots选通单元及其制备方法和存储器
CN110212088B (zh) 一种二维材料相变存储单元
CN105489758B (zh) 用于相变存储器的Si/Sb类超晶格相变薄膜材料及其制备方法
Xiong et al. Towards ultimate scaling limits of phase-change memory
CN106449972B (zh) 一种Ti-Sb纳米相变薄膜材料及其制备方法和应用
WO2012126186A1 (zh) 一种阻变存储器及其制备方法
CN103682089A (zh) 高速、高密度、低功耗的相变存储器单元及制备方法
CN106449974B (zh) 基于MoS2量子点嵌入有机聚合物的阻变存储器及其制备方法
CN101660118B (zh) 一种纳米复合相变材料及其制备与应用
CN106953006A (zh) 一种SiO2 掺杂Sb纳米相变薄膜材料及其制备方法与用途
CN104347800B (zh) 一种相变存储器选通管及其存储单元
CN105280814B (zh) 一种相变存储单元及其制备方法
CN112133825A (zh) 一种高稳定性相变存储单元及其制备方法
CN101101962A (zh) 基于镓掺杂Ga3Sb8Te1相变存储单元及其制备方法
CN103594621B (zh) 一种相变存储单元及其制备方法
CN101615655A (zh) 导电氧化物过渡层及含该过渡层的相变存储器单元
CN102779941B (zh) 低功耗相变存储单元及其制备方法
CN101572292B (zh) 相变和阻变合二为一实现多态存储的存储器单元及方法
CN100397561C (zh) 一种纳米相变存储器器件单元的制备方法
CN105679933B (zh) 一种基于导电丝和极化共控制的多值存储单元
CN108666419B (zh) 一种基于GeTe的互补型阻变存储器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant