CN102763230B - 制造半导体层的方法和装置 - Google Patents

制造半导体层的方法和装置 Download PDF

Info

Publication number
CN102763230B
CN102763230B CN201080064149.6A CN201080064149A CN102763230B CN 102763230 B CN102763230 B CN 102763230B CN 201080064149 A CN201080064149 A CN 201080064149A CN 102763230 B CN102763230 B CN 102763230B
Authority
CN
China
Prior art keywords
substrate
ray
layer
metal component
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080064149.6A
Other languages
English (en)
Other versions
CN102763230A (zh
Inventor
亨德里克·查赫曼
卡斯滕·奥特
霍斯特·诺依曼
弗兰克·塑尔策
卢茨·皮斯托尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OC3 AG
Original Assignee
Solarion AG Photovotaik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solarion AG Photovotaik filed Critical Solarion AG Photovotaik
Publication of CN102763230A publication Critical patent/CN102763230A/zh
Application granted granted Critical
Publication of CN102763230B publication Critical patent/CN102763230B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0026Activation or excitation of reactive gases outside the coating chamber
    • C23C14/0031Bombardment of substrates by reactive ion beams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及一种制造半导体层的方法和装置。目的在于,提高层组分的离析速率,并显著改善所生成的太阳能电池的效率。同时,应当降低材料费用。由此实现了该目的,即,在真空室中,金属蒸发源释放铜、铟和/或镓,这些金属作为金属蒸汽射线聚焦在基底上,并且由硫族低能量宽放射离子源使硒和/或硫离子化溢出,并使该射线这样聚焦于基底表面,从而使它与金属蒸汽射线重叠。还描述了实施该方法的装置。

Description

制造半导体层的方法和装置
技术领域
本发明涉及一种以真空工艺在涂层系统上离析薄层太阳能电池的辉铜吸收层的方法和装置,其中,使用特别的低能量宽放射粒子源用于制造。高效太阳能电池的开发及其廉价的制造是光电学的主要目标。在开发过程中,薄层太阳能电池意义重大并会在将来开辟更大的市场份额,这个市场目前由晶硅太阳能电池主宰。
背景技术
在薄层太阳能电池中得到采用的相应的吸收材料是具有目前最宽的拓宽代表CuInSe2及其合金Cu(In,Ga)Se2的辉铜半导体Ⅰ-Ⅲ-Ⅵ2的材料系统。适宜的基于该吸收材料的薄层太阳能电池结构由玻璃基底构成,在玻璃基底上面涂覆有由钼构成的金属反接触层;然后接着是厚度通常为1-3μm的辉铜吸收层(在上面涂覆有硫化镉缓冲层)以及接着一个透明、导电的正触点(例如由掺杂铝的氧化锌构成)。这样的太阳能电池在实验室条件下达到了直至19.9%的效率[1]。
作为硬质玻璃基底的替代,由金属膜或聚合物膜构成的挠性基底也可胜任。不依赖于对基底的选择,在下面仅涉及基底。文献[2]中第616页图1可以作为在聚酰亚胺膜上构造挠性Cu(In,Ga)Se2太阳能电池的实例。
为离析Cu(In,Ga)Se2吸收层,已知不同的方法。在连续的工艺中,例如通过事先离析的先导层提供了金属组分铜、铟、镓。接着,该层堆叠结构通过在硒气氛中快速加热而硫族化[3]。对于通过共蒸发的同时离析处理,将金属组分以及硫族组分(硒或硫)同时进行离析[4]。通过有意地设置金属蒸发器,可以额外地在吸收层中生成元素深度梯度,该元素深度梯度会提高薄层太阳能电池的效率。
在离析过程中通常对基底进行加热。
此外,对于同步或连续离析作为薄层太阳能电池的吸收材料的Cu(In,Ga)Se2层的过程由[5]已知,硒组分通过离子射线来提供。在此,一方面以反应形式提供硒组分,就如同在纯硒蒸发中的情况。另一方面,通过富能硒离子为层生长提供了额外的、非热学的能量贡献。这对层生长造成积极的影响并且导致了在同时降低基底温度条件下的多晶吸收层的更高质量。
进一步还已知[6],对于Cu(In,Ga)Se2离析仅以离子化的形式提供镓。这对层生长以及吸收层特性具有积极影响。在此,镓离子来源于镓离子放射源。
另外还已知固体离子放射源,其为了研究目的可以由高沸点材料(例如铜和铟)生成离子。该放射源的速率以及离子流密度在此是很小的并且不适合在工业尺度上进行层离析。
另外还已知这样的方法,其包括铜、铟、镓和硒的共蒸发[7]。在生成的蒸发阶段,混合有这样的元素,其中,在室内蒸发期间在蒸发源和基底之间点燃等离子区并且加以维持。这会导致离子化并激化所有构成层的元素。在通过共蒸发制造Cu(In,Ga)Se2吸收层的过程中,根据现有技术,通常在真空中采用纯金属蒸汽和硫族蒸汽,以引入铜、铟、镓和硒在吸收层中。相比激化的和/或离子化的铜、铟、镓和硒组分,这在Cu(In,Ga)Se2吸收层的生成过程中具有更小的反应性。
层生长以及由此的结晶生成过程不会额外受到能量影响。出于这个原因,额外的、传统上的对基底的热学加热在进行Cu(In,Ga)Se2离析时是必要的。通常,直至550℃的温度用于吸收层的重结晶。由此,一方面,在温度敏感以及在较低程度上可加热的基底(例如聚酰亚胺膜)上进行离析,这种离析不能或仅以较低太阳能电池的效率进行。另一方面,在制造Cu(In,Ga)Se2吸收层的过程中,由于高的基底温度,产生高的能量费用。
在对所有形成层的组分(铜、铟、镓、硒)同时进行的激化和/或离子化在涂层室中通过额外的等离子激化可以部分地解决该问题。构成层的元素的反应性尽管得到提高,然而在生长的Cu(In,Ga)Se2层中的额外的、非热学的能量贡献则会由于离子化和/或激活的粒子的几个eV的低能量而不会发生。就是说,为使吸收层具有足够好的晶体质量,进一步需要高的基底温度。该工艺的另一缺陷在于,通过对金属蒸汽和硫族蒸汽的均质混合,不可能进行对吸收层的电学性能所必要的元素的深度分布的调整。另外,不会在基底上进行有针对性的离析过程,而是在涂层室的内壁上发生,这会在制造廉价的薄层太阳能电池时提高材料消耗和材料费用。
根据现有技术已知的固体离子放射源尽管实现了所有金属和硫族组分的离子化,这样的离子源却是昂贵的,而且必须为每种组分使用单独的离子源。为单个金属元素使用额外的离子放射源会导致高的投资和控制费用。这会导致生产成本的显著提高。另外,该放射源没有实现在吸收层上大面积的离析,这是因为,一方面,出口通常限于<10cm的直径,而另一方面,固体离子源的离子流密度过小,而且它不能提供对于经济生产所必要的材料量。另外,可通过该放射源进行调整的离子能量明显高过对于吸收层离析过程所需的离子能量。该降低意味着额外的成本耗费。
为硫族组分使用单个的宽放射离子源尽管在生长层中允许了额外的非热学能量提供以及由此对更低的基底温度的使用;然而,金属组分(铜、铟和镓)继续以非反应形式来提供。这降低了吸收层的生长速率。
参考文献:
[1]Repins,I.etal.,ShortCommunication:AcceleratedPublication19.9%-efficientZnO/CdS/Cu(In,Ga)Se2solarcellwith81.2%fillfactor,ProgressinPhotovoltaics:ResearchandApplication16(2008).
[2]Otte,K.Makhova,L.Braun,A.andKonovalov,I.,FlexibleCu(In,Ga)Se2thinfilmsolarcellsforspaceapplication,ThinSolidFilms511-512(2006).
[3]Hergert,F.,Jost,S.,Hock,R.,Purwins,M.andPalm,J.,Formationreactionsofchalcopyritecompoundsandtheroleofsodiumdoping,ThinSolidFilms515(2007).
[4]Kessler,J.andBodegard,M.andHedstrom,J.andStolt,L.,BaselineCu(In,Ga)Se2deviceproduction:Controlandsta-tisticalsignificance,SolarEnergyMaterialsandSolarCells67(2001).
[5]Solarion/IOM-Patent(DE19902908B4)
[6]H.Miyazakietal.,Growthofhigh-qualityCuGaSe2thinfilmsusingionizedGaprecursor,physicastatussolidi(a)203(11),2603(2006).
[7]DE102005040087A1
发明内容
本发明的目的在于,降低制造薄层太阳能电池的费用,并同时提高太阳能电池的效率。
本发明的目的在于,在使用低基底温度时使太阳能电池的效率以及离析速率得到提升。同时,降低制造时的材料费用。
这一点由此来实现,即,在离析Cu(In,Ga)Se2吸收层的过程中,以硫族离子放射来提供硫族组分,同时将金属组分部分或全部离子化或激化。同时进行的金属组分的激化/离子化由此来实现,即,硫族离子放射的分布在涂层室中与金属组分部分或全部重叠。额外的发明特征是,使用硫族低能量宽放射离子源,对其提取光学器件这样进行调整,即,使硫族离子以及电子以足够能量生成,并进行提取,从而使金属组分的蒸汽部分或全部地发生激化和/或离子化。
本发明的显著优势在于,所有对于层构成所需的金属和硫族组分进行激化和/或离子化导致离析的吸收层的结构上的以及电学的层特性的改善。通过改善电学层特性,使太阳能电池的效率提高了10%。相对于纯共蒸发工艺,效率提升了约35%。由此,在吸收表面保持不变的情况下,显著提高了太阳能电池的产量。另一优势在于,在涂层室中仅使用单个宽放射离子源。由此,相对于使用多个单独的离子放射源显著降低了投资、调整和控制成本,并明显简化了涂层技术。相对于通过在涂层室中生成等离子体的纯等离子涂层,降低了材料费用,因为涂层有目的地进行并尽可能地涂在基底表面。同时,硒离子放射提供了额外的非热学能量给离析的吸收层,该措施降低了热学基底加热并由此降低了能量耗费。
所使用的提取光学器件相对于传统的格栅系统具有这样的优点,即更小的购置和维护费用。
附图说明
图1为可能的工艺流程的图示。
附图标记说明
1金属蒸发器
2硫族低能量宽放射离子源
3具有提取出的电子和中性粒子的硫族离子射线
4金属蒸发器的蒸汽射线
5基底
6在基底上的钼涂层作为反接触层
具体实施方式
下面,凭借实施例阐明本发明。
设置有钼-反接触层6的基底5置于涂层室中。在此,钼-反接触层6的层厚度位于0.5至2μm范围内。
现在,在真空工艺中以1×10-6和1×10-4mbar之间的压力在金属反接触层6上涂覆Cu(In,Ga)Se2半导体层。在此,来自于金属蒸发器源1的金属组分以0.81<Cu/(In+Ga)<0.95的比率蒸发。对于层构成所需的硒通过来自于硫族低能量宽放射离子源2的离子射线3来提供。在此,硒离子的能量可以在10至500eV之间进行选择。
基底支架在该涂层步骤被加热至400至550℃之间的温度。
通过对金属蒸发器1和由此生成的射线引导区4的设置,并通过对设有特殊提取系统的离子放射源2和由此生成的硒离子射线以及提取出的电子3的形式和分布的设置,实现了金属蒸汽射线和硒离子射线的重叠。在此所使用的离子放射源的提取系统由具有20个孔的栅格组成,这些孔的直径分别为20mm。在提取系统中,相对于物料以及相对于基底施加一个电压。在重叠区域,金属蒸汽组分受到离子化和/或激化,并以离子化和/或激化状态同样达到基底。在经金属涂层的基底上,发生Cu(In,Ga)Se2化合物半导体的离析,该离析以对于层的电学特性所必要的元素关系和能量关系进行。过程速度和蒸发器速率在此这样相互进行确定,即,使由此形成的Cu(In,Ga)Se2层厚为1-3μm。
通过使金属组分和硒组分以离子化和/或激化方式受到额外的、非热学能量的冲击,对Cu(In,Ga)Se2吸收层的层构成产生积极影响。相对于使用纯的、非离子化/非激化金属蒸汽和硒离子的情况,本发明实现了更好的层质量。同样还实现了更高的离析速率。在下表中,相对于现有技术获得的结果,示出了本实施例的结果。
在此,离子化和/或激化的程度可以通过对过程参数适宜地选择而在硫族低能量宽放射离子源处进行调整。例如,硫族离子射线的提取可以通过提取系统进行,该提取系统由与过程特异匹配的、不同尺寸的光圈构成。该光圈实现了,将在硫族低能量宽放射离子源处生成的粒子(离子、电子和中性粒子)的方向和能量于通向基底的路径上这样进行调整,即,使金属蒸发组分的激化和离子化根据本发明受到影响。
当然,根据本发明的方法不限于Cu(In,Ga)Se2材料系统,而且可以在Ⅰ-Ⅲ-Ⅵ2族的半导体层的制造中得到使用。可能的Ⅰ族元素(其可以用于离析出吸收层)在此靠近铜、银;可能的Ⅲ族元素在此靠近铟、镓、铝。作为Ⅵ族元素,以硫或碲完全或部分替代硒同样是可以的。
作为基底,可以使用挠性基底(塑料箔或金属箔)以及硬质基底(例如玻璃)。同样,基底在进行涂层时可以运动或硬质固定。
根据本发明,低能量宽放射离子源的提取系统可以具有直径为1mm至5cm的仅一个开口或多个开口。另外,该开口还可以具有其它形状(矩形等)。
金属组分的蒸发器可以以任意顺序设置。同样,对蒸发器的任意定位鉴于低能量宽放射离子源在维持重叠区域的条件下是可以实现的。金属组分的热学蒸发根据本发明既可以通过点蒸发器也可以通过线蒸发器来实现。
同样,金属组分的蒸发与硫族组分的涂层可以分开进行。为此,硫族低能量宽放射离子源作为硒的替代使用惰性辅助气体(例如氩气)来运行,从而使所使用的金属元素铜、铟、镓的蒸汽射线发生出源自该放射源的富能电子和离子,并由此同样进行激化和/或离子化。所使用的惰性气体的组分在层构建过程中仅适度构建。该适度构建可以通过选择惰性辅助气体加以变化。
对金属组分进行离子化和/或激化(无需对每种元素使用各自的离子放射源)的另一可能在于,在仓室内引入等离子激化并由此自动生成金属组分的等离子体。该额外激化在此可以代替或者伴随硫族低能量宽放射离子源来运行。

Claims (15)

1.一种制造作为薄层太阳能电池的吸收层的Cu(In,Ga)(Se,S)2半导体层的方法,通过在载有反接触层的基底上离析出含有铜、铟和镓的金属组分以及含有硒和硫的硫族组分来实现,
其特征在于,在涂层室中,在基底上这样来构建吸收层,即,首先生成1×10-6和1×10-4mbar之间的真空,将基底加热至200至600℃的温度;
在金属蒸发源(1)中蒸发含有铜、铟和镓或者其硫族化合物的金属组分,金属蒸汽射线在基底上这样进行聚焦,即,使金属蒸汽射线冲击基底表面;
硒和硫由硫族低能量宽放射离子源离子化溢出,并使射线这样聚焦在基底表面而发生冲击,即,使硒和硫射线与金属蒸汽射线相重叠;
除了硫族离子,还由所述硫族低能量宽放射离子源(2)提取出电子,这些电子在涂层室中的分布同样与金属蒸汽射线相重叠,并且同样导致离子化和/或激化;
其中,由于通过硫族离子射线引入的能量导致离析出所希望的吸收层。
2.根据权利要求1所述的方法,其特征在于,作为反接触层,钼层具有0.5至2μm的厚度,金属组分铜相对于铟与镓之和的比例位于0.81至0.95之间,硒粒子的能量在10至500eV之间进行选择,基底的温度在离析阶段位于400至550℃。
3.根据权利要求1所述的方法,其特征在于,铜全部或部分地用银来置换,镓或铟全部或部分地用铝来置换,硒全部或部分地用硫或碲来置换。
4.根据权利要求1所述的方法,其特征在于,通过使用低能量宽放射离子源,用惰性气体运行,作为前导层离析出铜、铟和镓,并在第二步中受到硫族离子射线冲击的条件下才生成Cu(In,Ga)(Se,S)2吸收层。
5.根据权利要求1所述的方法,其特征在于,所述基底在离析过程中是可运动的。
6.根据权利要求1所述的方法,其特征在于,所述基底是挠性的。
7.根据权利要求1所述的方法,其特征在于,必要时将额外的利用等离子源的等离子激化装置装入涂层室,用来支持金属组分的离子化和/或激化。
8.根据权利要求1所述的方法,其特征在于,所述基底或反接触层通过包括高频电压在内的直流或交流电压来预置电压。
9.根据权利要求1所述的方法,其特征在于,为支持所述的离析过程,使用氢、氮、氩或氦。
10.根据权利要求1所述的方法,其特征在于,所述金属组分在冲击涂层系统之前已经作为二元化合物存在。
11.根据权利要求10所述的方法,其特征在于,所述二元化合物为Cu2Se或In2Se3
12.一种离析出薄层太阳能电池的Cu(In,Ga)(Se,S)2吸收层的装置,其包括真空涂层室、用于蒸发金属组分的蒸发装置,其特征在于,在真空涂层室中设置有至少一个用于提供硫族组分的低能量宽放射离子源;实现了来自于蒸发装置的金属蒸汽射线和来自于低能量宽放射离子源的离子射线的重叠,而低能量宽放射离子源具有提取光学器件,所述提取光学器件除了提取离子外还能提取电子,对所述提取光学器件这样进行调整,即,使硫族离子以及电子以足够能量生成,并进行提取,从而使金属组分的蒸汽部分或全部地发生激化和/或离子化。
13.根据权利要求12所述的装置,其特征在于,额外地这样设置一个等离子源,即,能够实现金属组分额外的激化和/或离子化。
14.根据权利要求12所述的装置,其特征在于,存在一个加热装置,用于对基底进行加热。
15.根据权利要求12、13和14的任意一项所述的装置,其特征在于,所述低能量宽放射离子源是孔状源、具有多孔格栅系统或具有孔或缝光圈的线状源。
CN201080064149.6A 2010-02-22 2010-02-22 制造半导体层的方法和装置 Expired - Fee Related CN102763230B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/001093 WO2011100998A1 (de) 2010-02-22 2010-02-22 Verfahren und vorrichtung zur herstellung einer halbleiterschicht

Publications (2)

Publication Number Publication Date
CN102763230A CN102763230A (zh) 2012-10-31
CN102763230B true CN102763230B (zh) 2016-06-01

Family

ID=44068011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080064149.6A Expired - Fee Related CN102763230B (zh) 2010-02-22 2010-02-22 制造半导体层的方法和装置

Country Status (5)

Country Link
US (1) US8956906B2 (zh)
EP (1) EP2539942B1 (zh)
CN (1) CN102763230B (zh)
BR (1) BR112012020950A2 (zh)
WO (1) WO2011100998A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866236A (zh) * 2012-12-18 2014-06-18 北京汉能创昱科技有限公司 一种铜铟镓硒薄膜电池共蒸发线性源的布置方法
TWI523962B (zh) 2014-10-03 2016-03-01 Nat Inst Chung Shan Science & Technology Method and apparatus for stabilizing vapor deposition uniformity film
CN108807572B (zh) * 2018-06-05 2020-01-17 电子科技大学中山学院 一种银铟镓硒薄膜及其制备方法和应用
CN111206219A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206222A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206205A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206207A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206223A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206221A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206203A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206220A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206210A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206208A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206206A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
CN111206204A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206209A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 一种镀膜设备及镀膜方法
CN111206224A (zh) * 2018-11-02 2020-05-29 北京铂阳顶荣光伏科技有限公司 沉积腔室、镀膜设备及镀膜方法
GB201911790D0 (en) 2019-08-16 2019-10-02 Univ Southampton method and compostion
US11898248B2 (en) * 2019-12-18 2024-02-13 Jiangsu Favored Nanotechnology Co., Ltd. Coating apparatus and coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383389A (zh) * 2008-10-07 2009-03-11 苏州富能技术有限公司 铜铟镓硒硫或铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法及镀膜设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166726A (ja) * 1991-12-19 1993-07-02 Matsushita Electric Ind Co Ltd 化合物薄膜の製造方法
JP2000144377A (ja) 1998-11-11 2000-05-26 Fujikura Ltd 化合物薄膜の製造方法
DE19902908B4 (de) 1999-01-26 2005-12-01 Solarion Gmbh Verfahren zur Herstellung von Chalkogenidschichten durch chemische Umsetzung von Schichten aus Metallen oder Metallverbindungen im niederenergetischen Chalkogen-Ionenstrahl
US6498107B1 (en) * 2000-05-01 2002-12-24 Epion Corporation Interface control for film deposition by gas-cluster ion-beam processing
US7842882B2 (en) * 2004-03-01 2010-11-30 Basol Bulent M Low cost and high throughput deposition methods and apparatus for high density semiconductor film growth
DE10254416A1 (de) 2002-11-21 2004-06-09 Infineon Technologies Ag Vorrichtung zum Erzeugen von Sekundärelektronen, insbesondere Sekundärelektrode und Beschleunigungselektrode
US20050072461A1 (en) * 2003-05-27 2005-04-07 Frank Kuchinski Pinhole porosity free insulating films on flexible metallic substrates for thin film applications
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
JP4926067B2 (ja) * 2004-10-25 2012-05-09 ティーイーエル エピオン インク. ガスクラスターイオンビーム形成のためのイオナイザおよび方法
JP4845416B2 (ja) * 2005-04-21 2011-12-28 双葉電子工業株式会社 蒸着装置
DE102005040087A1 (de) 2005-08-24 2007-03-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Abscheiden von Absorber-Schichten für Dünnschicht-Solarzellen
US7935558B1 (en) * 2010-10-19 2011-05-03 Miasole Sodium salt containing CIG targets, methods of making and methods of use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383389A (zh) * 2008-10-07 2009-03-11 苏州富能技术有限公司 铜铟镓硒硫或铜铟镓硒或铜铟镓硫薄膜太阳能电池吸收层的制备方法及镀膜设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ion beam assisted deposition of Cu(In,Ga)Se2 films for thin film solar cells;Gerd Lippold et al.;《MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS》;20011231;第668卷;第H3.9.2页第1段-第H3.9.5页第2段 *

Also Published As

Publication number Publication date
US20130045563A1 (en) 2013-02-21
EP2539942B1 (de) 2016-09-14
CN102763230A (zh) 2012-10-31
US8956906B2 (en) 2015-02-17
EP2539942A1 (de) 2013-01-02
WO2011100998A1 (de) 2011-08-25
BR112012020950A2 (pt) 2016-04-26

Similar Documents

Publication Publication Date Title
CN102763230B (zh) 制造半导体层的方法和装置
JP3897622B2 (ja) 化合物半導体薄膜の製造方法
WO2011083647A1 (ja) Cu-Ga系スパッタリングターゲット、同ターゲットの製造方法、光吸収層及び該光吸収層を用いた太陽電池
CN102712996A (zh) 溅射靶、化合物半导体薄膜、具有化合物半导体薄膜的太阳能电池以及化合物半导体薄膜的制造方法
US9929304B2 (en) Method and system for forming absorber layer on metal coated glass for photovoltaic devices
JP2010245238A (ja) 光電変換装置およびその製造方法ならびに硫化物焼結体ターゲットの製造方法
JP5669198B2 (ja) スパッタリング装置
US8008198B1 (en) Large scale method and furnace system for selenization of thin film photovoltaic materials
US20130008380A1 (en) Apparatus for fabricating ib-iiia-via2 compound semiconductor thin films
KR20130056610A (ko) 태양전지 제조용 고속 열처리 시스템 및 이를 이용한 열처리 방법
JPS5919190B2 (ja) 鉛皮膜の製造方法
CN108624854B (zh) 一种新型制备薄膜的装置及方法
US4702965A (en) Low vacuum silicon thin film solar cell and method of production
US9911879B2 (en) In situ nitrogen doping of co-evaporated copper-zinc-tin-sulfo-selenide by nitrogen plasma
Shidling et al. Fabrication of 184W target on carbon backing
Lippold et al. Ion beam assisted deposition of Cu (In, Ga) Se2 films for thin film solar cells
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
Ishiyama et al. Thermal stability of BNCT neutron production target synthesized by in-situ lithium deposition and ion implantation
Rockett et al. Na incorporation and diffusion in CuIn/sub 1-x/Ga/sub x/Se/sub 2
RO128030B1 (ro) Metodă de obţinere a unui electrod transparent din zno pentru celule solare, prin arc termoionic
CN104538492A (zh) 一种铜铟镓硒薄膜太阳电池光吸收层薄膜的制备方法
KR20110133775A (ko) 구리 인듐 갈륨 셀레늄 박막을 제조하는 장치 및 방법
WO2011033445A1 (en) PROCESS FOR THE PRODUCTION OF Cu(In,Ga)Se2/CdS THIN-FILM SOLAR CELLS
Ishitama et al. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy
JP3102540B2 (ja) 低水素量非晶質シリコン半導体薄膜の形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160923

Address after: leipzig germany

Patentee after: OC3 AG

Address before: leipzig germany

Patentee before: Solarion AG Photovoltaik

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

Termination date: 20170222