CN102722047A - 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法 - Google Patents

利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法 Download PDF

Info

Publication number
CN102722047A
CN102722047A CN2012101975527A CN201210197552A CN102722047A CN 102722047 A CN102722047 A CN 102722047A CN 2012101975527 A CN2012101975527 A CN 2012101975527A CN 201210197552 A CN201210197552 A CN 201210197552A CN 102722047 A CN102722047 A CN 102722047A
Authority
CN
China
Prior art keywords
liquid crystal
nano particle
zno nano
crystal device
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101975527A
Other languages
English (en)
Inventor
许军
张天翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sino Flexible Opto Electronic (chuzhou) Co Ltd
Original Assignee
Sino Flexible Opto Electronic (chuzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino Flexible Opto Electronic (chuzhou) Co Ltd filed Critical Sino Flexible Opto Electronic (chuzhou) Co Ltd
Priority to CN2012101975527A priority Critical patent/CN102722047A/zh
Publication of CN102722047A publication Critical patent/CN102722047A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

本发明涉及利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法,通过半导体纳米粒子掺杂的方法获得向列相液晶材料,并制备液晶显示器的液晶器件来实现。具体是将ZnO纳米粒子掺杂向列相液晶材料组成均匀稳定的液晶混合物,并利用该液晶混合物制备出的液晶显示器件。有益效果是采用ZnO纳米粒子掺杂的液晶材料的液晶器件,其开启电压能够有效降低。

Description

利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法
技术领域
本发明涉及一种通过半导体纳米粒子掺杂的方法获得向列相液晶材料的应用,具体是将ZnO纳米粒子掺杂向列相液晶材料组成均匀稳定的液晶混合物,并利用该液晶混合物制备出液晶显示器件,达到降低液晶器件开启电压的方法。
背景技术
目前,液晶材料和液晶显示器件已经获得广泛应用,而随着人们生活水平的提高,小型化和可移动化成为液晶显示器的发展方向,为了能使显示器的使用时间更长,一方面需要提高的电池的容量,而重要的另一方面,必须寻求液晶显示器件的功耗不断降低,只有如此,液晶显示技术才能充分占领移动显示器的市场。本专利正是针对于如何采用掺杂半导体纳米粒子的方法降低液晶显示器件的功耗。
纳米粒子掺杂技术是比较简便的非化学合成的改善液晶材料特性的方法,到本专利申请之前,已经有碳纳米管[1,2]、铁电性纳米粒子[3-5]、金属纳米粒子[6]、金属氧化物纳米粒子和半导体纳米粒子,以上五类纳米粒子在向列相液晶中进行掺杂,均能不同程度的材料电导率、改善器件对比度、开启电压、响应时间等特性的一项或几项。
碳纳米管的掺杂起源于C60材料,尽管掺杂C60的液晶材料能够获得较高的对比度,但由于C60很难与液晶材料形成均匀稳定的混合液晶材料,所以没有得到广泛应用。而碳纳米管的管状形状有助于其在沿着液晶分子排布的方向中排列,掺杂有碳纳米管的E7液晶材料能够有效降低液晶器件的开启电压。掺杂入液晶的金属纳米粒子主要包括Pd、Ag等一种或几种纳米粒子的混合材料,在掺杂体系中液晶分子和金属纳米粒子形成包裹结构,利用掺杂的液晶材料制作的器件具有基于频率调制的快速响应特性,并能降低液晶器件的开启电压。金属纳米粒子的掺杂主要由日本S. Kobayashi课题组发表。
金属氧化物纳米粒子(MgO)也由S. Kobayashi所报道,经过MgO纳米粒子掺杂的液晶器件具有比未掺杂液晶器件更低的开启电压和更高的响应速度,同时降低了液晶器件的工作温度范围。
半导体纳米粒子掺杂向列相液晶的研究由许军课题组报道,掺杂CdS纳米粒子能够降低5CB液晶器件的开启电压达25%,同时也降低了经掺杂液晶的相变温度,液晶材料的介电各向异性和秩序度也随着掺杂的浓度以及所掺杂纳米粒子的尺寸不同而获得不同程度的变化。但考虑到CdS纳米粒子的毒性,所以继续开发出无毒安全的液晶掺杂用纳米粒子。
[1] I. Dierking, G. Scalia, and P. Morales, “Liquidcrystal-carbon nanotube dispersions”, J. Appl. Phys., 2005, 97: 044309.
[2] W. Lee, C. Y. Wang, and Y. C. Shih, “Effectsof carbon nanosolids on the electro-optical propertiesof a twisted nematic liquid-crystal host”, Appl. Phys. Lett., 2004,85:513.
[3] US20040156008, Y. Reznikov, A. Glushchenko, V. Reshetnyak, J. West
[4] US20070200093, J. West, C. Cheon, A. Glushchenko,Y. Reznikov, F. Li.
[5] WO03060598, Y. Reznikov, A. Glushchenko, V. Reshetnyak, J. West
[6] US20050079296, S. Kobayashi, N. Toshima, J. Thisayukta, Y. Shiraishi, S. Sano, A. Baba.
发明内容
本发明所要解决的技术问题在于通过ZnO纳米粒子掺杂并用于液晶显示器的液晶器件,改善器件的电光特性。
本发明所要解决的技术问题采用以下技术方案来实现:
利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法,首先完成ZnO纳米粒子的合成;
1、将0.0012g二水合醋酸锌溶解于50mL DMSO(二甲基亚砜)中,超声分散20-30分钟,经过50℃油浴;
2、将1.5mL超纯水分散于48.5mL DMSO中,配比为3%,与步骤1中的溶液等体积混合,反应时间为30分钟;
3、之后ZnO纳米粒子通过离心的方式,在3500rpm,经过20分钟后从溶液中分离;
4、经过分离的ZnO纳米粒子使用丙酮和超纯水洗涤,并分散在超纯水中。
ZnO纳米粒子的包裹
1、将分散有ZnO纳米粒子的超纯水转移到反应容器中,加入10mL表面活性剂,超声分散30分钟;
2、在75℃油浴中加入甲基丙烯酸、甲基丙烯酸甲酯和反应引发剂混合溶液;
3、反应8小时后结束,并通过12000rpm,30分钟离心方式后,将包裹好的ZnO纳米粒子从溶液中分离出来。
在上述合成和包裹以上ZnO纳米粒子中,所述反应参数仅为一个实施例,调整反应参数可以获得不同尺寸的ZnO纳米粒子。
其次完成ZnO纳米粒子掺杂向列相液晶;
1、将ZnO纳米粒子分散在正己烷中,根据掺杂浓度0.01wt%-1wt%将对应质量的5CB液晶滴入正己烷溶液(例如0.0022g二水合醋酸锌可制备约0.81mgZnO纳米粒子,掺杂浓度为0.1wt%时需加入0.809g5CB液晶);
2、通过旋转蒸发(80rpm,80℃)和真空干燥(104Pa,80℃)的方法将纳米粒子分散在5CB之中。
所述纳米粒子的尺寸和掺杂浓度将影响液晶材料和器件的性能,其尺寸范围为3nm-30nm、其中优选范围为5-15nm;掺杂浓度为0.01wt%-1wt%,其中优选范围为0.1wt%-0.2wt%。
最后将上述方法中掺杂有ZnO纳米粒子的向列相液晶材料进行制备液晶显示器的液晶器件,其特征在于,所述液晶器件包括第一基板和第二基板,在所述的第一基板和第二基板之间各包裹有导电层、取向层,所述取向层之间为间隔球。
所述制备出的液晶器件,通过控制纳米粒子的尺寸和掺杂浓度,实现降低液晶器件的开启电压幅度。
本发明的有益效果本发明能够降低向列相液晶器件的开启电压,开启电压的降低幅度与所掺杂的ZnO纳米粒子尺寸和掺杂浓度正相关。
附图说明
图1为本发明20nmZnO纳米粒子以0.1wt%和0.2wt%浓度掺杂5CB液晶盒和纯5CB液晶盒的透过率-电压曲线。
图2为本发明掺杂ZnO纳米粒子向列相液晶材料的制备流程示意图。
图3为通过图2ZnO纳米粒子向列相液晶材料制备的液晶器件的结构示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示和实施例,进一步阐述本发明。
如图1所示为20nmZnO纳米粒子以0.1wt%和0.2wt%浓度掺杂5CB液晶盒和纯5CB液晶盒的透过率-电压曲线。其中纯5CB液晶盒开启电压为1.12V,掺杂浓度为0.1wt%的液晶盒开启电压为1.00V,掺杂浓度为0.1wt%的液晶盒开启电压为0.86V,分别降低了10.71%和23.21%。实现了降低液晶器件的开启电压幅度。
如图2所示,利用半导体纳米粒子掺杂向列相液晶材料降低液晶器件开启电压,通过以下方法实现,
首先完成合成ZnO纳米粒子:
1、分别将0.0012g和0.0006g二水合醋酸锌(分别对应制备20nm和10nm的纳米粒子)溶解于50mL DMSO(二甲基亚砜)中,超声分散20-30分钟,经过50℃油浴;
2、将1.5mL超纯水分散于48.5mL DMSO中,配比为3%,与步骤1中的溶液等体积混合,反应时间为30分钟;
3、之后ZnO纳米粒子通过离心的方式,在3500rpm,经过20分钟后从溶液中分离;
4、经过分离的ZnO纳米粒子使用丙酮和超纯水洗涤,并分散在超纯水中。
包裹ZnO纳米粒子:
1、将分散有ZnO纳米粒子的超纯水转移到反应容器中,加入10mL表面活性剂,超声分散30分钟;
2、在75℃油浴中加入甲基丙烯酸、甲基丙烯酸甲酯和反应引发剂混合溶液;
3、反应8小时后结束,并通过12000rpm,30分钟离心方式后,将包裹好的ZnO纳米粒子从溶液中分离出来。
其次完成ZnO纳米粒子掺杂向列相液晶
1、将ZnO纳米粒子分散在正己烷中,根据掺杂浓度0.1wt%和0.2wt%将对应质量的5CB液晶滴入正己烷溶液(例如0.0012g二水合醋酸锌可制备约0.44mgZnO纳米粒子,掺杂浓度为0.1wt%时需加入0.443g5CB液晶)。并别制备10nm 0.1wt%、10nm 0.2wt%、20nm 0.1wt%、20nm0.2wt%四个实例。
2、通过旋转蒸发(80rpm,80℃)和真空干燥(104Pa,80℃)的方法将纳米粒子分散在5CB之中。
最后制备液晶器件,液晶器件结构如图2所示,取向层采用平行取向的聚酰亚胺制备,以0.1mm的深度和5mm/s的进给速率用绒布进行摩擦取向,第一、第二基板之间取向方向相互正交。液晶盒厚为5μm,灌入掺杂了ZnO纳米粒子的向列相5CB液晶。这样通过控制纳米粒子的尺寸和掺杂浓度,实现降低液晶器件的开启电压幅度
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法,其特征在于:首先完成ZnO纳米粒子的合成,
a、分别将0.0012g和0.0006g二水合醋酸锌溶解于50mL DMSO中,超声分散20-30分钟,经过50℃油浴;
b、将1.5mL超纯水分散于48.5mL DMSO中,配比为3%,与步骤a中的溶液等体积混合,反应时间为30分钟;
c、之后ZnO纳米粒子通过离心的方式,在3500rpm,经过20分钟后从溶液中分离;
d、经过分离的ZnO纳米粒子使用丙酮和超纯水洗涤,并分散在超纯水中;
包裹ZnO纳米粒子:
a、将分散有ZnO纳米粒子的超纯水转移到反应容器中,加入10mL表面活性剂,超声分散30分钟;
b、在75℃油浴中加入甲基丙烯酸、甲基丙烯酸甲酯和反应引发剂混合溶液;
c、反应8小时后结束,并通过12000rpm,30分钟离心方式后,将包裹好的ZnO纳米粒子从溶液中分离出来;
其次完成ZnO纳米粒子掺杂向列相液晶;
a、将ZnO纳米粒子分散在正己烷中,根据掺杂浓度0.1wt%和0.2wt%将对应质量的5CB液晶滴入正己烷溶液;
b、通过旋转蒸发80rpm,80℃和真空干燥104Pa,80℃方法将纳米粒子分散在5CB之中;
最后将上述方法中掺杂有ZnO纳米粒子的向列相液晶材料进行制备液晶显示器的液晶器件实现降低液晶器件的开启电压。
2.根据权利要求1所述方法,其特征在于:所述合成和包裹以上ZnO纳米粒子中,反应参数仅为一个实施例,调整反应参数可以获得不同尺寸的ZnO纳米粒子。
3.根据权利要求2所述方法,其特征在于:所述纳米粒子的尺寸和掺杂浓度将影响液晶材料和器件的性能,其尺寸范围为3nm-30nm、掺杂浓度为0.01wt%-1wt%。
4.根据权利要求3所述方法,其特征在于:所述纳米粒子的尺寸优选范围为5-15nm。
5.根据权利要求3所述方法,其特征在于:所述纳米粒子掺杂浓度优选范围为0.1wt%-0.2wt%。
6.根据权利要求3所述利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法,其特征在于:所述液晶器件包括第一基板和第二基板,在所述的第一基板和第二基板之间各包裹有导电层、取向层,所述取向层之间为间隔球。
CN2012101975527A 2012-06-15 2012-06-15 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法 Pending CN102722047A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101975527A CN102722047A (zh) 2012-06-15 2012-06-15 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101975527A CN102722047A (zh) 2012-06-15 2012-06-15 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法

Publications (1)

Publication Number Publication Date
CN102722047A true CN102722047A (zh) 2012-10-10

Family

ID=46947856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101975527A Pending CN102722047A (zh) 2012-06-15 2012-06-15 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法

Country Status (1)

Country Link
CN (1) CN102722047A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732268A (zh) * 2012-06-15 2012-10-17 中能柔性光电(滁州)有限公司 利用掺杂向列相液晶材料降低液晶器件上升沿响应时间的方法
CN105005164A (zh) * 2015-07-23 2015-10-28 哈尔滨工业大学 基于半导体与高分子光导复合取向层的实时向列液晶盒的制备和全息存储方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426786B1 (en) * 1999-06-01 2002-07-30 International Business Machines Corporation Method of homeotropic alignment or tilted homeotropic alignment of liquid crystals by single oblique evaporation of oxides and liquid crystal display device formed thereby
US20040156008A1 (en) * 2002-01-10 2004-08-12 Yurii Reznikov Material for liquid crystal cell
US20050079296A1 (en) * 2003-04-14 2005-04-14 Shunsuke Kobayashi Liquid crystal-soluble particle, method for manufacturing the same and liquid crystal device element
CN102732268A (zh) * 2012-06-15 2012-10-17 中能柔性光电(滁州)有限公司 利用掺杂向列相液晶材料降低液晶器件上升沿响应时间的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426786B1 (en) * 1999-06-01 2002-07-30 International Business Machines Corporation Method of homeotropic alignment or tilted homeotropic alignment of liquid crystals by single oblique evaporation of oxides and liquid crystal display device formed thereby
US20040156008A1 (en) * 2002-01-10 2004-08-12 Yurii Reznikov Material for liquid crystal cell
US20050079296A1 (en) * 2003-04-14 2005-04-14 Shunsuke Kobayashi Liquid crystal-soluble particle, method for manufacturing the same and liquid crystal device element
CN102732268A (zh) * 2012-06-15 2012-10-17 中能柔性光电(滁州)有限公司 利用掺杂向列相液晶材料降低液晶器件上升沿响应时间的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张天翼: "半导体纳米粒子掺杂液晶的材料、器件和机理研究", 《复旦大学博士学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732268A (zh) * 2012-06-15 2012-10-17 中能柔性光电(滁州)有限公司 利用掺杂向列相液晶材料降低液晶器件上升沿响应时间的方法
CN105005164A (zh) * 2015-07-23 2015-10-28 哈尔滨工业大学 基于半导体与高分子光导复合取向层的实时向列液晶盒的制备和全息存储方法

Similar Documents

Publication Publication Date Title
CN107611394B (zh) 一种碳包覆的核壳结构纳米硅/石墨烯复合负极材料及其制备方法
CN104525174B (zh) 一种基于氧化石墨烯自组装制备石墨烯基复合材料的方法
CN106207094B (zh) 一种锂电池石墨烯导电浆料及其制备方法
Tseng et al. Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide
CN103435820B (zh) 一种沥青的预处理方法及使用其包覆的球形石墨负极材料
CN104058392B (zh) 一种石墨烯胶体分散液的制备方法
CN106076244A (zh) 一种纳米氧化物包覆的长寿命锂离子筛吸附剂的制备方法
CN105375068B (zh) 一种铅酸蓄电池胶体电解液及配制方法
CN104668551B (zh) 一种用作热界面材料的双峰分布纳米银膏及其制备方法
CN107946084A (zh) 一种金属氧化物/三维多孔石墨烯复合材料及其制备方法和应用
CN103275521B (zh) 纳米氧化锡锑水性浆料的制备方法
CN107433402B (zh) 一种石墨烯-纳米银焊膏的制备方法及其应用
CN104425802B (zh) 硅基复合材料、其制备方法、应用及其制得的锂离子电池
Chang et al. Synthesis of transition metal-doped tungsten oxide nanostructures and their optical properties
CN102732267A (zh) 通过ZnO纳米粒子掺杂并用于液晶显示器的液晶器件
CN106001542A (zh) 一种三维结构复合气凝胶及其制备方法
CN105237816A (zh) 一种氧化石墨烯/海藻酸钠液晶复合溶液的制备方法及应用
Bu et al. Synthesis and characterization of uniform spindle-shaped microarchitectures self-assembled from aligned single-crystalline nanowires of lanthanum phosphates
CN103555312A (zh) 一种纳米复合纤维清洁压裂液及其制备方法
CN102722047A (zh) 利用掺杂向列相液晶材料实现降低液晶器件开启电压的方法
CN107827468B (zh) 一种氧化铝包覆氟化钙的复合纳米颗粒及其制备方法
CN110391418A (zh) 一种高性能石墨烯复合导电浆料及其制备方法
CN102732268A (zh) 利用掺杂向列相液晶材料降低液晶器件上升沿响应时间的方法
CN101941738A (zh) 气液表面反应制备Cd1-xCoxS稀磁半导体纳米颗粒的方法
CN102719256A (zh) 一种用ZnO纳米粒子掺杂的向列相液晶材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121010