CN102687384A - Ac/dc转换器电路 - Google Patents

Ac/dc转换器电路 Download PDF

Info

Publication number
CN102687384A
CN102687384A CN2011800057767A CN201180005776A CN102687384A CN 102687384 A CN102687384 A CN 102687384A CN 2011800057767 A CN2011800057767 A CN 2011800057767A CN 201180005776 A CN201180005776 A CN 201180005776A CN 102687384 A CN102687384 A CN 102687384A
Authority
CN
China
Prior art keywords
terminal
voltage
converter circuit
transformer
external transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800057767A
Other languages
English (en)
Other versions
CN102687384B (zh
Inventor
P.卢尔肯斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43827462&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102687384(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN102687384A publication Critical patent/CN102687384A/zh
Application granted granted Critical
Publication of CN102687384B publication Critical patent/CN102687384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明涉及用于将N ≥ 2的AC供电电压(U1,U2,U3)转换为DC电压的AC/DC转换器电路(100)和方法。这是通过将AC供电电压馈送给全桥转换器(11,12,13)的第一端子(a1,a2,a3)而实现的,其中,这些整流器的第二端子(b1,b2,b3)彼此耦接。整流器的输出(d11,d1’,d2,d2’,d3,d3’)馈送至中间转换器(21,22,23)的DC端子。中间转换器的AC端子(e1,e1’,e2,e2’,e3,e3’)连接至变压器(31,32,33)的初级侧,其中,这些变压器的次级侧供给另外的整流器(41,42,43)。该电路设计允许将有限电压容量的MosFET用于处理380V的三相AC电流,由此取得高的效率。

Description

AC/DC转换器电路
技术领域
本发明涉及包括多个全桥整流器的、可以与单独的AC供电电压连接的AC/DC转换器电路。
背景技术
根据US 2006/0083035 A1,已知这样的AC/DC转换器电路:其包括由二极管构成的三个桥式整流器,其中整流器的第一端子连接至三相AC输入电压的不同相,同时整流器的相应第二端子彼此耦接。三个整流器电路的输出用作三个单独的DC电压源。
发明内容
基于这种背景,本发明的目的是要提供用于将不同的AC电压转换为DC电压的替换装置,其中,期望解决方案对于常见的三相AC输入电压而言高效率地工作。此外,期望提供用于在低谐波失真和单位功率因数的情况下取得干线电流的装置,和/或提供用于既从AC干线到DC电压又还从DC电压到AC干线的能量流动的装置。
此目的是通过根据权利要求1的AC/DC转换器电路和根据权利要求2的方法而实现的。优选实施例公开在从属权利要求中。
根据本发明第一方面的AC/DC转换器电路用于将数量N ≥ 2 的AC供电电压转化为DC电压。其包括下列组件:
- 数目为N的全桥转换器,这些转换器中的每一个具有:第一端子,用于连接至AC供电电压中单独的一个;以及对应的第二端子,其中,所有转换器的所述第二端子彼此耦接。为了参照的目的,下面将全桥转换器称作“外部转换器”,表明它们处理外部提供的AC电压。如本领域技术人员已知的,“全桥转换器”包括以两个并联分支的方式连接的四个电动阀元件(例如,晶体管),所述两个并联分支包括每一个均在第一和第二对应(AC输入-)端子之间的两个阀元件,其中,DC电压出现在分支的中间点之间(如果阀受到适当地定向和控制)。
- 数目为N的“中间转换器”,这N个中间转换器中的每一个在其初级侧接收前面提到的外部转换器之一的(DC)输出。
- 数目为N的变压器,N个变压器中的每一个在其初级侧接收前面提到的中间转换器之一的(AC)输出。
- 数目为N的整流器,其中,这些整流器中的每一个连接至前面提到的变压器之一的次级侧。为了参照的目的,下面将这些整流器称作“内部整流器”,表明它们处理AC/DC转换器电路的内部AC电压。具体地,内部整流器接收通过向变压器的初级侧施加的时变电压而在变换器的次级侧生成的AC电压。
根据第二方面,本发明涉及用于将数目N ≥ 2的AC供电电压转换为DC电压的方法,所述方法包括以下步骤:
- 将AC电压馈送到N个全桥“外部”转换器中各单独的第一端子,其对应的第二端子彼此耦接。
- 将所述外部转换器的输出馈送到N个单独的“中间”转换器的DC端子。
- 将所述中间转换器的AC端子馈送到N个单独的变压器的初级侧。
-对前面提到的变压器的输出整流。
所描述的方法可以尤其通过借助于上述种类的AC/DC转换器电路加以执行。这种AC/DC转换器电路和方法两者均具有这样的优点:它们通过利用各单独的外部转换器、中间转换器、变压器和内部整流器并行地处理不同的AC供电电压而限制了必须要应对的最大电压。而且,它们允许通过适当地选择变压器而将所得的DC电压调节到所期望的电平。
下面将描述涉及上面描述的AC/DC转换器电路和方法两者的本发明的各种优选实施例。
在第一优选实施例中,被处理的AC供电电压可以是相移的正弦电压,尤其是同一频率的正弦电压。
被处理的AC电压的数目N(对应于外部转换器、中间转换器、变压器和内部整流器的数目N)尤其可以具有三的值。与前面提到的实施例组合地,这覆盖了处理的AC电压是传统的三相AC输电网络电压这一实际上很重要的情况,即,它们由相对于彼此相移了120o的三个正弦电压组成的这一情况。
通常,外部/中间转换器和/或内部整流器中的电动阀元件可以是适于应对由要处理的AC和/或DC电压所提出的要求的任何组件。在优选的实施例中,外部转换器、中间转换器和/或内部整流器由作为电动阀元件的MosFET构成。MosFET具有相比于可用于同一目的的其它电子组件几乎没有电气损失地工作的优点。对于本发明,尤其有益的是,在处理三相380 V AC电压的标准情形下,由于在电路内部出现的电压被限制到400V以下,因此许多应用中,MosFET的使用变为是可能的。另外,通过同样将MosFET用于内部整流器,双向的电力流动变为是可能的。
外部转换器的第二端子优选地经由扼流圈彼此耦接,以抑制这些线路中的高频信号。
每一个外部转换器的输出端子优选地经由电容器彼此连接,以便使其上出现的DC电压平滑。
此外,每个外部转换器的输出端子耦合至中间转换器(例如,半桥转换器)的DC端子。中间转换器的AC端子可以通过谐振网络耦接至对应的变压器,所述网络由电容器和可能的电感器组成。电感器的功能可以同样地通过变压器的泄漏电感加以实施,从而并不总是需要分立的电感器建立谐振电路。
可以将变压器实现为不同的组件。然而,在优选的实施例中,将变压器布置在普通的三条腿的芯(core)上。以此方式,既可以实现紧凑的设计又可以实现电气耦合。
出现在变压器次级侧的(AC)电压可以以不同的方式加以处理。在优选的实施例中,每个变压器的次级侧包括第一端子和第二端子,其中,所有变压器的第二端子彼此耦接。然后,变压器的第一端子处的电压都与公共的基准点有关。
在前面提到的实施例的进一步发展中,内部整流器是半桥整流器,其每一个均连接至变压器次级侧的所述第一端子之一。这些半桥整流器的、出现DC输出电压的高电位和低电位的两个输出端子例如可以单独地加以使用(例如,以使不同的负载工作)。更优选地,以并联布置的方式,所有内部整流器的正输出线路彼此耦接且所有负输出线路彼此耦接。
附图说明
本发明的这些和其它方面将根据下文描述的实施例而变得明了,并且将通过参照下文描述的实施例加以说明。借助于附图,以示例的方式描述这些实施例,在附图中:
图1示意性地例示根据本发明的AC/DC转换器电路;
图2例示这种转换器电路的一个特定布局。
图中的相同附图标记指代一致或类似的组件。
具体实施方式
当前,调查了用以增大建筑物的能效的各种方法。一种可能的解决方案是用DC主干网替换目前基于低频AC电压的建筑物配电主干网。理由在于,当今,主导部分的应用(包括照明)是实际上用DC电压对所谓的电子负载(这意味着它们含有一些电子电路)供电。
当前,必须以最小的成本价格在每个设备中本地地完成输电网络的AC电压到DC电压的转换,使得实际上限制了设备的可能的能效。因此,提出了将这种功能集中化,由此在节省众多小设备中的AC/DC转换成本时,将努力专注于更加有效得多的解决方案。如果同时考虑本地电力生成,则当今,能量流动通常开始于DC源(例如,光伏板),以一定的损失量被转换到AC,然后再次有损失地再次转换到DC,直到将其提供至一些有用的功能为止。在这种情况下,AC/DC转换损失发生两次,这在DC分布输电网络中是最简洁的办法。
不过,建筑物中的DC输电网络和公共的AC输电网络之间的连接将会保持,以便针对本地生成不可得到或不可充足地得到时的情形从输电网络获得能量,或者以便将过剩的本地容量回馈到输电网络。当然,中心AC/DC转换器的平均效率至少与之前分散的AC/DC转换器功能的效率一样高是关键的。而且,这对于高得多的电力预算(例如,100kW)而言必须要实现,并且以3相干线连接实现。还要求系统保持接近于单位1的功率因数。
DC分布系统的其它关键参数是DC电压的电平和其导体相对于地的电压。为了履行简化配电的意图,具有这样的DC系统是有益的:该DC系统接近应用中想要的DC电压电平,使得现有应用的适应性努力最小化。当今,作为单相230 V AC干线电压的整流和额外功率因数校正阶段的结果,这大约为400V。实际的DC电压也不应当太高,这是因为:由于开关和电路断路器伴随着更高的DC电压具有越来越多的问题,因此这将会引起与安装安全性相关的问题。
此外有益的是具有针对于保护接地不拥有强纹波的电压,这是由于这引起与交流声、绝缘和保护性系统相关的问题。
当解决以上问题时,第一个问题在于,为了可靠的工作,传统的AC/DC转换器(例如,三相受控的整流器)需要处于650V范围内的DC总线电压,这高于所期望的。这排除了MosFET在转换器中的使用,这是由于这些MosFET根本不能有效地应对这些电压电平。仅有的选择是使用IGBT器件。然而,IGBT的问题在于,这些器件具有2.5 – 3 V的量级的最小电压降,其对最大可实现的效率施加了限制。第三个问题在于,这种系统产生的DC电压通常不独立于保护接地,这是由于公共输电网络已经频繁地以其为基准。
为了解决上面的问题,本发明提出利用高频变压器将3相AC/DC转换器与3相谐振DC/DC转换器相组合。通过这样,用于所有半导体器件的最大电压都可以至多被限制到400V,这使得有效率的MosFET的使用是可能的。而且,AC/DC转换器部分的特定拓扑强烈地(以2的因子)降低了必不可少的磁性组件的设计要求,由此有助于更低的成本和更高的效率。产生的DC电压由于高频变压器而可以任意地加以选取,并且其与保护接地隔离,这对于基准电位提供了自由的选择。
图1例示根据本发明的AC/DC转换器电路100的一般设置,所述AC/DC转换器电路100包括以下组件:
- 数量N=3的全桥“外部”转换器11、12和13。每个转换器的第一端子 a1、a2、a3连接至AC供电电压U1、U2、U3中单独的一个。
- 三个相关联的“中间转换器”21、22和23以及变压器 31、32和33,其中,变压器的初级侧的端子e1、e1’、e2、e2’和e3、e3’连接至中间转换器的AC端子。转换器的DC端子d1、d1’、d2、d2’和d3、d3’连接至前面提到的外部转换器的(DC)输出。
- 三个相关联的“内部”整流器41、42和43,其中这些整流器中每一个连接至前面提到的变压器的次级侧的端子f1、f1’、f2、f2’和f3、f3’。内部整流器的输出并联地连接至总体的DC输出端子g、g’。
图2更详细地示出AC/DC转换器电路100的特定布局。转换器电路100包括三个全桥“外部”转换器11、12和13,其中每个转换器模块直接与第一端子a1、a2、a3连接,或者通过EMI滤波器(未示出)连接至输电网络(相U1、U2、U3),而对应的第二端子b1、b2、b3连接至三个扼流圈L1的第一端子,并且每个扼流圈的第二端子与其它扼流圈的第二端子连接。这样,全桥转换器11-13中的每一个分别在输出线d1、d1’、d2、d2’和d3、d3’处产生不超过400V的浮空DC电压。
前面提到的三个DC电压由另一个半桥(或全桥)转换器模块 21、22和23供给谐振DC/DC转换器形式的三相变压器31、32、33(或三个单相变压器)。这些变压器的初级侧具有输入端子e1、e1’、e2、e2’和e3、e3’。
具有端子f1、f1’、f2、f2’和f3、f3’的变压器的次级侧连接至整流器 41、42和43,其再次可以是三相转换器或全桥模块的形式,由此允许双向的能量流动。
由于变压器,可以通过选择适当的匝数比实现任何所期望的DC输出电压,并且电压可以按任何所期望的方式以地为基准。由于遍及系统地使用MosFET M,因此通过并联足够数目的器件,可以几乎消除半导体损耗。计算示出可以取得98.5 %-99 %的最大效率,而传统系统被限制到97 %,这实际上意味着损耗降低了三分之二。
所描述的转换器电路100尤其可以作为中心输电网络耦接模块用在建筑物中的DC输电网络中。在较小的变体中,对于用于园艺照明的转换器、或者用于电动车辆或插电式混合动力汽车的充电系统,其也可能是人们所感兴趣的。
总结性地,本发明涉及用于将N ≥ 2的AC供电电压U1、U2、U3转换为DC电压的AC/DC转换器电路100和方法。这是通过将AC供电电压馈送给全桥转换器的第一端子而实现的,其中,这些转换器的第二端子彼此耦接。转换器的输出馈送至中间转换器。中间转换器的输出馈送至变压器的初级侧,其中,这些变压器的次级侧供给另外的整流器。该电路设计允许将有限电压容量(例如,500V)的MosFET用于处理380V的三相AC电流,由此取得高的效率。
最后指出,在本申请中,术语“包括”不排除其它的元件或步骤,“一”或“一个”不排除多个,并且单个处理器或其它单元可以实现若干装置的功能。本发明存在于每一个新颖的特有特征和特有特征的每一个组合。而且,权利要求书中的附图标记不应当解释为限制其范围。

Claims (12)

1.一种用于将N ≥ 2 的AC供电电压(U1,U2,U3)转换为DC电压的 AC/DC转换器电路(100),包括:
- N个全桥外部转换器(11,12,13),其每一个均具有:第一端子(a1,a2,a3),用于连接至AC供电电压(U1,U2,U3)中单独的一个;以及第二端子(b1,b2,b3),其中,这些第二端子彼此耦接;
- N个中间转换器(21,22,23),其每一个在其DC端子处接收一个外部转换器(11,12,13)的输出;
- N个变压器(31,32,33),其每一个在其初级侧接收一个中间转换器(21,22,23)的输出;
- N个内部整流器(41,42,43),其每一个连接至所述变压器(31,32,33) 之一的次级侧。
2.一种用于将N ≥ 2 的AC供电电压(U1,U2,U3)转换为DC电压的方法,包括:
- 将每一个AC供电电压馈送给N个全桥外部转换器(11、12、13)之一的第一端子(a1,a2,a3),所述N个全桥外部转换器(11、12、13)的第二端子(b1,b2,b3)耦接;
- 将所述外部转换器(11,12,13)的输出馈送到N个单独的中间转换器(21,22,23)的DC端子(d1,d1’,d2,d2’,d3,d3’);
- 将N个中间转换器(21,22,23)的输出(e1,e1’,e2,e2’,e3,e3’)馈送到N个单独的变压器(31,32,33)的初级侧;
-对变压器的输出(f1,f1’,f2,f2’,f3,f3’)整流。
3.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,所述供电电压是相移的正弦电压(U1,U2,U3)。
4.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,数目N为三。
5.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,至少一个外部转换器(11,12,13)、至少一个中间转换器(21,22,23)和/或至少一个内部整流器(41,42,43)包括MosFET(M)。
6.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,所述外部转换器(11,12,13)的第二端子(b1,b2,b3)经由扼流圈(L1)彼此耦接。
7.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,至少一个外部转换器(11,12,13)的输出端子(d1,d1’,d2,d2’,d3,d3’)经由电容器(C1)连接。
8.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,至少一个中间转换器(21,22,23)是半桥转换器。
9.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,至少一个外部转换器(11,12,13)的输出端子(d1,d1’,d2,d2’,d3,d3’)经由谐振网络耦接至对应的变压器(31,32,33),该网络优选地包括电容器(C2)和/或电感器(L2)。
10.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,在普通的芯上实现所述变压器(31,32,33)。
11.如权利要求1所述的转换器电路(100)或者如权利要求2所述的方法,
其特征在于,每个变压器(31,32,33)的次级侧包括第一端子(f1,f2,f3)和第二端子(f1’,f2’,f3’),其中,所有的第二端子彼此耦接。
12.如权利要求11所述的转换器电路(100)或方法,
其特征在于,所述内部整流器是半桥整流器(41,42,43),其每一个连接至一个变压器(31,32,33)的次级侧的第一端子(f1,f2,f3)。
CN201180005776.7A 2010-01-11 2011-01-04 Ac/dc转换器电路 Active CN102687384B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10150456 2010-01-11
EP10150456.1 2010-01-11
PCT/IB2011/050016 WO2011083418A1 (en) 2010-01-11 2011-01-04 Ac/dc converter circuit

Publications (2)

Publication Number Publication Date
CN102687384A true CN102687384A (zh) 2012-09-19
CN102687384B CN102687384B (zh) 2016-01-20

Family

ID=43827462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180005776.7A Active CN102687384B (zh) 2010-01-11 2011-01-04 Ac/dc转换器电路

Country Status (6)

Country Link
US (1) US9425703B2 (zh)
EP (1) EP2524422B1 (zh)
JP (1) JP6087628B2 (zh)
KR (1) KR20120115545A (zh)
CN (1) CN102687384B (zh)
WO (1) WO2011083418A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
CN103856041A (zh) * 2012-12-05 2014-06-11 英飞凌科技奥地利有限公司 Ac/dc功率转换器装置
WO2015120619A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Power supply electronic circuit
CN110771024A (zh) * 2017-04-21 2020-02-07 Abb瑞士股份有限公司 用于对电力负载供电的变流器系统

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011825C2 (en) * 2013-11-21 2015-05-26 Univ Eindhoven Tech Single-stage isolated bi-directional ac/dc converter.
JP6295173B2 (ja) * 2014-05-19 2018-03-14 ローム株式会社 電源装置
CN106797181B (zh) * 2014-07-17 2020-04-17 Abb瑞士股份有限公司 用于可再生能源的功率转换器系统
US9780682B2 (en) 2015-10-05 2017-10-03 Resilient Power Systems, LLC Power management utilizing synchronous common coupling
US10608545B2 (en) 2015-10-05 2020-03-31 Resilient Power Systems, LLC Power management utilizing synchronous common coupling
US11014602B2 (en) * 2016-03-04 2021-05-25 Nidec Corporation Power conversion device, motor drive unit, electric power steering device, and relay module
KR20180060027A (ko) 2016-11-28 2018-06-07 김상현 양방향ac-dc멀티레벨컨버터
JP6817894B2 (ja) * 2017-05-19 2021-01-20 Ntn株式会社 三相交流用絶縁型スイッチング電源
KR101862517B1 (ko) 2017-05-29 2018-05-29 숭실대학교산학협력단 독립형 멀티 h-브리지를 이용한 다상 인버터
CN107070287A (zh) * 2017-06-06 2017-08-18 清华大学 电能路由器和电能路由器子模块
KR102135128B1 (ko) * 2018-01-25 2020-07-17 주식회사 디엔씨아이 Ac/dc 컨버터 모듈을 가지는 조명 램프 시스템 및 전원 분배기
JP7121971B2 (ja) * 2018-03-21 2022-08-19 国立大学法人神戸大学 三相ac-dcコンバータ
US10873265B2 (en) * 2018-06-12 2020-12-22 Virginia Tech Intellectual Properties, Inc. Bidirectional three-phase direct current (DC)/DC converters
CN108832825B (zh) * 2018-07-06 2020-01-24 华北电力大学 一种高功率密度的多端口电力电子变压器拓扑
JP7087812B2 (ja) * 2018-08-10 2022-06-21 株式会社豊田中央研究所 電力変換装置および電力変換システム
KR102337847B1 (ko) * 2020-01-06 2021-12-09 서울대학교산학협력단 듀얼 액티브 하프브리지 컨버터
CN111276992B (zh) * 2020-01-21 2022-08-02 全球能源互联网研究院有限公司 一种模块化多电平交流-直流变换系统
DE102021208278A1 (de) * 2021-07-30 2023-02-02 Hochschule Heilbronn Körperschaft des öffentlichen Rechts Stromrichterschaltung zum Erzeugen einer potentialgetrennten Gleichspannung
US11811301B1 (en) * 2023-07-20 2023-11-07 Ravisekhar Raju AC solid-state transformer with DC-DC converters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317039A (en) * 1978-07-14 1982-02-23 Siemens Aktiengesellschaft X-ray diagnostic generator
CN1521930A (zh) * 2003-02-06 2004-08-18 松下电器产业株式会社 开关电源装置
US20070120598A1 (en) * 2001-11-16 2007-05-31 Mks Instruments, Inc. Three Phase Rectifier Circuit With Virtual Neutral
CN101238635A (zh) * 2005-08-03 2008-08-06 Abb研究有限公司 用于牵引应用的多级ac/dc转换器
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20080304296A1 (en) * 2007-06-06 2008-12-11 General Electric Company DC-DC and DC-AC power conversion system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959950A (zh) 1972-10-16 1974-06-11
US3927362A (en) * 1973-10-25 1975-12-16 Gen Motors Corp Rectifier circuit for providing six-phase rectification of three-phase alternating current
JPS5364724A (en) 1976-11-22 1978-06-09 Nasuko Kk Method of controlling thyristor avvdc converter
JPH05161359A (ja) 1991-12-04 1993-06-25 Fuji Electric Co Ltd Ac/dc変換装置
JPH0727294U (ja) 1993-10-14 1995-05-19 日新電機株式会社 高電圧高周波整流回路
JP2791291B2 (ja) 1995-03-10 1998-08-27 株式会社荏原製作所 高電圧大容量の直流電源装置
JPH10225122A (ja) 1997-02-07 1998-08-21 Tdk Corp スイッチング電源
SE513879C2 (sv) * 1998-05-06 2000-11-20 Ericsson Telefon Ab L M Flerfaslikriktaranordning för att skapa en stabil nollpunkt i ett elektriskt system
JP4306209B2 (ja) * 2002-09-09 2009-07-29 株式会社日立メディコ 中性点接地方式のx線発生装置及びこれを用いたx線ct装置
RU2344535C2 (ru) * 2004-06-23 2009-01-20 Абб Швайц Аг Многофазная преобразовательная схема с малым содержанием высших гармоник
DE112006002698T5 (de) 2005-10-14 2008-08-21 Astec International Ltd., Kowloon Mehrphasiger DC/DC-Wandler
FR2908945B1 (fr) * 2006-11-16 2009-01-30 Valeo Equip Electr Moteur Element de pont redresseur synchrone, pont redresseur synchrone correspondant et utilisation.
US7679941B2 (en) 2007-06-06 2010-03-16 General Electric Company Power conversion system with galvanically isolated high frequency link
JP2009106081A (ja) 2007-10-23 2009-05-14 Mitsubishi Heavy Ind Ltd 電力変換器
EP2073366B1 (de) * 2007-12-18 2016-04-27 ABB Research Ltd. Gleichstromsteller mit Resonanzwandler
TWI364155B (en) * 2008-04-25 2012-05-11 Delta Electronics Inc Three-phase buck-boost power factor correction circuit and controlling method thereof
US20120044727A1 (en) * 2009-01-20 2012-02-23 Powerwind Gmbh Method and circuit arrangement for supplying a multiphase electrical network
US8030884B2 (en) * 2009-08-31 2011-10-04 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317039A (en) * 1978-07-14 1982-02-23 Siemens Aktiengesellschaft X-ray diagnostic generator
US20070120598A1 (en) * 2001-11-16 2007-05-31 Mks Instruments, Inc. Three Phase Rectifier Circuit With Virtual Neutral
CN1521930A (zh) * 2003-02-06 2004-08-18 松下电器产业株式会社 开关电源装置
CN101238635A (zh) * 2005-08-03 2008-08-06 Abb研究有限公司 用于牵引应用的多级ac/dc转换器
US20080198637A1 (en) * 2005-08-03 2008-08-21 Abb Research Ltd Multilevel AC/DC converter for traction applications
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20080304296A1 (en) * 2007-06-06 2008-12-11 General Electric Company DC-DC and DC-AC power conversion system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856041A (zh) * 2012-12-05 2014-06-11 英飞凌科技奥地利有限公司 Ac/dc功率转换器装置
CN103683964A (zh) * 2013-12-20 2014-03-26 华为技术有限公司 谐振式双向变换器及不间断电源装置、及控制方法
WO2015120619A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Power supply electronic circuit
US10439491B2 (en) 2014-02-14 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Power supply electronic circuit with IBC to control current ripple
CN110771024A (zh) * 2017-04-21 2020-02-07 Abb瑞士股份有限公司 用于对电力负载供电的变流器系统
US11290026B2 (en) 2017-04-21 2022-03-29 Abb Schweiz Ag Converter system for powering an electrical load

Also Published As

Publication number Publication date
JP6087628B2 (ja) 2017-03-01
US20120262966A1 (en) 2012-10-18
KR20120115545A (ko) 2012-10-18
US9425703B2 (en) 2016-08-23
EP2524422A1 (en) 2012-11-21
JP2013516953A (ja) 2013-05-13
WO2011083418A1 (en) 2011-07-14
EP2524422B1 (en) 2018-05-09
CN102687384B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN102687384B (zh) Ac/dc转换器电路
US7440300B2 (en) Transformerless power conversion circuit for grid-connected power generation systems
US7746669B2 (en) Bidirectional battery power inverter
US11418125B2 (en) Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
TWI536709B (zh) 電源系統及供電方法
Kutkut et al. Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler
US11689115B2 (en) Bidirectional AC-DC converter with multilevel power factor correction
CN101254757A (zh) 用于车辆的能量分配系统
JP2020043729A (ja) 車両電源装置
Ramakrishnan et al. Power topology considerations for electric vehicle charging stations
CN101461123A (zh) 高压交流直接电力变换器
CN113412566A (zh) 包括变压器和多电平功率变换器的集成充电和电机控制系统
WO2018158453A1 (en) Battery charger for traction vehicle
CN104601003A (zh) 一种基于模块化多电平变换器的电力电子变压器
US11811300B2 (en) Isolated converter
US20220032797A1 (en) System and method for on-board charger with a pulsating buffer
Kabalcı Solid state transformers with multilevel inverters
CN208401607U (zh) 基于SiC三相双变换器的电动汽车充电与驱动集成系统
Asa et al. A novel bi-directional ac/dc-dc/ac wireless power transfer system for grid support applications
CN104541443A (zh) 用于非平衡的两相dc电网的整流电路和方法
Haghbin Design considerations of a 50 kW compact fast charger stations using nanocrystalline magnetic materials and SiC modules
EP3719982B1 (en) Three-phase ac to dc power converter
CN114008888A (zh) 用于对dc电压源充电的电路
Jalakas et al. Electric vehicle fast charger high voltage input multiport converter topology analysis
CN106411148B (zh) 一种电气化铁路牵引变电所自用电交直交型供电系统结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Holland Ian Deho Finn

Patentee after: KONINKLIJKE PHILIPS N.V.

Address before: Holland Ian Deho Finn

Patentee before: Koninklijke Philips Electronics N.V.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170310

Address after: Eindhoven

Patentee after: KONINKLIJKE PHILIPS N.V.

Address before: Holland Ian Deho Finn

Patentee before: KONINKLIJKE PHILIPS N.V.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Eindhoven

Patentee after: Signify Holdings Ltd.

Address before: Eindhoven

Patentee before: KONINKLIJKE PHILIPS N.V.