CN102686592B - 含芴卟啉-蒽共聚物、其制备方法和应用 - Google Patents

含芴卟啉-蒽共聚物、其制备方法和应用 Download PDF

Info

Publication number
CN102686592B
CN102686592B CN2010800481069A CN201080048106A CN102686592B CN 102686592 B CN102686592 B CN 102686592B CN 2010800481069 A CN2010800481069 A CN 2010800481069A CN 201080048106 A CN201080048106 A CN 201080048106A CN 102686592 B CN102686592 B CN 102686592B
Authority
CN
China
Prior art keywords
porphyrin
fluorene
aqueous solution
catalyst
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010800481069A
Other languages
English (en)
Other versions
CN102686592A (zh
Inventor
周明杰
黄杰
刘贻锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44318632&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102686592(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oceans King Lighting Science and Technology Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Publication of CN102686592A publication Critical patent/CN102686592A/zh
Application granted granted Critical
Publication of CN102686592B publication Critical patent/CN102686592B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种含芴卟啉-蒽共聚物,其包含结构如式(1)所示的聚合物,其中R1、R2、R3和R4相同或不同,为C1-C16的烷基;n为1-100之间的整数。还公开了上述含芴卟啉-蒽共聚物的制备方法和其在制造太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料或有机激光器件中的应用。

Description

含芴卟啉-蒽共聚物、其制备方法和应用
技术领域
本发明属于有机材料技术领域,具体涉及一种含芴卟啉-蒽共聚物、其制备方法和应用。
背景技术
当今世界经济主要是建立在以化石能源,如煤炭、石油和天然气等基础之上的经济。然而,这些不可再生的化石能源都在不断的枯竭。进入21世纪以来,全球性的能源问题以及随之而来的环境污染和气候变暖等问题日益凸现和逐渐加剧。由于太阳能具有分布普遍和广阔,资源数量多,无污染,清洁,安全以及获取方便等突出优点,被认为是最有希望的可再生能源之一。
为充分利用太阳光照射的能量,人们不断开发出能够吸收太阳光的新型材料,其中无机半导体材料获得较为广泛的发展和应用,例如目前用于地面的硅晶电池,然而由于其生产工艺复杂、成本高,使其应用受到限制。为了降低成本,拓展应用范围,长期以来人们一直在寻找新型的替代的半导体材料。
近年来,有机材料逐渐引起人们广泛的兴趣,例如,在1992年N.S.Sariciftci等报道了共轭聚合物与C60之间的光诱导电子转移现象后,人们在共轭聚合物用作太阳能电池等方面投入了大量研究,并取得了飞速的发展。太阳能电池直接把太阳光能转化成电能,是利用太阳能切实可行的有效方法。
有机太阳能电池是一种新型的太阳能电池,相对于无机半导体材料来源有限、价格昂贵、有毒、制备工艺复杂、成本太高等而言,它具有无机太阳能电池无法比拟的一些优点,如材料来源广泛、结构多样性和可调控性、成本低廉、安全环保、制作工艺简单、产品重量轻、可大面积柔性制备等等,可以广泛应用在建筑、照明和发电等多种领域,具有重要的发展和应用前景。然而,到目前为止,有机太阳能电池的光电转换效率比无机太阳能电池还是要低很多。因此,开发新型的有机材料对于提高有机太阳能电池及其它半导体器件或光电器件的效率具有重要意义。
发明内容
有鉴于此,提供一种光谱响应宽、稳定性好的含芴卟啉-蒽共聚物,以及一种合成路线简单、成本低的含芴卟啉-蒽共聚物制备方法。
本发明实施例还提供上述含芴卟啉-蒽共聚物在制造太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料或有机激光器件中的应用。
一种含芴卟啉-蒽共聚物,其包含如下结构式(1)表示的聚合物:
式中:R1、R2、R3、R4为相同或不相同的C1-C16的烷基;n为1-100之间的整数。
一种含芴卟啉-蒽共聚物制备方法,其包括如下步骤:
分别提供如下结构式表示的化合物A、B、C、D,
Figure BDA0000156739220000022
其中:R1、R2、R3、R4为相同或不同的C1-C16的烷基;
在含有催化剂、氧化剂和溶剂的体系中,将化合物A、B、C进行缩聚氧化反应,生成芴基卟啉化合物;
在含有催化剂和溶剂的体系中,将芴基卟啉化合物进行溴化取代反应,生成二溴取代的芴基卟啉化合物;
在催化剂、溶剂以及碱性溶液存在的条件下,将二溴取代的芴基卟啉化合物与化合物D进行Suzuki耦合反应,获得如下结构式(1)表示的聚合物:
Figure BDA0000156739220000031
结构式(1)中的n为1-100之间的整数。
以及,上述含芴卟啉-蒽共聚物在制造太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料或有机激光器件中的应用。
在上述含芴卟啉-蒽共聚物中,所含的芴或其衍生物具有优异的光稳定性和热稳定性,并具有易修饰的结构,可以通过引入杂环、多芳环或芳杂环分子来增大含芴卟啉-蒽共聚物的骨架电子云的密度,使得共聚物的带隙变窄。卟啉结构能使共聚物具有较高的电荷转移和能量转移反应的量子效率,具有良好的电子缓冲性和光电磁性,良好的刚柔性、较好热稳定性和环境稳定性。共聚物中的蒽也具有很好的稳定性和较好的成膜性,并且具有较好的载流子传输特性,其空穴迁移率较高,因此可提高含芴卟啉-蒽共聚物的载流子传输特性,提高空穴迁移率。上述含芴卟啉-蒽共聚物应用于太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料或有机激光器件中时,可提高其光电或半导体相关性能,并能减轻器件的质量,且便于大批量的制备。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的含芴卟啉-蒽共聚物的结构式的示意图;
图2是本发明实施例的含芴卟啉-蒽共聚物制备方法流程图;
图3是采用本发明实施例的含芴卟啉-蒽共聚物的太阳能电池器件结构示意图。
图4是采用本发明实施例的含芴卟啉-蒽共聚物的有机电致发光器件的结构示意图。
图5是采用本发明实施例的含芴卟啉-蒽共聚物的有机场效应晶体管的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,显示本发明实施例的含芴卟啉-蒽共聚物的结构式,即为如下结构式(1)表示的共聚物:
Figure BDA0000156739220000041
式中:R1、R2、R3、R4为相同或不相同的C1-C16的烷基;n为1-100之间的整数。
在本发明的一个实施例中,含芴卟啉-蒽共聚物的每个单元中具有两个相同的含烷基芴基团,也即,例如R1、R3为相同的C1-C16烷基,R2、R4为相同的C1-C16烷基,或者换句话说,R1、R4为相同的C1-C16烷基,R2、R3为相同的C1-C16烷基。这样可以简化制备工艺,降低生产成本,另外,含有烷基有助于提高共聚物的溶解性能。优选地,所述R1、R2、R3、R4为相同的C1-C16的烷基。n优选为5-50,更优选为10-30之间的整数。在本发明的一个具体实施例中,R1、R2、R3、R4为C8烷基。
在该含芴卟啉-蒽共聚物中,包括芴或其衍生物、卟啉结构和蒽结构。其中,芴或其衍生物具有优异的光稳定性和热稳定性,并具有易修饰的结构、可以通过引入杂环、多芳环或芳杂环分子来增大含芴卟啉-蒽共聚物的骨架电子云的密度,使得共聚物的带隙变窄。卟啉结构能使共聚物具有较高的电荷转移和能量转移反应的量子效率,具有良好的电子缓冲性和光电磁性,良好的刚柔性、较好热稳定性和环境稳定性。蒽也具有很好的稳定性和较好的成膜性,并且具有较好的载流子传输特性,其空穴迁移率较高,因此可提高含芴卟啉-蒽共聚物的载流子传输特性,提高空穴迁移率。
上述含芴卟啉-蒽共聚物包含多个噻吩环,具有适中的能带隙,较宽的光谱响应,波段大约在300-700nm,基本涵盖可见光波段,还具有较好的热稳定性和环境稳定性,表现出较好的光电性能。在本实施例的含芴卟啉-蒽共聚物中,R1、R2、R3、R4、R5、R6、R7优选为烷基链,例如C6或C6以上的烷基链,通过引入烷基链以提高材料的溶解性能,有利于成膜加工,扩大其应用范围。
请参阅图2,上述含芴卟啉-蒽共聚物的制备方法包括如下步骤:
S01:分别提供如下结构式表示的化合物A、B、C、D,
Figure BDA0000156739220000061
其中:R1、R2、R3、R4为相同或不同的C1-C16的烷基;
S02:在含有催化剂、氧化剂和溶剂的体系中,将化合物A、B、C进行缩聚氧化反应,生成芴基卟啉化合物;
S03:在含有催化剂和溶剂的体系中,将芴基卟啉化合物进行溴化取代反应,生成二溴取代的芴基卟啉化合物;
S04:在催化剂、溶剂以及碱性溶液存在的条件下,将二溴取代的芴基卟啉化合物与化合物D进行Suzuki耦合反应,获得如下结构式(1)表示的聚合物:
结构式(1)中的n为1-100之间的整数。
在步骤S01中,化合物A、B、C、D可直接从市场上购得或者通过现有的合成方法制备。其中,与上述含芴卟啉-蒽共聚物的描述基本相同,R1、R2、R3、R4采用上面描述的结构形式,在此不再赘述。例如,如前所述,在一个优选的实施例中,R1、R3为相同的C1-C16烷基,R2、R4为相同的C1-C16烷基,此时化合物A、B结构相同,由此可少提供一种原料,简化了制备工艺和降低了成本,且相对于采用不同化合物A和B时具有更高的产率。
本实施例中,化合物A、B、C、D分别制备而得,具体如下:
1、化合物A和B的制备
以化合物A为例,其制备包括以下步骤:
第一步,由2-溴芴与溴烷在催化剂、溶剂条件下进行取代反应,制得9,9-二烷基-2-溴芴。催化剂为四丁基溴化铵或者苄基三乙基氯化铵,溶剂为甲苯、二甲亚砜、四氢呋喃等。对应地,溴烷分别是烷基为R1、R2的溴烷。如下所示,分两个反应步骤,即步骤i和ii,用两种溴烷分别进行取代反应,其反应路线如下:
Figure BDA0000156739220000071
9,9-二烷基-2-溴芴的详细制备过程可参考文献:《高分子》(Macromolecules),2002,35,3474。
第二步,在含有烷基锂、二甲基甲酰胺和溶剂体系中进行溴基醛化的反应,其反应路线如下:
在一个具体的实施例中,烷基锂为正丁基锂,溶剂可为四氢呋喃,详细制备过程可参考文献:《高分子》(Macromolecules),2006,39,456。
在制备化合物B时,各步骤基本相同,不同在于两种溴烷的烷基分别为R3、R4
2、化合物C的制备
在含有甲醛、催化剂和吡咯的体系中进行缩合反应,制得化合物C,其反应方程式如下:
Figure BDA0000156739220000073
其中步骤iv的催化剂可以为三氟乙酸,也可以为三氟化硼二甲基氧基络合物(BF3·(CH3)2O),吡咯既是溶剂又是反应物。二吡咯甲烷即化合物C的制备详细步骤可参考文献:《四面体》(Tetrahedron),1994,39,11427。
3、化合物D的制备
在丁基锂、硼酯作用下进行的如下取代反应。
具体实施过程如下:在N2的保护下,往三口瓶中加入对9,10-二溴蒽,注入150ml的四氢呋喃溶剂,在-78℃条件下再用注射器慢慢注入正丁基锂,继续搅拌反应2小时,在-78℃条件下注入2-异丙氧基-4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷,室温下搅拌过夜。加入饱和氯化钠水溶液终止反应,用氯仿萃取,无水硫酸钠干燥,抽虑后将滤液收集并旋蒸掉溶剂,最后将粗产物用石油醚/乙酸乙酯(15/1)为淋洗液进行硅胶柱层析分离,得到产物。
在步骤S02中,催化剂可采用三氟乙酸或其类似物,氧化剂可采用二氯二氰基苯醌(DDQ)或其类似物,并不限于此,溶剂可采用二氯甲烷、四氢呋喃、四氯化碳、氯仿或乙腈等。其反应式如下所示:
Figure BDA0000156739220000082
具体实施过程如下:搭好无水无氧装置,称取化合物A、B、C(例如按照摩尔比例1/1/2称取),溶解于二氯甲烷中,通入氮气,加入三氟乙酸,搅拌,然后加入两个摩尔当量的二氯二氰基苯醌(DDQ),继续搅拌,然后加入三乙胺淬灭反应,浓缩溶剂,过滤,收集滤液并旋干溶剂,用二氯甲烷在硅胶柱上快速淋洗,旋干溶剂,用乙醚/甲醇重结晶到产物,即芴基卟啉化合物。
步骤S03中溶剂可以是但不限于氯仿或四氢呋喃等,其具体实施过程如下:将芴基卟啉化合物(如5,15-二(9,9-二烷基芴)卟啉)溶解于氯仿中,加入少量吡啶,将反应物降到0℃,加入适量N-溴代丁二酰亚胺,搅拌后,混合物恢复到室温,然后继续搅拌数小时,加入丙酮终止反应,除去溶剂,用乙醚/甲醇进行重结晶得到产物。其反应如下式所示:
步骤S04中的催化剂可以为有机钯催化剂,其用量为化合物D的摩尔用量的0.1-20%。有机钯催化剂例如可以是但不限于Pd2(dba)3/P(o-Tol)3、Pd(PPh3)4或Pd(PPh3)2Cl2。碱性溶液可以是无机碱溶液或有机碱溶液,无机碱溶液可以是碱金属氢氧化物或碱金属碳酸盐的水溶液,例如可以是但不限于氢氧化钠溶液、氢氧化钾溶液、碳酸钠溶液、碳酸钾溶液等,优选为碳酸钠溶液,有机碱溶液可以是烷基氢氧化铵水溶液,例如可以是但不限于四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵等水溶液。上述碱性溶液的用量可以为化合物D的摩尔用量的5-20倍。溶剂为弱极性或极性非质子性有机溶剂或其混合溶剂,例如可以是但不限于氯仿、二氯甲烷、乙二醇二甲醚、二甲基亚砜(DMSO)、四氢呋喃(THF)、甲苯、二甲苯或其类似化合物,优选为甲苯。溶剂的用量足量,以使各反应物溶解并充分反应。
步骤S04进行的反应如下式所示:
Figure BDA0000156739220000101
步骤S04的具体实施过程如下:在圆底烧瓶中加入1.0mmol 1,4-二(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷)基蒽、1.0mmol 5,15-二溴-10,20-二(9,9-二烷基芴)卟啉、0.01mmol四(三苯基膦)钯,3ml Na2CO3水溶液(2mol/L)和20ml甲苯溶剂,抽真空除氧,并充入氮气,将溶液加热到50-120℃,反应12-80小时。反应结束后,然后对产物进行提纯:将反应的产物倒进甲醇中,布氏漏斗过滤分离沉淀物,并用稀HCl洗涤,固体用丙酮在索氏提取器中洗涤12-72小时,以除去单体和催化剂残留物,剩下的聚合物溶于四氢呋喃与氯仿,即为本实施例的共聚物。共聚物中的n优选为5-50,更优选为10-30。在实际制备过程中,可通过对溶剂的选择、对反应温度、反应时间、反应物的加入量、催化剂种类和用量进行控制,以获得所想要的聚合度。
在上述方法中,化合物A、B、C三种单体的合成路线比较简单且成熟,基本上是一步合成,从而减少工艺流程,降低制造成本。而且溴化取代反应和Suzuki耦合反应是一种成熟的聚合反应,产率高、条件温和,易于控制,且易通过引入烷基提高产物的溶解性和分子量,以实现可旋涂的聚合物。
本实施例的含芴卟啉-蒽共聚物可应用于各种光电或半导体器件中,例如,可用于太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料和有机激光器件等。下面以太阳能电池器件、有机场效应晶体管,有机电致发光器件为例进行说明。其它如有机光存储器件,有机非线性材料和有机激光器件与下面类似,都是以本实施例的含芴卟啉-蒽共聚物作为其的光存储材料、非线性材料、激光材料或半导体材料等。
请参阅图3,显示采用上述实施例中含芴卟啉-蒽共聚物的太阳能电池器件,其包括依次层叠的玻璃基层11、透明阳极12、中间辅助层13、活性层14、阴极15,中间辅助层13采用聚乙烯二氧基噻吩:聚苯乙烯-磺酸复合材料(简称为PEDOT:PSS),活性层14包括电子给体材料和电子受体材料,电子给体材料采用上述含芴卟啉-蒽共聚物,电子受体材料可以是[6,6]苯基-C61-丁酸甲酯(简称为PCBM)。透明阳极12可采用氧化铟锡(简称为ITO),优选为方块电阻为10-20Ω/的氧化铟锡。阴极15可采用铝电极或者双金属层电极,例如Ca/Al或Ba/Al等。其中,玻璃基层11可作为底层,制作时,选取ITO玻璃,并经超声波清洗后,用氧-Plasma处理,在ITO玻璃上涂覆中间辅助层13,再将含芴卟啉-蒽共聚物和电子受体材料通过共混后涂覆于中间辅助层13上,形成活性层14,然后再通过真空蒸镀技术在活性层14上沉积阴极15,获得上述太阳能电池器件。在一个优选的实施例中,透明阳极12、中间辅助层13、活性层14、双金属层Ca和Al层的厚度分别为160nm、40nm、150nm、20nm、70nm。
如图所示,在光照下,光透过玻璃基层11和ITO电极12,活性层14中的含芴卟啉-蒽共聚物吸收光能,并产生激子,这些激子再迁移到电子给体/受体材料的界面处,并将电子转移给电子受体材料,如PCBM,实现电荷的分离,从而形成自由的载流子,即自由的电子和空穴。这些自由的电子沿电子受体材料向金属阴极传递并被阴极所收集,自由的空穴沿电子给体材料向ITO阳极传递并被阳极所收集,从而形成光电流和光电压,实现光电转换,外接负载16时,可对其进行供电。在此过程中,含芴卟啉-蒽共聚物由于其具有很宽的光谱响应范围,能够更充分地利用光能,以获得更高的光电转换效率,增加太阳能电池器件的产电能力。而且这种有机材料还能减轻太阳能电池器件的质量,并通过旋涂等技术即可制作,便于大批量的制备。
请参阅图4,显示采用上述实施例中的含芴卟啉-蒽共聚物的有机电致发光器件,其包括依次层叠设置的玻璃基层21、透明阳极22、发光层23、缓冲层24、阴极25。透明阳极22可采用氧化铟锡(简称为ITO),优选为方块电阻为10-20Ω/的氧化铟锡。发光层23包含上述实施例中的含芴卟啉-蒽共聚物。缓冲层24可采用LiF等,但不限于此。阴极25可以是但不限于金属Al或Ba等,但不限于此。因而,在一个具体实施例中,有机电致发光器件结构表示为:ITO/含芴卟啉-蒽共聚物/LiF/Al。各层可采用现有方法形成,而含芴卟啉-蒽共聚物可通过旋涂技术形成于ITO上。
请参阅图5,显示采用上述实施例中的含芴卟啉-蒽共聚物的有机场效应晶体管,其包括依次层叠设置的衬底31、绝缘层32、修饰层33、有机半导体层34以及设于有机半导体层34上的源电极35和漏电极36。其中,衬底31可以是但不限于高掺杂的硅片(Si),绝缘层32可以是但不限于微纳米(如450nm)厚的SiO2。有机半导体层34采用上述描述的含芴卟啉-蒽共聚物。源电极35和漏电极36均可采用但不限于金。修饰层33可以是但不限于十八烷基三氯硅烷。衬底31、绝缘层32、修饰层33以及源电极35和漏电极36都可采用现有的方法形成。有机半导体层34可以是将上述实施例中的含芴卟啉-蒽共聚物旋涂于由修饰层33修饰的绝缘层32上。
以下通过具体实施例来举例说明含芴卟啉-蒽共聚物制备方法以及其性能等方面。下面实施例中的A、B、C、D分别按照上述方法直接制备而得,当然,在其它实施例中也可以直接从市场上购得,并不限于此。
第一步,制备5,15-二(9,9-二烷基芴)卟啉,以5,15-二(9,9-二己基芴)卟啉为例,其具体制备过程如下:搭好无水无氧装置,按照摩尔比例1∶1∶2称取化合物A、B、C,化合物A和B结构相同,均为9,9-二己基-2-醛芴,化合物C为二吡咯甲烷,将它们溶解于二氯甲烷中,通入氮气30分钟,用注射器加入三氟乙酸,室温下搅拌3小时,然后加入两个摩尔当量的二氯二氰基苯醌(DDQ),继续在室温下搅拌30分钟,然后加入三乙胺淬灭反应,浓缩溶剂,过滤,收集滤液并旋干溶剂,用二氯甲烷在硅胶柱上快速淋洗,旋干溶剂,用乙醚/甲醇重结晶到产物。
第二步,制备5,15-二溴-10,20-5(9,9-二己基芴)卟啉
将5,15-二(9,9-二己基芴)卟啉溶解于氯仿中,加入少量吡啶,将反应物降到0℃,加入适量N-溴代丁二酰亚胺,搅拌0.5小时后,混合物恢复到室温,然后继续搅拌4小时,加入丙酮终止反应,除去溶剂,用乙醚/甲醇进行重结晶得到产物。
第三步,含芴卟啉-蒽共聚物的制备,本实施例的含芴卟啉-蒽共聚物结构式为:
Figure BDA0000156739220000131
具体形成过程如下:在圆底烧瓶中加入1,4-二(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷)基蒽、5,15-二溴-10,20-二(9,9-二己基芴)卟啉、四(三苯基膦)钯,Na2CO3水溶液和甲苯溶剂,抽真空除氧并充入氮气,溶液首先在N2氛围下回流48小时,然后倒进甲醇中,布氏漏斗过滤分离沉淀物,并用稀HCl洗涤,固体用丙酮在索氏提取器中洗涤24小时,以除去单体和催化剂残留物,剩下的聚合物溶于四氢呋喃与氯仿,产率32%。
在上述含芴卟啉-蒽共聚物中,所含的芴或其衍生物具有优异的光稳定性和热稳定性,并具有易修饰的结构,可以通过引入杂环、多芳环或芳杂环分子来增大含芴卟啉-蒽共聚物的骨架电子云的密度,使得共聚物的带隙变窄。卟啉结构能使共聚物具有较高的电荷转移和能量转移反应的量子效率,具有良好的电子缓冲性和光电磁性,良好的刚柔性、较好热稳定性和环境稳定性。共聚物中的蒽也具有很好的稳定性和较好的成膜性,并且具有较好的载流子传输特性,其空穴迁移率较高,因此可提高含芴卟啉-蒽共聚物的载流子传输特性,提高空穴迁移率。上述含芴卟啉-蒽共聚物应用于太阳能电池器件、有机场效应晶体管、有机电致发光器件、有机光存储器件、有机非线性材料或有机激光器件中时,可提高其光电或半导体相关性能,并能减轻器件的质量,且便于大批量的制备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种含芴卟啉-蒽共聚物制备方法,其包括如下步骤:
分别提供如下结构式表示的化合物A、B、C、D,
Figure FDA0000368762420000011
其中:R1、R2、R3、R4为相同或不同的C1-C16的烷基;
在含有催化剂、氧化剂和溶剂的体系中,将化合物A、B、C进行缩聚氧化反应,生成芴基卟啉化合物,所述缩聚氧化反应采用的催化剂为三氟乙酸,氧化剂为二氯二氰基苯醌,所述溶剂为二氯甲烷、四氢呋喃、四氯化碳、氯仿或乙腈;
在含有催化剂和溶剂的体系中,将芴基卟啉化合物进行溴化取代反应,生成二溴取代的芴基卟啉化合物,所述溴化取代反应的催化剂为吡啶、吡啶衍生物或三乙胺,溶剂为氯仿或四氢呋喃;
在催化剂、溶剂以及碱性溶液存在的条件下,将二溴取代的芴基卟啉化合物与化合物D进行Suzuki耦合反应,获得如下结构式(1)表示的聚合物:
Figure FDA0000368762420000012
结构式(1)中的n为1-100之间的整数;所述Suzuki耦合反应中,所述催化剂为有机钯催化剂,该有机钯催化剂为Pd2(dba)3/P(o-Tol)3、Pd(PPh3)4或Pd(PPh3)2Cl2;所述碱性溶液为无机碱水溶液或有机碱水溶液,所述无机碱水溶液为氢氧化钠水溶液、氢氧化钾水溶液、碳酸钠水溶液、碳酸钾水溶液,所述有机碱水溶液为四甲基氢氧化铵水溶液、四乙基氢氧化铵水溶液、四丙基氢氧化铵水溶液或四丁基氢氧化铵水溶液;所述溶剂为氯仿、二氯甲烷、乙二醇二甲醚、二甲基亚砜、四氢呋喃、甲苯或二甲苯。
2.如权利要求1所述的含芴卟啉-蒽共聚物制备方法,其特征在于,在Suzuki耦合反应后进行如下提纯步骤:将Suzuki耦合反应产物倒入甲醇中,过滤分离沉淀物,洗涤,获得的固体用丙酮在索氏提取器中洗涤,除去单体和催化剂残留物,获得所述含芴卟啉-蒽共聚物。
CN2010800481069A 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用 Expired - Fee Related CN102686592B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070435 WO2011091607A1 (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用

Publications (2)

Publication Number Publication Date
CN102686592A CN102686592A (zh) 2012-09-19
CN102686592B true CN102686592B (zh) 2013-11-27

Family

ID=44318632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800481069A Expired - Fee Related CN102686592B (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用

Country Status (5)

Country Link
US (1) US8598301B2 (zh)
EP (1) EP2530084B1 (zh)
JP (1) JP5546070B2 (zh)
CN (1) CN102686592B (zh)
WO (1) WO2011091607A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030847A1 (de) * 2009-06-26 2010-12-30 Merck Patent Gmbh Polymere enthaltend substituierte Anthracenyleinheiten, Blends enthaltend diese Polymere sowie Vorrichtungen enthaltend diese Polymere oder Blends
CN102712652B (zh) * 2010-03-23 2014-03-19 海洋王照明科技股份有限公司 含芴卟啉-苯共聚物、其制备方法和应用
US8822634B2 (en) * 2010-04-23 2014-09-02 Ocean's King Lighting Science & Technology Co., Ltd. Copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof
EP2573124B1 (en) * 2010-05-18 2015-08-12 Ocean's King Lighting Science&Technology Co., Ltd. Porphyrin copolymer containing quinoxaline unit, preparation method and uses thereof
CN102834430B (zh) * 2010-06-07 2014-03-12 海洋王照明科技股份有限公司 含噻吩并噻二唑单元卟啉共聚物、其制备方法和应用
EP2617725B1 (en) 2010-09-13 2014-09-03 Ocean's King Lighting Science&Technology Co., Ltd. Silafluorene metalloporphyrin- benzene organic semiconductor material and preparing method and uses thereof
CN103694246B (zh) * 2013-12-23 2015-06-17 北京工业大学 A3b型不对称卟啉类化合物的制备方法
KR102350940B1 (ko) 2017-05-04 2022-01-13 버사 파워 시스템스 리미티드 콤팩트한 고온 전기화학 셀 스택 아키텍처

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371199B1 (en) * 1992-08-14 1995-12-26 Univ Pennsylvania Substituted porphyrins porphyrin-containing polymers and synthetic methods therefor
JP3150948B2 (ja) * 1998-09-21 2001-03-26 科学技術振興事業団 メソ位直結型ポルフィリンポリマーとその製造方法
US6420648B1 (en) 2000-07-21 2002-07-16 North Carolina State University Light harvesting arrays
JP4183402B2 (ja) * 2001-07-18 2008-11-19 独立行政法人科学技術振興機構 フラーレンを含む薄膜から成る光電変換素子用材料
JP4014960B2 (ja) * 2002-07-31 2007-11-28 独立行政法人科学技術振興機構 分子ワイヤ及びその製造方法
KR100482276B1 (ko) 2002-08-12 2005-04-13 한국과학기술연구원 피롤계 화합물, 그 중합체 및 이들을 이용한 el 소자
AU2003900404A0 (en) * 2003-01-31 2003-02-13 Massey University Conducting polymers with porphyrin cross-linkers
WO2005043962A1 (ja) 2003-10-31 2005-05-12 Nissan Chemical Industries, Ltd. 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
JP4883898B2 (ja) * 2004-11-18 2012-02-22 パナソニック株式会社 電子デバイスおよびそれを用いた電子機器
FR2892723B1 (fr) * 2005-11-03 2009-04-24 Biomerieux Sa Nouveaux monomeres electropolymerisables, solubles en solution aqueuse, comportant une metalloporphyrine.

Also Published As

Publication number Publication date
US8598301B2 (en) 2013-12-03
EP2530084B1 (en) 2014-03-12
EP2530084A1 (en) 2012-12-05
US20120302717A1 (en) 2012-11-29
CN102686592A (zh) 2012-09-19
JP2013518151A (ja) 2013-05-20
JP5546070B2 (ja) 2014-07-09
WO2011091607A1 (zh) 2011-08-04
EP2530084A4 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN102686592B (zh) 含芴卟啉-蒽共聚物、其制备方法和应用
CN102753598A (zh) 含蒽和苯并硒二唑类共聚物、其制造方法和应用
WO2011094950A1 (zh) 含芴共轭聚合物、其制备方法和太阳能电池器件
WO2011091609A1 (zh) 含杂环醌型噻吩有机光电材料、其制备方法和应用
JP5688420B2 (ja) フルオレニル含有ポルフィリン―ベンゼン共重合体、及びその製造方法
JP5612757B2 (ja) フルオレン類共重合体及びその製造方法並びにその使用
EP2573124A1 (en) Porphyrin copolymer containing quinoxaline unit, preparation method and uses thereof
CN102834430B (zh) 含噻吩并噻二唑单元卟啉共聚物、其制备方法和应用
JP5600365B2 (ja) キノイドシラフルオレン類の有機半導体材料、該有機半導体材料の製造方法及びその使用
CN108864135A (zh) 化合物、其制备方法以及包含该化合物的有机光伏器件
CN102190680B (zh) 含硅噻吩有机光电材料、其制造方法和应用
JP5480403B2 (ja) キノイドチオフェン有機光電材料、その製造方法、およびその利用
CN102206328A (zh) 含苯并噻二唑单元卟啉共聚物、其制备方法和应用
CN102653587B (zh) 一种n,n'-二取代异靛与2,7-咔唑共聚物及其制备方法和应用
CN102276800A (zh) 一种三苯胺单元卟啉共聚物及其制备方法和应用
CN115650971A (zh) 一类联噻唑非稠环受体小分子及其在光电器件中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131127

Termination date: 20190130

CF01 Termination of patent right due to non-payment of annual fee