CN102650711B - 一种基于表面等离子体的波导光耦合器及其制备工艺 - Google Patents
一种基于表面等离子体的波导光耦合器及其制备工艺 Download PDFInfo
- Publication number
- CN102650711B CN102650711B CN201210168742.6A CN201210168742A CN102650711B CN 102650711 B CN102650711 B CN 102650711B CN 201210168742 A CN201210168742 A CN 201210168742A CN 102650711 B CN102650711 B CN 102650711B
- Authority
- CN
- China
- Prior art keywords
- sputtering
- film
- particle
- optical coupler
- manufacturing process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- 210000002381 plasma Anatomy 0.000 title abstract 3
- 238000004544 sputter deposition Methods 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000002787 reinforcement Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
一种基于表面等离子体的波导光耦合器及其制备工艺。首先在半导体硅(Si)上制备氧化锌(ZnO)薄膜,然后在此薄膜上溅射银(Ag)颗粒,从而制备出光耦合器的波导层。通过优化波导结构和几何参数,产生表面等离子体增强效果,从而使光在波导中传播时不再受衍射极限的限制。
Description
技术领域
本专利涉及光学、集成光电子学、纳米材料、纳米加工、纳米测量、仪器科学等多学科交叉的前沿研究领域,具体涉及一种基于表面等离子体的波导光耦合器及其制备工艺。
背景技术
由于受到衍射效应的限制,光波导中传播的光波不能被限制在小于波长量级的横截面内,从而使得相邻光波导元件之间的最小间隙、光波导元件的最大弯曲角度和最大分布密度都受到了限制。
1968年,前苏联物理学家Veselago首次提出了负折射率材料的概念;2001年,Shelby等研制出了负折射率材料,负折射率材料的真实性逐步得到了确认,这为突破光学衍射极限提供了可能。但是把超材料应用到可见光波段,它们要比可见光的波长更小,如果用浸在介质中有限宽度的金属薄膜窄带制成等离子体激元波导,使光沿波导传播,这样金属薄膜就可起到超材料的作用。Bozhevolnyi等对纳米线等离子体光波导进行了研究;2009年,美国University of California,Berkeley的张翔研究组在《Nature》杂志上报道了他们最新研究成果--纳米线等离子体激光器,在减小激光器物理尺寸的同时,减小了光学模态尺寸,从而突破了衍射极限。
发明内容
研制具有表面等离子体增强效果的分光比为50∶50的光耦合器,该光耦合器的波导层由半导体薄膜和金属颗粒共同组成,通过优化波导层结构和几何尺寸,使得光耦合器产生表面等离子体效应。具体如下:
一种基于表面等离子体的光耦合器的波导层制备方法,包括如下步骤:首先在Si基底上通过射频磁控溅射工艺沉积ZnO薄膜,其后通过气相沉积工艺对薄膜在大气气氛下进行热处理,保温后,再通过直流磁控溅射工艺沉积Ag颗粒。
进一步,由溅射时间来控制Ag颗粒的形貌和厚度。
进一步,所述基底为Si基底。
进一步,ZnO薄膜的溅射功率为150W,转速为15r/min,溅射时间为7min,薄膜的厚度为40nm。
进一步,Ag颗粒溅射电流为0.3A,溅射时间为30s。
进一步,所述金属氧化物薄膜为ZnO薄膜。
一种基于表面等离子体的波导光耦合器,包括基底和波导层,而波导层由半导体薄膜及其上的金属颗粒组成。
本发明的有益效果是:
本发明在半导体Si上制备ZnO薄膜,在此薄膜上溅射Ag颗粒从而形成光耦合器的波导层。通过优化波导结构和几何参数,改善波导的光学性能,产生表面等离子体增强效果,从而使光在波导中传播能突破衍射极限。
附图说明
图1(a)为光耦合器的结构示意图。
图1(b)为光耦合器的光波导截面剖视图。
图2为光波导的加工工艺流程示意图。
具体实施方式
图1(a)为光耦合器的结构示意图,图1(b)为光耦合器的光波导剖视图,光波导结构为在基底1上沉积ZnO薄膜2后沉积Ag颗粒3形成。
波导层基底为20mm×20mm的半导体Si(100),将其分别用丙酮、乙醇和去离子水清洗后,用氮气吹干并烘30分钟;ZnO薄膜采用射频磁控溅射工艺制备,本底真空抽至2×10-5Pa,溅射功率为150W,转速为15r/min,溅射时间为7min,ZnO薄膜的厚度为40nm;Ag颗粒采用直流磁控溅射工艺制备,本底真空抽至2×10-5Pa,溅射电流为0.3A,溅射时间为30s。
图2为光波导的加工工艺流程。首先在20mm×20mm的半导体Si(100)基底上通过射频磁控溅射工艺沉积ZnO薄膜,其后通过气相沉积工艺对ZnO薄膜在大气气氛下进行500℃热处理,保温时间为2h,再通过直流磁控溅射工艺沉积Ag颗粒,由溅射时间来控制Ag颗粒的形貌和厚度。
1)光耦合器的波导层制备
在Si基底1上制备一层ZnO薄膜2,然后在此薄膜上溅射Ag颗粒3,通过研究不同厚度的ZnO薄膜以及Ag颗粒密度和尺度不同的情况下光耦合器的光学性能,从而确定波导层的最佳结构和厚度。
2)光耦合器的制备
为了实现50∶50的分光比,通过实验研究不同的耦合区长度和耦合区两路光波导之间的距离,最终确定光耦合器的结构。
Claims (1)
1.一种基于表面等离子体的波导光耦合器的波导层制备方法,其特征在于,包括如下步骤:首先在硅(Si)基底(1)上通过射频磁控溅射工艺沉积金属氧化物薄膜(2),所述金属氧化物薄膜为ZnO薄膜,金属氧化物薄膜(2)的溅射功率为150W,转速为15r/min,溅射时间为7min,薄膜的厚度为40nm;其后通过气相沉积工艺对薄膜在大气气氛下进行热处理,保温后,再通过直流磁控溅射工艺沉积金属银(Ag)颗粒(3),由溅射时间来控制Ag颗粒(3)的形貌和厚度,Ag颗粒(3)溅射电流为0.3A,溅射时间为30s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210168742.6A CN102650711B (zh) | 2012-05-28 | 2012-05-28 | 一种基于表面等离子体的波导光耦合器及其制备工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210168742.6A CN102650711B (zh) | 2012-05-28 | 2012-05-28 | 一种基于表面等离子体的波导光耦合器及其制备工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102650711A CN102650711A (zh) | 2012-08-29 |
CN102650711B true CN102650711B (zh) | 2014-01-29 |
Family
ID=46692749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210168742.6A Active CN102650711B (zh) | 2012-05-28 | 2012-05-28 | 一种基于表面等离子体的波导光耦合器及其制备工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102650711B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104372301B (zh) * | 2014-11-21 | 2017-06-23 | 国家纳米科学中心 | 一种利用射频磁控溅射法制备单分散、尺寸可控纳米银颗粒的方法 |
CN104730621B (zh) * | 2015-03-05 | 2018-05-04 | 湖南大学 | 一种基于金属-介电层-半导体复合纳米结构的光波导分束器的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101885468A (zh) * | 2010-06-30 | 2010-11-17 | 浙江大学 | 一种介质/金属/介质型纳米结构薄膜及其制备方法 |
CN102183816A (zh) * | 2011-04-29 | 2011-09-14 | 上海交通大学 | 阶梯结构的硅基表面等离子体波导的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI296044B (en) * | 2005-11-03 | 2008-04-21 | Ind Tech Res Inst | Coupled waveguide-surface plasmon resonance biosensor |
KR100877710B1 (ko) * | 2007-03-14 | 2009-01-09 | 한양대학교 산학협력단 | 표면 플라즈몬 이중 금속 광도파로 |
WO2010088726A1 (en) * | 2009-02-04 | 2010-08-12 | University Of South Australia | Fabrication of nanoparticles on solid surfaces |
-
2012
- 2012-05-28 CN CN201210168742.6A patent/CN102650711B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101885468A (zh) * | 2010-06-30 | 2010-11-17 | 浙江大学 | 一种介质/金属/介质型纳米结构薄膜及其制备方法 |
CN102183816A (zh) * | 2011-04-29 | 2011-09-14 | 上海交通大学 | 阶梯结构的硅基表面等离子体波导的制备方法 |
Non-Patent Citations (4)
Title |
---|
C.W.Lai等.Surface-plasmon-mediated emission from metal-capped ZnO thin films.《Applied Physics Letters》.2005,第1-3页. |
Surface-plasmon-mediated emission from metal-capped ZnO thin films;C.W.Lai等;《Applied Physics Letters》;20051231;第251105-1至251105-3页 * |
仇旻.表面等离子体和人工电磁介质纳米光子器件.《光学与光电技术》.2010,第8卷(第3期),第1-5页. |
表面等离子体和人工电磁介质纳米光子器件;仇旻;《光学与光电技术》;20100630;第8卷(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN102650711A (zh) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mokkapati et al. | Resonant nano-antennas for light trapping in plasmonic solar cells | |
Xiong et al. | Silver nanowires for photonics applications | |
Chen et al. | Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes | |
JP2006208057A (ja) | プラズモン共鳴構造体,その制御方法,金属ドメイン製造方法 | |
Ahmadivand et al. | Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna | |
CN102650711B (zh) | 一种基于表面等离子体的波导光耦合器及其制备工艺 | |
Leon et al. | Design rules for tailoring antireflection properties of hierarchical optical structures | |
Wang et al. | Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties | |
Li et al. | A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale | |
Zhao et al. | Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography | |
Shen et al. | One-way electromagnetic mode guided by the mechanism of total internal reflection | |
CN102590940B (zh) | 一种开放式表面等离子激元狭缝光波导 | |
Li et al. | Forward scattering nanoparticles based nanostructure for light trapping over solar spectrum | |
Ting et al. | Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response | |
CN103320753B (zh) | 一种尺寸密度可控铝纳米颗粒阵列的制备方法 | |
CN109901253B (zh) | 一种表面等离子体滤波器 | |
KR20110139376A (ko) | 국소표면 플라즈몬공명의 유도를 위한 금속 나노구조 어레이 제작방법 | |
Ali et al. | Design and simulation of optical logic gates based on (MIM) plasmonic waveguides and slot cavity resonator for optical communications | |
CN108828714A (zh) | 一种强局域、低损耗的杂化表面等离子体波导 | |
Zhuang et al. | Tunable slow light based on detuned coupling between graphene nanoribbon and square ring splitting modes | |
Yu et al. | Low temperature deposition of hydrogenated nanocrystalline SiC films by helicon wave plasma enhanced chemical vapor deposition | |
Xu et al. | Impact of film thickness in laser-induced periodic structures on amorphous Si films | |
Li et al. | Effective control of the optical absorption properties of FeGa micro-nano spherical shell arrays | |
Cui et al. | Spoof surface plasmons on ultrathin corrugated metal structures in microwave and terahertz frequencies | |
CN115181953B (zh) | 表面等离激元薄膜的制备方法和制备多层膜超材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240425 Address after: Room 050, F2004, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, 710086 Patentee after: Xi'an Mingchuang Zhongce Technology Co.,Ltd. Country or region after: China Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University Country or region before: China |
|
TR01 | Transfer of patent right |