CN102650711B - 一种基于表面等离子体的波导光耦合器及其制备工艺 - Google Patents

一种基于表面等离子体的波导光耦合器及其制备工艺 Download PDF

Info

Publication number
CN102650711B
CN102650711B CN201210168742.6A CN201210168742A CN102650711B CN 102650711 B CN102650711 B CN 102650711B CN 201210168742 A CN201210168742 A CN 201210168742A CN 102650711 B CN102650711 B CN 102650711B
Authority
CN
China
Prior art keywords
sputtering
film
particle
optical coupler
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210168742.6A
Other languages
English (en)
Other versions
CN102650711A (zh
Inventor
杨树明
韩枫
李磊
张坤
胡庆杰
蒋庄德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Mingchuang Zhongce Technology Co ltd
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201210168742.6A priority Critical patent/CN102650711B/zh
Publication of CN102650711A publication Critical patent/CN102650711A/zh
Application granted granted Critical
Publication of CN102650711B publication Critical patent/CN102650711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

一种基于表面等离子体的波导光耦合器及其制备工艺。首先在半导体硅(Si)上制备氧化锌(ZnO)薄膜,然后在此薄膜上溅射银(Ag)颗粒,从而制备出光耦合器的波导层。通过优化波导结构和几何参数,产生表面等离子体增强效果,从而使光在波导中传播时不再受衍射极限的限制。

Description

一种基于表面等离子体的波导光耦合器及其制备工艺
技术领域
本专利涉及光学、集成光电子学、纳米材料、纳米加工、纳米测量、仪器科学等多学科交叉的前沿研究领域,具体涉及一种基于表面等离子体的波导光耦合器及其制备工艺。
背景技术
由于受到衍射效应的限制,光波导中传播的光波不能被限制在小于波长量级的横截面内,从而使得相邻光波导元件之间的最小间隙、光波导元件的最大弯曲角度和最大分布密度都受到了限制。
1968年,前苏联物理学家Veselago首次提出了负折射率材料的概念;2001年,Shelby等研制出了负折射率材料,负折射率材料的真实性逐步得到了确认,这为突破光学衍射极限提供了可能。但是把超材料应用到可见光波段,它们要比可见光的波长更小,如果用浸在介质中有限宽度的金属薄膜窄带制成等离子体激元波导,使光沿波导传播,这样金属薄膜就可起到超材料的作用。Bozhevolnyi等对纳米线等离子体光波导进行了研究;2009年,美国University of California,Berkeley的张翔研究组在《Nature》杂志上报道了他们最新研究成果--纳米线等离子体激光器,在减小激光器物理尺寸的同时,减小了光学模态尺寸,从而突破了衍射极限。
发明内容
研制具有表面等离子体增强效果的分光比为50∶50的光耦合器,该光耦合器的波导层由半导体薄膜和金属颗粒共同组成,通过优化波导层结构和几何尺寸,使得光耦合器产生表面等离子体效应。具体如下:
一种基于表面等离子体的光耦合器的波导层制备方法,包括如下步骤:首先在Si基底上通过射频磁控溅射工艺沉积ZnO薄膜,其后通过气相沉积工艺对薄膜在大气气氛下进行热处理,保温后,再通过直流磁控溅射工艺沉积Ag颗粒。
进一步,由溅射时间来控制Ag颗粒的形貌和厚度。
进一步,所述基底为Si基底。
进一步,ZnO薄膜的溅射功率为150W,转速为15r/min,溅射时间为7min,薄膜的厚度为40nm。
进一步,Ag颗粒溅射电流为0.3A,溅射时间为30s。
进一步,所述金属氧化物薄膜为ZnO薄膜。
一种基于表面等离子体的波导光耦合器,包括基底和波导层,而波导层由半导体薄膜及其上的金属颗粒组成。
本发明的有益效果是:
本发明在半导体Si上制备ZnO薄膜,在此薄膜上溅射Ag颗粒从而形成光耦合器的波导层。通过优化波导结构和几何参数,改善波导的光学性能,产生表面等离子体增强效果,从而使光在波导中传播能突破衍射极限。
附图说明
图1(a)为光耦合器的结构示意图。
图1(b)为光耦合器的光波导截面剖视图。
图2为光波导的加工工艺流程示意图。
具体实施方式
图1(a)为光耦合器的结构示意图,图1(b)为光耦合器的光波导剖视图,光波导结构为在基底1上沉积ZnO薄膜2后沉积Ag颗粒3形成。
波导层基底为20mm×20mm的半导体Si(100),将其分别用丙酮、乙醇和去离子水清洗后,用氮气吹干并烘30分钟;ZnO薄膜采用射频磁控溅射工艺制备,本底真空抽至2×10-5Pa,溅射功率为150W,转速为15r/min,溅射时间为7min,ZnO薄膜的厚度为40nm;Ag颗粒采用直流磁控溅射工艺制备,本底真空抽至2×10-5Pa,溅射电流为0.3A,溅射时间为30s。
图2为光波导的加工工艺流程。首先在20mm×20mm的半导体Si(100)基底上通过射频磁控溅射工艺沉积ZnO薄膜,其后通过气相沉积工艺对ZnO薄膜在大气气氛下进行500℃热处理,保温时间为2h,再通过直流磁控溅射工艺沉积Ag颗粒,由溅射时间来控制Ag颗粒的形貌和厚度。
1)光耦合器的波导层制备
在Si基底1上制备一层ZnO薄膜2,然后在此薄膜上溅射Ag颗粒3,通过研究不同厚度的ZnO薄膜以及Ag颗粒密度和尺度不同的情况下光耦合器的光学性能,从而确定波导层的最佳结构和厚度。
2)光耦合器的制备
为了实现50∶50的分光比,通过实验研究不同的耦合区长度和耦合区两路光波导之间的距离,最终确定光耦合器的结构。

Claims (1)

1.一种基于表面等离子体的波导光耦合器的波导层制备方法,其特征在于,包括如下步骤:首先在硅(Si)基底(1)上通过射频磁控溅射工艺沉积金属氧化物薄膜(2),所述金属氧化物薄膜为ZnO薄膜,金属氧化物薄膜(2)的溅射功率为150W,转速为15r/min,溅射时间为7min,薄膜的厚度为40nm;其后通过气相沉积工艺对薄膜在大气气氛下进行热处理,保温后,再通过直流磁控溅射工艺沉积金属银(Ag)颗粒(3),由溅射时间来控制Ag颗粒(3)的形貌和厚度,Ag颗粒(3)溅射电流为0.3A,溅射时间为30s。
CN201210168742.6A 2012-05-28 2012-05-28 一种基于表面等离子体的波导光耦合器及其制备工艺 Active CN102650711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210168742.6A CN102650711B (zh) 2012-05-28 2012-05-28 一种基于表面等离子体的波导光耦合器及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210168742.6A CN102650711B (zh) 2012-05-28 2012-05-28 一种基于表面等离子体的波导光耦合器及其制备工艺

Publications (2)

Publication Number Publication Date
CN102650711A CN102650711A (zh) 2012-08-29
CN102650711B true CN102650711B (zh) 2014-01-29

Family

ID=46692749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210168742.6A Active CN102650711B (zh) 2012-05-28 2012-05-28 一种基于表面等离子体的波导光耦合器及其制备工艺

Country Status (1)

Country Link
CN (1) CN102650711B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372301B (zh) * 2014-11-21 2017-06-23 国家纳米科学中心 一种利用射频磁控溅射法制备单分散、尺寸可控纳米银颗粒的方法
CN104730621B (zh) * 2015-03-05 2018-05-04 湖南大学 一种基于金属-介电层-半导体复合纳米结构的光波导分束器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885468A (zh) * 2010-06-30 2010-11-17 浙江大学 一种介质/金属/介质型纳米结构薄膜及其制备方法
CN102183816A (zh) * 2011-04-29 2011-09-14 上海交通大学 阶梯结构的硅基表面等离子体波导的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296044B (en) * 2005-11-03 2008-04-21 Ind Tech Res Inst Coupled waveguide-surface plasmon resonance biosensor
KR100877710B1 (ko) * 2007-03-14 2009-01-09 한양대학교 산학협력단 표면 플라즈몬 이중 금속 광도파로
WO2010088726A1 (en) * 2009-02-04 2010-08-12 University Of South Australia Fabrication of nanoparticles on solid surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885468A (zh) * 2010-06-30 2010-11-17 浙江大学 一种介质/金属/介质型纳米结构薄膜及其制备方法
CN102183816A (zh) * 2011-04-29 2011-09-14 上海交通大学 阶梯结构的硅基表面等离子体波导的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C.W.Lai等.Surface-plasmon-mediated emission from metal-capped ZnO thin films.《Applied Physics Letters》.2005,第1-3页.
Surface-plasmon-mediated emission from metal-capped ZnO thin films;C.W.Lai等;《Applied Physics Letters》;20051231;第251105-1至251105-3页 *
仇旻.表面等离子体和人工电磁介质纳米光子器件.《光学与光电技术》.2010,第8卷(第3期),第1-5页.
表面等离子体和人工电磁介质纳米光子器件;仇旻;《光学与光电技术》;20100630;第8卷(第3期);全文 *

Also Published As

Publication number Publication date
CN102650711A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
Mokkapati et al. Resonant nano-antennas for light trapping in plasmonic solar cells
Xiong et al. Silver nanowires for photonics applications
Chen et al. Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes
JP2006208057A (ja) プラズモン共鳴構造体,その制御方法,金属ドメイン製造方法
Ahmadivand et al. Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna
CN102650711B (zh) 一种基于表面等离子体的波导光耦合器及其制备工艺
Leon et al. Design rules for tailoring antireflection properties of hierarchical optical structures
Wang et al. Two-dimensional Ag/SiO2 and Cu/SiO2 nanocomposite surface-relief grating couplers and their vertical input coupling properties
Li et al. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale
Zhao et al. Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography
Shen et al. One-way electromagnetic mode guided by the mechanism of total internal reflection
CN102590940B (zh) 一种开放式表面等离子激元狭缝光波导
Li et al. Forward scattering nanoparticles based nanostructure for light trapping over solar spectrum
Ting et al. Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response
CN103320753B (zh) 一种尺寸密度可控铝纳米颗粒阵列的制备方法
CN109901253B (zh) 一种表面等离子体滤波器
KR20110139376A (ko) 국소표면 플라즈몬공명의 유도를 위한 금속 나노구조 어레이 제작방법
Ali et al. Design and simulation of optical logic gates based on (MIM) plasmonic waveguides and slot cavity resonator for optical communications
CN108828714A (zh) 一种强局域、低损耗的杂化表面等离子体波导
Zhuang et al. Tunable slow light based on detuned coupling between graphene nanoribbon and square ring splitting modes
Yu et al. Low temperature deposition of hydrogenated nanocrystalline SiC films by helicon wave plasma enhanced chemical vapor deposition
Xu et al. Impact of film thickness in laser-induced periodic structures on amorphous Si films
Li et al. Effective control of the optical absorption properties of FeGa micro-nano spherical shell arrays
Cui et al. Spoof surface plasmons on ultrathin corrugated metal structures in microwave and terahertz frequencies
CN115181953B (zh) 表面等离激元薄膜的制备方法和制备多层膜超材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240425

Address after: Room 050, F2004, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province, 710086

Patentee after: Xi'an Mingchuang Zhongce Technology Co.,Ltd.

Country or region after: China

Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an

Patentee before: XI'AN JIAOTONG University

Country or region before: China

TR01 Transfer of patent right