CN102596813B - 稳定的亚微米氧化钛溶胶 - Google Patents

稳定的亚微米氧化钛溶胶 Download PDF

Info

Publication number
CN102596813B
CN102596813B CN201080051031.XA CN201080051031A CN102596813B CN 102596813 B CN102596813 B CN 102596813B CN 201080051031 A CN201080051031 A CN 201080051031A CN 102596813 B CN102596813 B CN 102596813B
Authority
CN
China
Prior art keywords
oxide
titanium oxide
colloidal sol
sol
aqueous titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080051031.XA
Other languages
English (en)
Other versions
CN102596813A (zh
Inventor
D·M·查普曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonas Corporation
Original Assignee
Crystal Us Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Us Co Ltd filed Critical Crystal Us Co Ltd
Publication of CN102596813A publication Critical patent/CN102596813A/zh
Application granted granted Critical
Publication of CN102596813B publication Critical patent/CN102596813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Colloid Chemistry (AREA)
  • Paper (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及用于制造稳定、碱性、高固体、低粘度、低表面张力、低可燃性、亚微米氧化钛溶胶的组合物和方法、及其使用方法,所述溶胶具有最低的讨厌气味。本发明的组合物包括例如用作分散剂的强有机碱和弱有机碱的混合物以稳定氧化钛溶胶。已经发现,所述分散剂混合物可导致相对高的氧化钛固体含量、低表面张力、低粘度的悬浮液,所述悬浮液的可燃性低。根据本发明制造的溶胶能够用于例如催化应用如柴油机排放控制用催化剂载体中、或用于期望具有处于溶胶形式的氧化钛的污染物光催化剂应用中。

Description

稳定的亚微米氧化钛溶胶
发明背景
本发明涉及可用作催化剂载体和粘接剂的高表面积锐钛矿氧化钛碱性溶胶组合物及其制造方法。通常将高表面积或超细锐钛矿氧化钛(TiO2)用作催化剂载体材料,以在称作选择性催化还原(SCR)的方法中通过利用氨或尿素进行的还原,能够与大气污染物如氮的氧化物、尤其是源自柴油机废气中物质反应。在这种催化方法中,典型地将氧化钛用作活性催化金属或氧化物的载体材料,所述氧化物典型地为氧化钒或其他活性材料如铁、铈、铜和/或氧化锰。在光催化(光催化,PC)破坏这种大气污染物如氮、硫的氧化物、臭氧、有毒和令人不适的气味如VOC、以及粒子材料如粉尘和污垢中,锐钛矿氧化钛自身就有活性。所述氧化钛能够单独使用、或能够与其他材料混合,并布置为表面上的涂层。当通过UV光照射时,氧化钛涂层吸收UV光,由此驱动光催化过程,从而降解、还原或氧化污染物。所述氧化钛可以以稳定的含水胶体分散液(溶胶)即其中氧化钛颗粒足够小而足以在长时间内抵抗沉降的混合物的形式提供。超细锐钛矿氧化钛溶胶的实例包括其分别利用酸和碱胶溶化,并得自MillenniumChemical Co.。溶胶例如在11.5±1的pH下以17.5±2.5的重量%包含氧化钛,并具有>250m2/g的干燥产物的表面积,所述表面积是通过BET法测得的。除了充当催化剂材料之外,以稳定溶胶形式提供的锐钛矿氧化钛小颗粒能够用作粘接剂材料,以提高其他氧化钛颗粒对独石载体的粘合。此外,以小颗粒形式提供氧化钛催化材料和载体材料的能力,对于通过包覆壁流微粒过滤器的壁中的孔而对柴油微粒过滤器(DPF)增加SCR活性特别有利。将这种组合的微粒过滤器/SCR催化剂称作SCR-F,且该方法在分离的SCR/DPF催化剂上提供明显的优势。
尽管作为用于生产催化剂材料的氧化钛源显示了巨大的可用性,但是其具有几个缺点。如上所述,具有约17.5wt%的氧化钛含量。出于几种原因而期望提高溶胶的固体含量。首先,在更高固体下提供的溶胶具有更低的运输和关税成本。其次,当用于生产工艺如洗涂独石时,更高的固体溶胶在一个洗涂步骤中能够沉积更多的氧化钛固体,这能导致改进的功能性、更低的加工成本或二者。此外,通过有机分散剂二乙胺(DEA)可在约11.5的pH下稳定化,所述二乙胺既是强碱又可与水混溶,从而其为良好的碱性胶溶剂。
然而,这种常规获得的溶胶由于二乙胺的高蒸气压和低沸点而具有相对高的可燃性(闪点35℃),所述二乙胺占溶胶的约2.6wt%。
尽管具有由高蒸气压的分散剂而在相对高固体含量下提供的不期望的性质,但是其具有期望的低粘度和低表面张力性质。这些期望性质是有用的,因为其有助于溶胶进入独石载体的通道和/或孔中,从而改善了洗涂工艺。
由此期望开发一种改善的具有更低蒸气压的溶胶,其在更高固体下提供,具有更低蒸气压,其能够在相对温和的条件下制得,同时仍保持低粘度和低表面张力的有利性质。
在美国专利5,049,309以及更近的US2009/0062111A1中公开了制备稳定的氧化钛溶胶的胶溶化路线。在这种方法中,能够使用源自硫酸盐工艺中的沉淀的含水氧化钛前体。在如下两个文献中对这种沉淀的含水氧化钛前体的物理结构进行了描述:Sathyamoorthy,S.,etal,in Crystal Growth and Design,(2001)Vol.1,No.2,123-129和Jalava,J.-P.,in Industrial & Engineering Chemistry Research,(2000),Vol.39,No.2,349-361。简单概括,这种沉淀材料由小的锐钛矿初级微晶构成,典型地尺寸为几nm数量级。这些微晶进一步结合在一起以形成直径典型地为50~100nm的通常称作初级聚集体的物质。这些初级聚集体还进一步结合在一起以形成直径大约为1或2微米(1μm~2μm)的团聚体。最终的团聚颗粒由此具有内孔网络。据认为,在胶溶化过程中,使用时间、温度和pH的苛刻条件以产生化学力,所述化学力破坏将初级聚集体结合在一起以形成微米级团聚体的力。当克服这后一种力时,团聚体破碎成约50~100nm大小的初级聚集体。在更苛刻的胶溶化条件下,则初级聚集体破碎成初级微晶。本发明的一个目的是提供能够在不那么苛刻的pH、时间和温度条件下能够实施的将团聚体破碎成更小颗粒,并同时能够得到具有更高固体含量的溶胶的替代方案。
为了将氧化钛溶胶用作活性催化剂材料、催化剂载体或催化剂粘接剂,不利的是使用IA或IIA族元素的氢氧化物作为分散剂或胶溶剂,因为例如这种碱(例如NaOH和KOH)会造成SCR反应强烈的催化剂中毒。因此,将本发明的碱性分散剂限制为有机碱(并因此在用于诸如SCR的应用的最终催化制品的生产工艺期间能够烧掉)。弱有机碱的实例如比DEA具有更低可燃性和成本的NH3和烷醇胺,其碱性不如DEA强,因此不会有效将氧化钛胶溶以制备稳定的溶胶。具有比DEA更低的可燃性的非常强的碱的实例是氢氧化四甲基铵(TMAOH)。然而,该试剂由于其为水溶液中的盐的事实而制造了具有相对高表面张力的溶胶。此外,TMAOH及其分解产物(胺)具有非常强且讨厌的气味。最后,与其他有机碱例如烷醇胺相比,TMAOH是相对昂贵的试剂。
将高固体含量和稳定性的最佳特征进行优化并降低可燃性、粘度和表面张力的特征的氧化钛溶胶是高度期望的。
发明概述
本发明涉及用于制造稳定、碱性、高固体、低粘度、低表面张力、低可燃性、亚微米氧化钛溶胶的组合物和方法、及其使用方法,所述溶胶具有最低的讨厌气味。本发明的组合物包括例如用作分散剂的强有机碱和弱有机碱的混合物以稳定氧化钛溶胶。已经发现,所述分散剂混合物可产生相对高的氧化钛固体含量、低表面张力、低粘度的悬浮液,所述悬浮液的可燃性低。
附图简述
图1是关于各种孔体积的颗粒,对作为颗粒质量分数函数的理想的锐钛矿颗粒悬浮液粘度进行比较的图。
图2是溶胶的TEM。
图3显示了在按本文中所预期的介质研磨之后本发明的氧化钛溶胶(实施例23)的颗粒的TEM图像。
发明详述
本发明涉及用于制造稳定、碱性、高固体、低粘度、低表面张力、低可燃性、亚微米氧化钛溶胶的组合物和方法、及其使用方法,所述溶胶具有最低的讨厌气味。本发明的组合物包括例如用作分散剂的强有机碱和弱有机碱的混合物以稳定氧化钛溶胶。已经发现,所述分散剂混合物可产生相对高的氧化钛固体含量、低表面张力、低粘度的悬浮液,所述悬浮液的可燃性低。所述方法涉及使用小、高密度研磨介质对氧化钛前体材料进行介质研磨,以在相对温和的时间、温度和pH条件下有效制造超细氧化钛颗粒。所述方法还具有非常高的灵活性之处在于,能够包括其他无机添加剂用以进一步改进并提高氧化钛表面以改进功能性。例如,当在氧化硅的形式如硅酸四(烷基)铵(例如硅酸四甲基铵)存在下对氧化钛进行研磨时,氧化钛颗粒的表面对烧结稳定,从而即使在为使用产物作为催化剂而向氧化钛中添加的氧化钒的存在下,在苛刻的热和水热条件下仍能够有效保持氧化钛的锐钛矿相并防止晶体生长。这后一种改进对于将氧化钛溶胶用于SCR-F应用中特别相关,在所述SCR-F应用中温度由于在过滤器再生期间烟粒燃烧而变得非常高。
本发明的组合物与常规获得的相比具有更高的氧化钛固体(例如30wt%对的17.5±2wt%)、更低的可燃性,并可在低粘度和低表面张力下提供。另一个优势是混合物具有相对不讨厌的气味。在与组合物的组合中,介质研磨方法是产生非常小粒径的氧化钛溶胶的非常有效的手段。如上所述,通过利用氧化硅的溶解形式进行处理能够提高从热或水热老化的溶胶中回收的氧化钛的表面积,并且还能够提高锐钛矿相的稳定性,这是催化剂应用所期望的。通过在湿法研磨过程期间并入其他无机添加剂如三氧化钨能够进一步提高氧化钛溶胶的催化功能性。
在这些方法中,本发明提供替代性分散剂组合物,其能够容易地制备高固体wt%、低粘度、低表面张力、小粒径的溶胶。优选的分散剂混合物包含弱有机碱(例如烷醇胺)和强有机碱(例如氢氧化烷基季铵盐)。另外,氧化硅稳定的溶胶,与未利用氧化硅稳定或用氧化硅的替代形式稳定的溶胶相比,保持了更高的表面积并展示了更好的相稳定性。此外,具有添加的氧化硅和氧化钨的溶胶是氧化钒基SCR催化剂的良好催化剂载体。
例如在催化应用如用于柴油排放控制的催化剂载体或在其中期望以溶胶形式具有氧化钛的污染物光催化剂应用中,能够使用根据本发明制造的溶胶。
在详细描述本发明的各种实施方案之前,应注意,认为本领域技术人员能够使用本文中的描述在其最大程度下实践本发明。如下实施方案和实例描述了如何完成本发明的各种组合物和方法并认为仅是示例性的,且无论如何不能用于限制本发明。本领域技术人员可迅速分辨源自所述方法的合适变化。
本发明的特殊目的是制造处于锐钛矿晶体形式的非常小粒径、高表面积氧化钛的高固体(高锐钛矿wt%)、稳定、低可燃性、低粘度、低表面张力、碱性悬浮液。术语“稳定”是指随时间而不会沉降且随时间仍保持低粘度。即,不稳定的溶胶易于在几个月的时间过后形成不可接受量的沉降物,或溶胶能够充分提高粘度,最终形成“凝胶”。通过制造小尺寸的颗粒可避免沉降。
这些溶胶的用途包括但不限于,用作例如光催化和柴油机排放控制催化剂应用。使用涉及介质研磨的方法制造所述溶胶,所述方法能够在工业规模下以简单方式实施。其他表面改性步骤(如果存在)涉及利用另一种处于活性形式的无机材料如氧化钨和/或氧化硅对氧化钛溶胶进行处理。另外的实施方案涉及利用氧化钨、氧化铈、锰、铜、氧化钒或其他活性催化剂、助催化剂或催化剂稳定剂对氧化钛表面进行改性。本发明的产物具有本文中所述的独特性能。
氧化钛起始材料:
在本发明中,一般将源自硫酸盐法的沉淀的、含水TiO2用作高表面积锐钛矿的起始源材料。作为实例,具有锐钛矿晶体结构的氧化钛材料得自Thann,法国的MIC工厂,其含有约16wt%的挥发性内容物(灼烧失重),含有小于约0.8wt%的残余硫酸盐内容物(以SO3报道),具有高表面积(大于约250m2/g)、高孔体积(大于约0.25cm3/g)和约1.5微米的孔径(通过光散射法测得的D50)。然而,可使用微粒氧化钛的其他源,尤其是具有高得多的表面积(高达400m2/g)和孔体积(高达0.4cm3/g)的那些。利用氨水对上述材料进行中和并利用水进行洗涤以提供相对低硫酸盐产物。可从例如具有更高挥发性内容物和更高硫酸盐含量的上游工艺步骤中捕集微粒氧化钛。在此情况中,溶胶制造方法必须包括其他步骤以降低硫酸盐水平,因为已知高硫酸水平将使得胶体溶胶不稳定。优选使用非常低硫酸盐的氧化钛。
高固体的定义:本发明的独特特征是特别地使用具有高孔隙率的氧化钛源易于制备高固体(更具体地,高体积分数)、低粘度的氧化钛溶胶的能力。例如,如在Hiemenz和Rajagopalan的“Principles ofColloid and Surface Chemistry”的168页中所述,Dougherty-Krieger模型,根据颗粒展示的分数占据体积(Ф)和两个恒量术语即限制占据体积(Фmax)和固有粘度[η],描述了球形颗粒的理想悬浮液的相对粘度。
η/η0=[1-(φ/φmax)]-η±φmax
在上述表达式中,η是颗粒悬浮液的粘度,η0为纯溶剂的粘度。
关于多孔颗粒,因此在Ф与固体质量分数(x)之间存在关系,所述关系取决于例如颗粒的骨架密度(ρs,对于锐钛矿取为3.8g/cc)、流体密度(ρf)和颗粒孔体积PV,所述颗粒孔体积是通过氮孔隙率法测得的。
Ф=(1/ρs+PV)*ρf*x/(1-x*(1-ρfs))
图1显示了分别具有0.00cm3/g、0.40cm3/g和0.50cm3/g的孔体积(PV)和具有指定为Фmax=0.632且[η]=3.13的典型值的代表性锐钛矿颗粒的计算曲线。
在图1中能够看出,随着浆体固体超过0.40的质量分数,粘度随颗粒的孔体积而急剧增大,而对于无孔颗粒粘度仍保持为很低。此外,颗粒孔体积越高,则在恒定质量分数下的粘度越高。根据该讨论的重要结论是,氧化钛的许多先前技术的高固体悬浮液,例如包含颜料应用用的金红石相氧化钛的悬浮液,是得自具有很小或不具有孔体积的氧化钛颗粒。由此,在保持低粘度的同时将本发明的高孔锐钛矿氧化钛颗粒配制成高固体溶胶是极具挑战性的,因为在颗粒的孔中含有流体。
分散剂:
如上所述,本发明的目标是提供稳定的含水碱性溶胶,其比常规产品具有更高的固体和更低的可燃性,但与所述产品相比仍保持或具有更好的性质。在碱性分散剂存在下通过添加水将氧化钛源材料形成浆体。优选地,所述分散剂为有机化合物,其在随后的焙烧期间在烧掉之后不会留下残余物,以应用于其中残余的Na或K离子是强催化剂毒物的应用(例如SCR)中。当用于PC应用时,这种残余物还会抑制氧化钛的光催化活性。还优选地,分散剂与水混溶,从而防止最终的溶胶分离成水相和有机相。在表1中给出了能够用于本发明中的某些可能的分散剂的列表,其中能够看出,存在多种碱性、具有比DEA更低的蒸气压(更高的沸点和闪点)并与水混溶的多种有机化合物。例如,特别合适的一类普通材料是烷醇胺(包括但不限于单乙醇胺、二乙醇胺、单异丙醇胺和氨基甲基丙醇)。可用于本发明中的烷醇胺的其他实例包括但不限于,三乙醇胺、异丙醇胺、二异丙醇胺和三异丙醇胺。或者可使用取代的烷醇胺如烷基取代的烷醇胺,其实例包括但不限于,N,N-二甲基乙醇胺、N-甲基二乙醇胺、N-甲基乙醇胺和N,N-二乙基乙醇胺。这些物质是易于获得的试剂,其可用于例如废气洗涤应用,且还发现可用作氧化钛用分散剂的功效。在表1中注明的另一种材料是氢氧化四甲基铵(TMAOH)。然而,不期望以明显量使用TMAOH作为单独的分散剂,因为其相对昂贵,且非常恶臭,并能够与水提供相对高表面张力的混合物。具有类似性质的其他氢氧化烷基季铵包括但不限于氢氧化四乙基铵、氢氧化四丙基铵等。
表1中给出了(对于大部分分散剂实例)碱的强度(酸解离常数的负对数)的量度-pKa。pKa越高,碱越强。由此例如二乙胺是比单乙醇胺更强的碱,其为比二乙醇胺更强的碱(pKa 10.8>9.5>8.9)。尽管上述胺是相对强的碱,但是表1中最强的碱是TMAOH,因为这种试剂在水中几乎完全解离(其为1∶1的电解质),从而氢氧根浓度几乎等于初始TMAOH的浓度。
表1用于将氧化钛悬浮在水性溶胶中的分散剂的实例
实施例:各种溶胶的表征和性质
实施例1:S5-300B
从法国Thann的MIC生产设施得到商购获得的先前技术的氧化钛分散液S5-300B的试样。通过使用强有机碱二乙胺(DEA)的胶溶化方法制备了该溶胶(本文中其他处称作E1)。通过各种手段对溶胶进行表征以确定物理性质。利用使用Du Nouy环法的Kruss K-100张力计测量了TiO2浆体的表面张力,使用Brookfield粘度计测量了粘度。使用Pensky-Martens法测量了可燃性。此外,通过透射电子显微镜(TEM)对试样进行了分析。使用异丙醇和水50∶50的混合物对提供的浆体进行1000∶1的稀释,制备了试样以用于TEM分析。将稀释的悬浮液简单手动摇动并将碳涂覆的Cu TEM网格直接浸入悬浮液中。将网格进行空气干燥并然后在50~400000X的倍率下以TEM进行观察。使用在200kV下运行的JEOL 2000FX II TEM进行分析。在成像过程期间,要特殊关注以对相尺寸和分布进行表征。利用Gatan MultiScan CCD相机采集图像并储存为jpeg格式。
实施例2:SB-X1
从法国的Thann的MIC生产设施得到先前技术的氧化钛分散液SB-X1的试样。通过使用强有机碱氢氧化四甲基铵(TMAOH)的胶溶化方法制备了该溶胶。按上述对溶胶进行了表征。
表2先前技术的溶胶的性质
在表2中能够看出,实施例1和2的溶胶S5-300B和SB-X1,两者都是通过胶溶化方法是用单一强有机碱制成的,具有仅17.5wt%的相对低的氧化钛固体含量。这些溶胶还具有低的粘度。然而,其闪点和表面张力不同。对于S5-300B,其低闪点是不期望的,SB-X1的高表面张力也是不期望的。图2显示,S5-300B溶胶中的氧化钛颗粒由约50~60nm大小的初级聚集体构成,这些聚集体由大约几个纳米大小的初级锐钛矿微晶构成。
SB-X1溶胶的TEM分析显示,在此情况中的氧化钛颗粒也由约50~60nm大小的初级聚集体构成,这些聚集体由大约几个纳米大小的初级锐钛矿微晶构成。
实施例3-9
在如下实施例中,单独或以相互组合的方式使用各种分散剂,制备了各种溶胶。关于这些实验,含水分散液被制成具有30wt%的TiO2内容物且总分散剂质量相对于TiO2为恒定比例20wt%,从而总的固体内容物(氧化钛+分散剂)为约37.5wt%,其中分散剂的总量为约7.5wt%。从法国Thann的MIC生产设施得到起始氧化钛,且该材料处于锐钛矿晶体形式,展示了17wt%的在1000℃下的灼烧损失,并含有<0.8wt%的SO3。平均粒径(D50)为1.2微米。制备了100g或各种浆体,并添加75g研磨介质(0.3mm的YTZ介质)。然后,通过使用Brinkman Retzsch行星磨进行介质研磨1小时,完成氧化钛颗粒的粒径下降。然后,通过测量pH、Brookfield粘度和粒径(通过MalvernMastersizer 2000在水中的静态光散射)对产物进行表征。将结果示于表3中。
表3通过行星磨制备的各种溶胶的性质
在实施例3~7中,各种溶胶仅含有单种分散剂。除了实施例3的溶胶(氢氧化四甲基铵)之外,能够观察到,制备的溶胶的粘度非常高,且在一种情况中(E7,氢氧化铵),溶胶硬化成凝胶而抗拒一起流动。在实施例3(TMAOH)中,粘度相对低,但pH异常高,如上所述,仅利用TMAOH制备的SB-X1溶胶的表面张力非常高。此外,TMAOH是非常昂贵且恶臭的原材料,对其普遍应用产生影响。
使用两种分散剂(实施例8中为DEAOH/MEAOH,实施例9中为DEAOH和NH4OH)的混合物制备了实施例8和9的溶胶。关于这些混合物,分散剂的总量保持恒定且等于氧化钛的20wt%,分散剂的比例随表3中的括号中所示而变化。由此,通过以基于TiO2为15wt%:基于TiO2为5wt%的比例混合二乙醇胺和单乙醇胺并以,形成了实施例8的溶胶。在表3中能够看出,即使关于这些混合的分散剂,制备的溶胶的粘度仍非常高。
实施例10~22
作为本发明的优选实施方案,使用特定的分散剂混合物以根据上述实施例8和9中给出的方法制备溶胶。尽管分散剂的总量保持恒定且等于氧化钛的20wt%,但是分散剂的比例随表3中的括号中所示而变化。惊奇地,在表3中能够看出,TMAOH与烷醇胺MEAOH、DEAOH、TEAOH和DMEAOH的混合物展示了非常低的粘度(实施例10、11、13~15、19)。在这些实施例中,(以TiO2为基础)以1wt%~5wt%的相对低量存在TMAOH。通过将这些实施例的溶胶与存在烷醇胺作为仅有的分散剂的其他溶胶(实施例4和5的溶胶)相比,易于观察到,当与烷醇胺混合时,TMAOH的这种小的添加量对粘度的明显效果。能够看出,由烷醇胺与TMAOH的分散剂混合物制备的溶胶的粘度与(实施例1)的粘度相当,而不受本发明溶胶的固体含量高得多(约30%的TiO2)的影响。
也通过上述方法制备了另外的二元和三元混合物,特别地,以强碱AMP和MIPA(pKa分别为9.8和9.7)代替了非常强的碱TMAOH以形成与乙醇胺MEAOH、DEAOH和TEAOH的混合物。当以2~5wt%(基于TiO2)的量将AMP与DEAOH混合时(实施例12和17),相对于仅由DEAOH制成的溶胶(实施例5),所述混合物具有明显更低的粘度。类似地,当与TEAOH(实施例20)混合时,溶胶的粘度相对低。然而,当将AMP与MEAOH混合时(实施例16),粘度高且混合物形成凝胶。由此,AMP不具有如同TMAOH的强效果。关于MIPA与烷醇胺MEAOH(实施例21)和DEAOH(实施例22)的混合物,能够记录类似的观察。在实施例21的情况中,溶胶的粘度非常高,而在实施例22的情况中,溶胶的粘度中等。
不受理论限制,根据上述数据能够得到某些趋势。首先,当制备这些碱性、高固体氧化钛溶胶时,当在相对低水平(基于TiO2为20wt%)下将弱碱(pKa<~9.5)用作仅有的分散剂时,制得的溶胶易于具有相对高的粘度。其次,非常强的碱TMAOH和相对弱的烷醇胺碱的混合物能够制造期望的低粘度的溶胶。
实施例:研磨方法
本发明还涉及通过在新型分散剂组合存在下使用非常小的介质进行的研磨,非常高效地对初始氧化钛团聚体和聚集体颗粒进行解团聚和解聚集。这种制备方法对于本发明是必需的,因为已经发现,利用上述分散剂混合物对通常用于制备这种溶胶的化学胶溶化路线不是很有效。在研磨方法中,将反应物(涉及氧化钛源和分散剂混合物)通过介质磨(例如Netzsch Labstar或LMZ-10磨)。在研磨室中短暂的停留时间之后,起始材料中的氧化钛聚集体和团聚体基本被解聚集和解团聚,以产生超细氧化钛稳定溶胶,其主要包含具有约5nm大小的颗粒,具有痕量30~60nm大小的初级聚集体和超过100nm大小的更大的团聚体。在研磨方法中,通过研磨介质提供的机械能对碱性胶溶化方法的化学能进行补充,这使得能够在相对温和的间、温度和pH条件下制得高固体溶胶。这种研磨方法的另一个关键特征是当利用添加的氧化钛表面改性剂实施研磨方法时,其能够具有配制灵活性,所述改性剂包括但不限于氧化硅、氧化钨和氧化铝。通过比较,这种添加剂一般干扰化学胶溶化过程,且在添加剂进一步稳定氧化钛表面的程度内,在粉碎步骤期间将其并入是有利的。需要独特的分散剂化学品以稳定小的氧化钛颗粒以防止重新聚集,并提供在温和研磨条件下制备的低粘度、低表面张力的溶胶。
实施例23:通过氧化钛与混合的DEAOH/TMAOH分散剂的介质研磨制备高固体溶胶
该实施例显示,通过介质研磨来制备本发明的新型、高固体溶胶组合物的容易性。通过首先将6.66kg二乙醇胺(85%的DEAOH)和2.52kg氢氧化四甲基铵(25%的TMAOH)混合入44.51kg水中制备浆体组合物。在良好混合下,向该溶液中添加30.3kg的锐钛矿氧化钛(17%的灼烧失重,<0.8wt%的SO3)。该混合物含有30wt%的TiO2、6.75wt%的DEAOH和0.75wt%的TMAOH。使用利用0.2~0.3mm的介质的NetzschLMZ-10磨,对其进行研磨。使浆体再循环穿过研磨室并持续173分钟的总经过时间。本文中将这种材料指定为E23。将实施例23的溶胶的某些性质示于表4中。能够看出,该溶胶具有10.8的pH(低于S 5-300B和S5-300B2的pH)、相对低的粘度、低的表面张力(远低于S5-300B2的表面张力)和高的闪点。此外,溶胶基本无味。
表4通过介质研磨制备的各种溶胶
为了对新型溶胶的粒径进行评价并与S5-300B的粒径进行比较,使用TEM和x射线盘式离心机两者。关于后一种方法,将溶胶各自稀释至3~4wt%的TiO2,并在Brookhaven Instrument Corporation BI-XDC仪器上在9000RPM下运行45分钟的时间。在下表5中能够看出x射线盘式离心机的分析结果(以颗粒数为基础进行计算),并将TEM分析的示例性结果示于图3中。
表5
  S5-300B   E23
  D10,nm   32   18
  D16,nm   34   20
  D50,nm   40   28
  D84,nm   49   40
  D90,nm   53   46
  跨度(D90-D10)/D50   0.51   0.97
XDC测量显示,通过研磨方法制备的本发明的组合物具有更低的中值粒径(D50),但是粒径分布稍宽于S5-300B的粒径分布。TEM图像(图3)显示,研磨的试样也由具有约5nm大小的微晶构成,然而,与S5-300B(图2)相比,团聚度明显下降,从而在研磨试样中存在许多更小的颗粒(图3)。在E23(图3)中团聚体和聚集体的水平为从接近零到小比例的“标准”团聚体的范围内,在接近零时,试样的主要量由游离(未团聚的)微晶构成,所述小比例的“标准”团聚体具有类似于标准试样的微晶聚集体/团聚体。
结果显示,与通过化学胶溶化路线制造的先前技术的氧化钛溶胶产物(例如)相比,本发明的介质研磨的混合分散剂溶胶包含
明显更小的颗粒。与上述新型弱碱/强碱分散剂混合物组合(例如实施例10~22),使用本文中所述的研磨方法惊奇地导致氧化钛溶胶具有更高的氧化钛含量、低粘度、低表面张力和低可燃性。
实施例25、26、28:溶胶制备期间氧化钛的表面改性
在氧化钛的催化应用中,期望使粒径最小化,使氧化钛载体的表面积最大化,并将氧化钛主要保持为锐钛矿晶体形式。此外,期望并入各种改性剂和稳定剂以提高催化活性。作为实施例,商购获得的用于SCR应用的氧化钛基催化剂含有添加的氧化钒(催化活性氧化物)以及氧化钨和任选的氧化硅。氧化钨是改性剂/促进剂,因为其使得氧化钒的活性中等(例如其抑制了氧化钒对SO2进行氧化的趋势)。氧化硅任选地存在于表面上以提高催化剂的热稳定性。
通过在可溶解形式的氧化硅的存在下进行介质研磨,制备了本发明的碱性、低粘度氧化硅表面处理的溶胶,所述溶胶按表4中所示包含硅酸四甲基铵和/或氧化钨。
对于实施例26,以如下方式制备了具有90%TiO2、4%SiO2和6%WO3的组成(以无机氧化物为基础)的溶胶(E26)。通过首先将49g单乙醇胺(85%的MEAOH)和233g硅酸四甲基铵(9%的SiO2)、36g仲钨酸铵(APT,88%的WO3)和864g水进行混合,制备浆体组合物。在良好混合下,向该溶液中添加569g锐钛矿氧化钛(17%的灼烧失重,<0.8wt%的SO3)。该混合物含有30wt%的总无机氧化物。使用利用0.2~0.3mm的YTZ介质的Netzsch Labstar 0.5-L磨,对其进行研磨。使浆体在0.56L/分钟的流量下重新循环穿过研磨室并持续30分钟的总经过时间。以类似方式,制备了实施例25和28中的溶胶(分别为E25和E28),但具有不同的最终组成。根据表4中的数据能够看出,利用上述组合物并通过介质研磨方法制造的溶胶具有小的粒径、低的粘度和低的表面张力。这种溶胶可以以本文中所预期的方式使用,例如用于催化应用如SCR中。
实施例29
实施例29涉及展示通过在制造溶胶期间并入氧化硅和氧化钨改性剂而实现的催化优势。制备了具有与实施例26相同组成(90%TiO2、4%SiO2和6%WO3的对比TiO2-SiO2-WO3材料,仅在此情况中,在制备TiO2溶胶之后添加WO3和SiO2(以Ludox胶体二氧化硅的形式)。由此,在搅拌下向100g实施例10的溶胶中添加2.27g APT(88%的WO3)和4.4g Ludox AS-30(30%SiO2)。将该材料指定为E29。
以如下方式对作为氧化钒基催化剂用的催化剂载体的溶胶E1、E26和E29进行了评价。在各种情况中,向合适量的溶胶(例如50g 30wt%的溶胶)中添加0.31g氧化钒以提供2wt%V2O5的恒定负载,然后使用旋转蒸发仪在75℃下在真空下对混合物进行干燥。然后,在水热环境中在高温下对氧化钒负载的材料进行老化(在10%的H2O中在750℃下持续16小时),从而模拟实际使用中的加速老化以例如作为汽车柴油机排放发动机应用所使用的SCR催化剂。然后,通过使用0.1g各种氧化钒负载的催化剂试样,对老化的催化剂进行评价以确定其将NO转化成N2(脱NOx)的能力。将催化剂造粒并筛分至-20/+40目,将其装入反应器中以确定在NH3存在下NO的转化。在650l/g.催化剂-小时的空速下将含有5%O2、500ppm NH3、500ppm NO和5%H2O的流股通过催化剂,将在三个不同反应温度下报道的NO转化率结果示于下表6中。
表6各种催化剂的脱NOx试验结果
结果显示,E26催化剂材料的活性比通过后添加WO3和SiO2氧化物制得的相当的组合物E29和得自E1的溶胶的组合物的高得多。
因此,在本发明的优选实施方案中,以合适比例混合超过一种的分散剂,以实现本发明的新型更低可燃性的碱性溶胶。由此,在一个实施方案中,能够以与更大量烷醇胺例如二乙醇胺的混合物的方式使用少量昂贵并恶臭的TMAOH,以实现稳定的高pH溶胶。
出乎意料地,现在已经发现,本文中公开的某些分散剂的特殊混合物,即使当用于制备本发明的高固体氧化钛溶胶时,仍具有非常低的粘度和表面张力。
在一个实施方案中,通过胺的pKa和溶胶的pH能够指导用于混合物中的分散剂的选择,据所述pKa能够确立胺的碱度。例如,能够将作为相对弱的碱(pKa<10.5)的胺用作主要分散剂成分,而能够将作为相对强的碱(pKa>10.5)的胺用作次要分散剂成分。
尽管已经详细地对本发明及其优势进行了描述,但是应理解,在
不背离附属权利要求书所限定的本发明的主旨和范围内此处能够完成各种变化、取代和替换。而且,本发明的范围不应限定为本说明书中所述的方法、物质的组成、手段、方法和步骤的特殊实施方案。本领域技术人员根据本发明的内容易于理解,根据本发明可利用目前存在的或后来开发的方法、物质组成、手段、方法或步骤,以基本发挥与本文中所述相应实施方案相同的功能或基本实现相同的结果。因此,附属权利要求书倾向于包括在其范围内的这种方法、物质组成、手段、方法或步骤。
本文中引用的各种文献、专利或出版物通过参考明确地并入本文中。

Claims (14)

1.一种水性氧化钛溶胶,其包含:
固体成分,所述固体成分包含至少50重量%的锐钛矿TiO2颗粒和小于50重量%的TiO2之外的至少一种无机氧化物;和
pKa<10.5的弱碱和pKa>10.5的强碱的水性混合物,所述弱碱为烷醇胺;且
其中所述水性氧化钛溶胶pH>10,且所述锐钛矿TiO2颗粒(i)具有<1μm的尺寸,并且(ii)以>0.25的质量分数和/或体积分数存在于所述水性氧化钛溶胶中。
2.权利要求1的水性氧化钛溶胶,其中所述TiO2之外的至少一种无机氧化物选自氧化硅、氧化钨、氧化铝、氧化铈、氧化铜、氧化铁、氧化锰、氧化钒和它们的组合。
3.权利要求1的水性氧化钛溶胶,其中所述锐钛矿氧化钛颗粒具有超过50m2/g的表面积,并具有超过0.10cm3/g的孔体积。
4.权利要求1的水性氧化钛溶胶,其中所述强碱为氢氧化烷基季铵。
5.权利要求1的水性氧化钛溶胶,具有<100cp的粘度。
6.权利要求1的水性氧化钛溶胶,具有<70mN/m的表面张力。
7.权利要求1的水性氧化钛溶胶,具有>100℃的闪点。
8.一种制造超细水性氧化钛溶胶的方法,所述方法包括:
提供一种水性氧化钛溶胶,所述水性氧化钛溶胶包含:
固体成分,所述固体成分包含至少50重量%的锐钛矿TiO2颗粒和小于50重量%的TiO2之外的至少一种无机氧化物;和
pKa<10.5的弱碱和pKa>10.5的强碱的水性混合物,所述弱碱为烷醇胺;且
其中所述超细水性氧化钛溶胶pH>10,且所述锐钛矿TiO2颗粒(i)具有<1μm的尺寸,并且(ii)以>0.25的质量分数和/或体积分数存在于所述水性溶胶中;和
在TiO2颗粒具有<1μm的尺寸之后通过介质研磨对所述超细水性氧化钛溶胶进行处理,由此形成所述超细水性氧化钛溶胶。
9.权利要求8的方法,其中所述TiO2之外的至少一种无机氧化物选自氧化硅、氧化钨、氧化铝、氧化铈、氧化铜、氧化铁、氧化锰、氧化钒和它们的组合。
10.权利要求8的方法,其中所述锐钛矿氧化钛颗粒具有超过50m2/g的表面积,并具有超过0.10cm3/g的孔体积。
11.权利要求8的方法,其中所述强碱为氢氧化烷基季铵。
12.权利要求8的方法,其中所述超细水性氧化钛溶胶具有<100cp的粘度。
13.权利要求8的方法,其中所述超细水性氧化钛溶胶具有<70mN/m的表面张力。
14.权利要求8的方法,其中所述超细水性氧化钛溶胶具有>100℃的闪点。
CN201080051031.XA 2009-11-13 2010-10-07 稳定的亚微米氧化钛溶胶 Active CN102596813B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/618,484 US8247343B2 (en) 2009-11-13 2009-11-13 Stable sub-micron titania sols
US12/618,484 2009-11-13
PCT/US2010/051810 WO2011059606A2 (en) 2009-11-13 2010-10-07 Stable sub-micron titania sols

Publications (2)

Publication Number Publication Date
CN102596813A CN102596813A (zh) 2012-07-18
CN102596813B true CN102596813B (zh) 2014-09-24

Family

ID=43992293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080051031.XA Active CN102596813B (zh) 2009-11-13 2010-10-07 稳定的亚微米氧化钛溶胶

Country Status (14)

Country Link
US (2) US8247343B2 (zh)
EP (1) EP2499096B1 (zh)
JP (1) JP5519022B2 (zh)
KR (1) KR101767698B1 (zh)
CN (1) CN102596813B (zh)
AU (1) AU2010318634B2 (zh)
BR (1) BR112012011278B1 (zh)
CA (1) CA2778778C (zh)
MX (1) MX2012005244A (zh)
MY (1) MY182360A (zh)
SA (2) SA110310823B1 (zh)
TW (1) TWI433815B (zh)
UA (1) UA107946C2 (zh)
WO (1) WO2011059606A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944072B2 (en) * 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8247343B2 (en) 2009-11-13 2012-08-21 Chapman David M Stable sub-micron titania sols
US8617502B2 (en) * 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
JP5897995B2 (ja) * 2012-06-07 2016-04-06 テイカ株式会社 アルカリ性のアナタース形チタニアゾル及びその製造方法
WO2014118372A1 (en) * 2013-02-02 2014-08-07 Joma International A/S An aqueous dispersion comprising tio2 particles
EP2950924A1 (en) 2013-02-03 2015-12-09 Joma International AS A catalytic substrate surface containing particles
TWI651269B (zh) * 2013-09-23 2019-02-21 歐洲泰奧色得有限公司 二氧化鈦粒子及其製備方法
CN108463435A (zh) * 2015-11-20 2018-08-28 克里斯特尔美国有限公司 二氧化钛组合物和其作为防止污染剂的用途
FR3060554B1 (fr) * 2016-12-20 2022-04-01 Saint Gobain Ct Recherches Produits ceramiques de sous oxydes de titane
CN108889297B (zh) * 2018-07-31 2020-12-29 包头稀土研究院 Scr催化剂及其制备方法和应用
TWI717113B (zh) * 2019-11-20 2021-01-21 郭浩正 用於減少氮氧化物及硫氧化物的複合燃料及其製造方法
WO2022210162A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 触媒およびシクロペンテンの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904411A (en) * 1986-04-25 1990-02-27 Ceramics Process Systems Corp. Highly loaded, pourable suspensions of particulate materials
US7431903B2 (en) * 2001-10-30 2008-10-07 Catalysts & Chemicals Industries Co., Ltd. Tubular titanium oxide particles and process for preparing same
US20090180976A1 (en) * 2008-01-11 2009-07-16 Nanobiomagnetics, Inc. Single step milling and surface coating process for preparing stable nanodispersions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3777931D1 (de) * 1986-09-22 1992-05-07 Ishihara Sangyo Kaisha Titandioxydsol und verfahren zur seiner herstellung.
US4752340A (en) * 1987-01-27 1988-06-21 Kerr-Mcgee Chemical Corporation Titanium dioxide pigments
US5886069A (en) * 1995-11-13 1999-03-23 E. I. Du Pont De Nemours And Company Titanium dioxide particles having substantially discrete inorganic particles dispersed on their surfaces
US6740312B2 (en) * 1996-02-15 2004-05-25 Rhodia Chimie Titanium dioxide particles
GB2361653A (en) 2000-04-28 2001-10-31 Johnson Matthey Plc Improvements in catalytic reduction of NOx
DE102004037118A1 (de) 2004-07-30 2006-03-23 Degussa Ag Titandioxid enthaltende Dispersion
US7763565B2 (en) * 2007-08-31 2010-07-27 Millennium Inorganic Chemicals, Inc. Transparent, stable titanium dioxide sols
US8247343B2 (en) 2009-11-13 2012-08-21 Chapman David M Stable sub-micron titania sols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904411A (en) * 1986-04-25 1990-02-27 Ceramics Process Systems Corp. Highly loaded, pourable suspensions of particulate materials
US7431903B2 (en) * 2001-10-30 2008-10-07 Catalysts & Chemicals Industries Co., Ltd. Tubular titanium oxide particles and process for preparing same
US20090180976A1 (en) * 2008-01-11 2009-07-16 Nanobiomagnetics, Inc. Single step milling and surface coating process for preparing stable nanodispersions

Also Published As

Publication number Publication date
SA110310823B1 (ar) 2014-05-08
SA114350277B1 (ar) 2015-07-07
EP2499096A4 (en) 2015-03-04
AU2010318634A1 (en) 2012-05-17
WO2011059606A3 (en) 2011-09-15
KR101767698B1 (ko) 2017-08-11
TWI433815B (zh) 2014-04-11
US8507405B2 (en) 2013-08-13
CA2778778C (en) 2014-03-25
KR20120101386A (ko) 2012-09-13
EP2499096A2 (en) 2012-09-19
BR112012011278A8 (pt) 2017-12-12
MY182360A (en) 2021-01-20
BR112012011278A2 (pt) 2016-04-12
US20110118109A1 (en) 2011-05-19
BR112012011278B1 (pt) 2020-02-11
AU2010318634B2 (en) 2013-09-19
EP2499096B1 (en) 2017-11-29
US20120283092A1 (en) 2012-11-08
WO2011059606A2 (en) 2011-05-19
JP2013510707A (ja) 2013-03-28
US8247343B2 (en) 2012-08-21
TW201132592A (en) 2011-10-01
JP5519022B2 (ja) 2014-06-11
CN102596813A (zh) 2012-07-18
CA2778778A1 (en) 2011-05-19
UA107946C2 (en) 2015-03-10
MX2012005244A (es) 2012-06-19

Similar Documents

Publication Publication Date Title
CN102596813B (zh) 稳定的亚微米氧化钛溶胶
DE69917099T2 (de) Katalysatorträger und Katalysator und Verfahren zur deren Herstellung aus einer Wasser in Öl Emulsion
CN106139750B (zh) 制备催化织物过滤器的方法及催化织物过滤器
CN102686311A (zh) 生产在紫外线和可见光下有活性的包含二氧化钛和二氧化锰的光催化粉末的方法
CN103937311A (zh) 光催化涂料
Toledo-Antonio et al. Highly active CoMoS phase on titania nanotubes as new hydrodesulfurization catalysts
CN102583255B (zh) 一种介孔过渡金属复合氧化物的制备方法
CN102500407A (zh) 双金属掺杂介孔材料sba-15催化剂的制法和双金属掺杂的sba-15催化剂
CN105903484A (zh) 一种甲醇一步氧化制备甲酸甲酯的纳米催化剂及其制备方法
CN101195498A (zh) 含二氧化钛的分散体
JP2009056348A (ja) 光触媒分散液
Olteanu et al. Advanced SiO 2 composite materials for heavy metal removal from wastewater
Sivalingam et al. CeO2-TiO2 photocatalyst: Ionic liquid-mediated synthesis, characterization, and performance for diisopropanolamine visible light degradation
JP2008093630A (ja) 光触媒分散体の製造方法
CN106865594A (zh) 一种水相氟化铈微粒的制备方法及其应用
KR20070092627A (ko) 광촉매 분산체
JP7389735B2 (ja) 固体酸触媒
AU2012100633A4 (en) Stable sub-micron titania sols
JP3981757B2 (ja) 光触媒体およびそれを用いてなる光触媒体コーティング剤
JP4751805B2 (ja) 低次酸化チタン粒子含有組成物の製造方法
JP2006000781A (ja) 高効率環境浄化用光触媒
JP6623364B2 (ja) 光触媒用酸化チタン凝集体及びその製造方法
JP7269541B2 (ja) 非晶質アルミノケイ酸塩粒子の分散液及びその製造方法
JP2001046877A (ja) 固体酸触媒、これを用いたガス除去部材及びそれらの製造方法
JP2006346527A (ja) チタニア/粘土複合多孔体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: American Maryland

Applicant after: Crystal US Co., Ltd.

Address before: American Maryland

Applicant before: Akhtar M. Kamal

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: MILLENNIUM INORGANIC CHEM TO: CRYSTAL US CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190704

Address after: Oklahoma

Patentee after: Tonas Corporation

Address before: American Maryland

Patentee before: Crystal US Co., Ltd.

TR01 Transfer of patent right