CN102589446A - High precision micro-displacement measurement apparatus and method - Google Patents
High precision micro-displacement measurement apparatus and method Download PDFInfo
- Publication number
- CN102589446A CN102589446A CN2012100563483A CN201210056348A CN102589446A CN 102589446 A CN102589446 A CN 102589446A CN 2012100563483 A CN2012100563483 A CN 2012100563483A CN 201210056348 A CN201210056348 A CN 201210056348A CN 102589446 A CN102589446 A CN 102589446A
- Authority
- CN
- China
- Prior art keywords
- grating
- piezoelectric ceramic
- light intensity
- displacement
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 51
- 238000005259 measurement Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 9
- 239000000919 ceramic Substances 0.000 claims abstract description 49
- 230000003287 optical effect Effects 0.000 claims abstract description 12
- 230000002452 interceptive effect Effects 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种高精度微位移测量装置及方法,特别是一种基于压电陶瓷的调整测量精度的微位移测量装置和方法。The invention relates to a high-precision micro-displacement measuring device and method, in particular to a piezoelectric ceramic-based micro-displacement measuring device and method for adjusting measurement accuracy.
背景技术 Background technique
位移传感器作为传感器领域中的重要一部分,可以用来精确测量被测物体的位置、位移变化等变化,主要应用于检测物体的位移、厚度、振动、距离、直径等几何量的测量,在民用和军用领域有着广泛的应用前景。As an important part of the sensor field, the displacement sensor can be used to accurately measure the position and displacement changes of the measured object. It is mainly used to measure the displacement, thickness, vibration, distance, diameter and other geometric quantities of the object. It has broad application prospects in the military field.
在现有报道中,位移传感器主要分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。虽然种类很多,但是现有的位移传感器的位移精度最高只能达到纳米量级,因此,对一些需要高精度位移测量方面起了限制作用。In existing reports, displacement sensors are mainly divided into inductive displacement sensors, capacitive displacement sensors, photoelectric displacement sensors, ultrasonic displacement sensors, and Hall displacement sensors. Although there are many types, the displacement accuracy of the existing displacement sensors can only reach the nanometer level at the highest, so it plays a restrictive role in some aspects that require high-precision displacement measurement.
图1为现有技术中的一种微位移传感器,待测物1与反射面2相连接,光源3出射光束分别通过光栅4和反射面2反射,两束反射光束发生干涉,该干涉光束的光强被光电探测器件5探测,在待测物1和光栅4之间通过静电吸引来改变两者之间的距离,当两者之间的距离发生改变时,相应地,光电探测模块5探测到的相干光束的光强信息也会随之改变,通过分析光强信息的改变可以计算得出待测物1所发生的位移。Fig. 1 is a micro-displacement sensor in the prior art, the object to be measured 1 is connected with the
发明内容 Contents of the invention
本发明针对现有技术中的微位移传感器所存在的测量精度低的问题,提出了一种高精度微位移测量装置。The invention proposes a high-precision micro-displacement measuring device aiming at the problem of low measurement accuracy existing in the micro-displacement sensor in the prior art.
一种高精度微位移测量装置,包括外壳,外壳内设有沿光路依次布置的光源和光栅,所述的光栅沿光轴方向可滑动的安装在外壳内,还设有压电陶瓷部件,该压电陶瓷部件一侧与所述的光栅的表面相贴合,另一侧与外壳相对固定。A high-precision micro-displacement measuring device, including a housing, the housing is provided with a light source and a grating sequentially arranged along the optical path, the grating is slidably installed in the housing along the optical axis, and a piezoelectric ceramic component is also provided. One side of the piezoelectric ceramic component is attached to the surface of the grating, and the other side is relatively fixed to the shell.
采用上述结构的微位移测量装置,光源出射光束分别经光栅和待测物反射后,在光栅朝向光源的一侧形成干涉光束,所述的压电陶瓷部件被施加电压后通过自身的形变带动与之相连的光栅沿光轴方向运动,调整了光栅和待测物之间的间距,当光栅和待测物之间的间距保持在某一定值时,待测物的微小位移可以导致所述干涉光束各个级次方向上的光强改变量最大,产生了最大的光强差值,根据光强的差值可以推算出待测物所发生的微小位移,即待测的微小位移通过光强的差值得到放大,通过检测光强的值可以得出微小位移值。With the micro-displacement measuring device with the above structure, after the beam emitted by the light source is reflected by the grating and the object to be measured, an interference beam is formed on the side of the grating facing the light source, and the piezoelectric ceramic component is driven by its own deformation and The connected grating moves along the optical axis to adjust the distance between the grating and the object to be measured. When the distance between the grating and the object to be measured is kept at a certain value, the small displacement of the object to be measured can cause the interference The light intensity change in each order direction of the beam is the largest, resulting in the largest light intensity difference. According to the light intensity difference, the small displacement of the object to be measured can be calculated, that is, the small displacement to be measured is passed through the light intensity. The difference is amplified, and a small displacement value can be obtained by detecting the value of the light intensity.
所述的压电陶瓷部件为中心与光路对应的环形部件且带有两个电极,该环形结构使透过光栅的光束通过,不影响该光束的传播。The piezoelectric ceramic component is an annular component whose center corresponds to the optical path and has two electrodes. The annular structure allows the light beam passing through the grating to pass without affecting the propagation of the light beam.
所述的微位移测量装置设有:用于驱动压电陶瓷部件形变的压电陶瓷驱动模块;用于检测干涉光束光强的光电探测模块,所述的干涉光束为被光栅反射的光束和被待测物反射的光束发生干涉形成;用于根据光电探测模块的信号来控制压电陶瓷驱动模块的信号处理模块。The micro-displacement measuring device is provided with: a piezoelectric ceramic drive module for driving deformation of piezoelectric ceramic components; a photoelectric detection module for detecting the light intensity of an interference beam, and the interference beam is a beam reflected by a grating and The light beam reflected by the object to be tested is formed by interference; it is used to control the signal processing module of the piezoelectric ceramic driving module according to the signal of the photoelectric detection module.
所述的压电陶瓷部件的两个电极分别接入压电陶瓷驱动模块对应的接口。The two electrodes of the piezoelectric ceramic component are respectively connected to corresponding interfaces of the piezoelectric ceramic drive module.
本发明高精度微位移测量装置中,光电探测模块和压电陶瓷驱动模块均与信号处理模块连接,信号处理模块一方面通过控制压电陶瓷驱动模块来改变压电陶瓷部件的形变量,另一方面用于接收光电探测模块收集的信息,信号处理模块通过分析光电探测模块所反馈的信息以及光栅与待测物之间的间距,并控制压电陶瓷驱动模块来驱动压电陶瓷调整光栅与反射面之间的距离同时给压电陶瓷施加一定频率和幅值的调制信号,通过对探测信号采取锁相放大处理可以精确获得被测表面位移量的大小。In the high-precision micro-displacement measuring device of the present invention, both the photoelectric detection module and the piezoelectric ceramic driving module are connected to the signal processing module, and the signal processing module changes the deformation of the piezoelectric ceramic component by controlling the piezoelectric ceramic driving module on the one hand, and the other On the one hand, it is used to receive the information collected by the photoelectric detection module. The signal processing module analyzes the information fed back by the photoelectric detection module and the distance between the grating and the object to be measured, and controls the piezoelectric ceramic drive module to drive the piezoelectric ceramic to adjust the grating and reflection. The distance between the surfaces applies a modulation signal of a certain frequency and amplitude to the piezoelectric ceramics at the same time, and the displacement of the measured surface can be accurately obtained by applying lock-in amplification to the detection signal.
本发明还提供了一种高精度微位移测量方法,包括以下步骤:The present invention also provides a high-precision micro-displacement measurement method, comprising the following steps:
(1)光源出射光束经过光栅后投射到待测物的反射面;(1) The light beam emitted by the light source passes through the grating and is projected onto the reflective surface of the object to be measured;
(2)被光栅反射的衍射光束和被反射面反射经过光栅产生的同级次衍射光束发生干涉;(2) The diffracted beam reflected by the grating interferes with the diffracted beam of the same order generated by the grating reflected by the reflective surface;
(3)利用调制电压驱动压电陶瓷部件产生位相调制信号,对探测器探测的干涉光束的光强信号进行锁相放大处理计算得出待测物的位移量。(3) Use the modulation voltage to drive the piezoelectric ceramic components to generate phase modulation signals, and perform phase-locked amplification processing on the light intensity signal of the interference beam detected by the detector to calculate the displacement of the object to be measured.
本发明方法的关键在于,在开始测量前,通过压电陶瓷的自身形变带动与之相连的光栅沿轴向运动,直至光栅和待测物的反射面之间的初始距离为λ/8的奇数倍,λ为光源出射光束的波长,因为所述的干涉光束的各个级次的光强会随着光栅和待测物发射面之间的距离的变化而变化,如一级衍射光的光强表达式为:I=(4Iin/π2)×sin2(2πd/λ),其中Iin和λ分别为光源出射光束的光强和波长,d为光栅和待测物反射面之间的间距,而一级衍射光光强I对间距d的改变量可以表示为:The key of the method of the present invention is that, before starting the measurement, the piezoelectric ceramics itself deforms to drive the grating connected to it to move axially until the initial distance between the grating and the reflective surface of the object to be measured is an odd number of λ/8 times, λ is the wavelength of the light beam emitted by the light source, because the light intensity of each order of the interference beam will change with the distance between the grating and the emitting surface of the object to be measured, such as the light intensity expression of the first-order diffracted light The formula is: I=(4I in /π 2 )×sin 2 (2πd/λ), where I in and λ are the light intensity and wavelength of the light beam emitted by the light source, and d is the distance between the grating and the reflective surface of the object to be measured , and the change of the intensity I of the first-order diffracted light to the distance d can be expressed as:
在d取值为λ/8的奇数倍时,为最大,即所探测到的光强改变速率最大,这样,微小位移通过光强的改变量得到放大,通过测量该光强即可间接测量微小位移。When d is an odd multiple of λ/8, is the maximum, that is, the rate of change of the detected light intensity is the largest, so that the small displacement is amplified by the change of light intensity, and the small displacement can be indirectly measured by measuring the light intensity.
本发明在外壳和光栅之间设置压电陶瓷部件,通过控制压电陶瓷的自身形变来调整光栅和待测物的反射面之间的间距,当该间距控制在某一固定值时,待测物的单位位移可以导致干涉光束各个级次方向上的光强改变量最大,通过探测该光强改变量并对探测信号采取锁相放大处理可以精确获得被测表面位移量的大小。本发明相对现有技术中的微位移传感器提高了测量灵敏度。In the present invention, a piezoelectric ceramic component is arranged between the shell and the grating, and the distance between the grating and the reflective surface of the object to be measured is adjusted by controlling the deformation of the piezoelectric ceramic itself. When the distance is controlled at a certain fixed value, the measured The unit displacement of the object can lead to the largest change in light intensity in each order direction of the interference beam. By detecting the change in light intensity and performing lock-in amplification processing on the detection signal, the displacement of the measured surface can be accurately obtained. Compared with the micro-displacement sensor in the prior art, the invention improves the measurement sensitivity.
附图说明 Description of drawings
图1为现有技术中的一种微位移传感器结构示意图;Fig. 1 is a schematic structural diagram of a micro-displacement sensor in the prior art;
图2为本发明的微位移测量装置结构示意图;Fig. 2 is the structural representation of micro-displacement measuring device of the present invention;
图3为本发明的压电陶瓷部件的结构示意图。Fig. 3 is a schematic structural view of the piezoelectric ceramic component of the present invention.
具体实施方式 Detailed ways
以下结合附图说明本发明的一种实施方式。An embodiment of the present invention will be described below with reference to the accompanying drawings.
图2为本发明的一种高精度微位移测量装置结构示意图,包括外壳6,外壳6内设有沿光路依次布置的光源3和光栅4,光栅4沿光轴方向可滑动的安装在外壳6内,还设有压电陶瓷部件7,该压电陶瓷部件7一侧与所述的光栅4的表面相贴合,另一侧与外壳6相对固定。Figure 2 is a structural schematic diagram of a high-precision micro-displacement measuring device of the present invention, including a
如图3所示,压电陶瓷部件7为环形,中间部位为透光孔可容许光源发出的光束通过。As shown in FIG. 3 , the piezoelectric ceramic component 7 is ring-shaped, and the middle part is a light-transmitting hole to allow the light beam emitted by the light source to pass through.
光栅4朝向光源3一侧的表面上设置有石英玻璃8,压电陶瓷部件7通过与之相连的压电陶瓷驱动模块9在压电陶瓷部件7的两个电极上施加电压来控制压电陶瓷部件7的形变量;光源3出射光束入射到光栅4上时,一部分光由光栅4直接反射;另一部分通过光栅4间隙照射到反射面2然后反射回来,这两部分光束在光栅4朝向光源3的一侧发生干涉,形成干涉光束,在干涉光束的各个级次方向上设置有光电探测模块5,用于探测干涉光束的光强,并将探测的光强信息传送到与之相连的信号处理模块10,信号处理模块10同时控制压电陶瓷驱动模块9,并间接控制压电陶瓷部件7的形变量。
具体测量步骤如下:首先,打开光源3,光源3出射的光束依次经过石英玻璃8、光栅4、压电陶瓷部件7后投射到待测物1的反射面2,利用信号处理模块10控制压电陶瓷驱动模块9,调整压电陶瓷驱动模块9施加在压电陶瓷部件7的两个电极上的电压,用于改变压电陶瓷部件7的形变量,并带动光栅4沿光轴方向运动,使光栅4和待测物1的反射面2的间距为λ/8,λ为光源出射光束的波长,并记录此时光电探测模块5探测到的干涉光束一级衍射光的光强值,接着调整待测物1的位置,使之沿光轴方向产生微小位移,并再次记录干涉光束一级衍射光的光强值,通过锁相放大和差分处理,可以获得更高的测量精度,通过比较前后两次光强值,可以计算得出待测的微小位移值。The specific measurement steps are as follows: first, turn on the
本发明实施例中采用的光栅4为金属材质,周期为2μm;本发明采用陶瓷-玻璃键合工艺,将石英玻璃8上的金属光栅与压电陶瓷结合做成测量的敏感部件。具体的由以下内容实现:首先在石英玻璃8一面镀金属薄膜铬Cr,通过电子束曝光制作出金属光栅。然后,采用键合工艺将光栅4与压电陶瓷部件7结合成一个整体部件。反射面2为具有一定反射率的平面反射面。The
本发明实施例中采用的光源3为垂直腔表面发射激光器,功率为1mW,波长为850nm,由恒功率电路驱动;光电探测器件5采用光电二极管,可探测的最小光电流为0.1nA,响应灵敏度为0.6A/W。本发明通过压电陶瓷部件来改变光栅和待测物之间的间距,使该间距取某一值时,光强的改变速率最大,并探测在该值附近待测物产生的微小位移所引起的光强变化量,本发明的微位移测量装置和方法使探测精度提高。The
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100563483A CN102589446A (en) | 2012-03-06 | 2012-03-06 | High precision micro-displacement measurement apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100563483A CN102589446A (en) | 2012-03-06 | 2012-03-06 | High precision micro-displacement measurement apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102589446A true CN102589446A (en) | 2012-07-18 |
Family
ID=46478440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100563483A Pending CN102589446A (en) | 2012-03-06 | 2012-03-06 | High precision micro-displacement measurement apparatus and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102589446A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104406524A (en) * | 2014-11-13 | 2015-03-11 | 浙江大学 | Combined grating micrometric displacement sensor and displacement measuring method using same |
CN104406525A (en) * | 2014-11-13 | 2015-03-11 | 浙江大学 | Grating group micro-displacement sensor and displacement measuring method using same |
WO2017016144A1 (en) * | 2015-07-27 | 2017-02-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | Displacement sensor, method of use and manufacture thereof, and interferometer |
CN106872283A (en) * | 2017-01-13 | 2017-06-20 | 西南交通大学 | A kind of Young's modulus minute elongation measuring method based on optical grating diffraction |
CN107432733A (en) * | 2016-05-27 | 2017-12-05 | 深圳硅基传感科技有限公司 | Implanted intraocular pressure monitor |
CN108680107A (en) * | 2018-05-16 | 2018-10-19 | 中北大学 | A kind of high-precision prism displacement measuring device and method based on digital servo-control |
CN109297397A (en) * | 2018-10-25 | 2019-02-01 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Method, device and system for thickness measurement of movable electrode of electrostatic transducer |
CN110815147A (en) * | 2019-11-06 | 2020-02-21 | 青岛理工大学 | A Micro-displacement Platform Driven by Piezoelectric Ceramics |
CN112755919A (en) * | 2020-12-04 | 2021-05-07 | 中国石油大学(华东) | Vertical adjustment method for micron displacement in microscopic visualization experiment |
CN114001661A (en) * | 2021-11-04 | 2022-02-01 | 北方工业大学 | Optical interference type integrated micro-displacement sensing structure and detection method thereof |
CN114152194A (en) * | 2021-11-16 | 2022-03-08 | 华中科技大学 | Micro-displacement measuring device and method based on reflection grating |
WO2022104906A1 (en) * | 2020-11-17 | 2022-05-27 | 中国科学院上海微系统与信息技术研究所 | Micro-displacement mechanism with non-hermitian coupling angle detection and correction device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1645039A (en) * | 2005-01-20 | 2005-07-27 | 上海交通大学 | Planar light waveguide measuring method for micro-displacement |
CN1995909A (en) * | 2006-12-28 | 2007-07-11 | 上海精密科学仪器有限公司 | Low-voltage micro-displacement drive circuit and control method therefor |
-
2012
- 2012-03-06 CN CN2012100563483A patent/CN102589446A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1645039A (en) * | 2005-01-20 | 2005-07-27 | 上海交通大学 | Planar light waveguide measuring method for micro-displacement |
CN1995909A (en) * | 2006-12-28 | 2007-07-11 | 上海精密科学仪器有限公司 | Low-voltage micro-displacement drive circuit and control method therefor |
Non-Patent Citations (2)
Title |
---|
伍康,叶雄英,刘力涛,陈烽,周兆英: "集成光栅干涉微位移测量方法", 《纳米技术与精密工程》 * |
孙艳玲,谢铁邦: "一维计量型微位移工作台的研究", 《传感器世界》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104406524A (en) * | 2014-11-13 | 2015-03-11 | 浙江大学 | Combined grating micrometric displacement sensor and displacement measuring method using same |
CN104406525A (en) * | 2014-11-13 | 2015-03-11 | 浙江大学 | Grating group micro-displacement sensor and displacement measuring method using same |
CN104406524B (en) * | 2014-11-13 | 2017-02-15 | 浙江大学 | Combined grating micrometric displacement sensor and displacement measuring method using same |
CN104406525B (en) * | 2014-11-13 | 2017-02-15 | 浙江大学 | Grating group micro-displacement sensor and displacement measuring method using same |
WO2017016144A1 (en) * | 2015-07-27 | 2017-02-02 | 中国科学院苏州纳米技术与纳米仿生研究所 | Displacement sensor, method of use and manufacture thereof, and interferometer |
CN106403821A (en) * | 2015-07-27 | 2017-02-15 | 中国科学院苏州纳米技术与纳米仿生研究所 | Displacement sensor, usage and manufacturing method thereof and interferometer |
CN107432733B (en) * | 2016-05-27 | 2019-08-20 | 深圳硅基传感科技有限公司 | Implanted intraocular pressure monitor |
CN107432733A (en) * | 2016-05-27 | 2017-12-05 | 深圳硅基传感科技有限公司 | Implanted intraocular pressure monitor |
CN106872283B (en) * | 2017-01-13 | 2020-08-25 | 西南交通大学 | A method for measuring the small elongation of Young's modulus based on grating diffraction |
CN106872283A (en) * | 2017-01-13 | 2017-06-20 | 西南交通大学 | A kind of Young's modulus minute elongation measuring method based on optical grating diffraction |
CN108680107A (en) * | 2018-05-16 | 2018-10-19 | 中北大学 | A kind of high-precision prism displacement measuring device and method based on digital servo-control |
CN109297397A (en) * | 2018-10-25 | 2019-02-01 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Method, device and system for thickness measurement of movable electrode of electrostatic transducer |
CN109297397B (en) * | 2018-10-25 | 2020-07-31 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Method, device and system for measuring thickness of movable electrode of electrostatic transducer |
CN110815147A (en) * | 2019-11-06 | 2020-02-21 | 青岛理工大学 | A Micro-displacement Platform Driven by Piezoelectric Ceramics |
WO2022104906A1 (en) * | 2020-11-17 | 2022-05-27 | 中国科学院上海微系统与信息技术研究所 | Micro-displacement mechanism with non-hermitian coupling angle detection and correction device |
CN112755919A (en) * | 2020-12-04 | 2021-05-07 | 中国石油大学(华东) | Vertical adjustment method for micron displacement in microscopic visualization experiment |
CN112755919B (en) * | 2020-12-04 | 2022-04-19 | 中国石油大学(华东) | Vertical adjustment method for micron displacement in microscopic visualization experiment |
CN114001661A (en) * | 2021-11-04 | 2022-02-01 | 北方工业大学 | Optical interference type integrated micro-displacement sensing structure and detection method thereof |
CN114152194A (en) * | 2021-11-16 | 2022-03-08 | 华中科技大学 | Micro-displacement measuring device and method based on reflection grating |
CN114152194B (en) * | 2021-11-16 | 2022-10-04 | 华中科技大学 | A micro-displacement measuring device and method based on reflection grating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102589446A (en) | High precision micro-displacement measurement apparatus and method | |
CN102759635B (en) | Micro-optical acceleration sensor integrated with grating piezoelectric modulation and detection method thereof | |
US6713743B2 (en) | Fabry-perot resonator and system for measuring and calibrating displacement of a cantilever tip using the same in atomic force microscope | |
JP4545882B2 (en) | Laser diode type distance / displacement meter with double external resonator | |
US20070229853A1 (en) | Nanometer contact detection method and apparatus for precision machining | |
JP5669182B2 (en) | Vibration measuring apparatus and vibration measuring method by white interference method | |
CN103175992A (en) | Micro-optical acceleration sensor with integrated grating electro-optical effect and detection method thereof | |
CN104697440B (en) | A kind of multiple beam ladder corner reflector laser interferometer and its measuring method | |
JP2011106936A (en) | Spectrum measurement apparatus and analyzer | |
JP2013528798A (en) | Optical measurement device for physical parameters | |
US8546762B1 (en) | Method and arrangement for carrying out time-domain measurements | |
CN104121861A (en) | Environmental light self-adaptive laser diameter measuring device based on optical flat scanning | |
CN100549726C (en) | Be used to measure the method and the measurement mechanism of absolute distance | |
CN104697442B (en) | A kind of motion compensation formula planar reflector laser interference instrument and application method | |
JP5704150B2 (en) | White interference device and position and displacement measuring method of white interference device | |
CN112710256A (en) | Electromechanical performance test system and method for scanning grating micro-mirror | |
CN105371755B (en) | Laser wavelength correction method adopting wavelength correction type multi-beam step plane mirror laser interferometer | |
EP2679984A1 (en) | Method and arrangement for carrying out time-domain measurements | |
CN204479607U (en) | Grating group micro-machine acceleration transducer | |
CN204128506U (en) | Grating group micro-displacement sensor | |
TW201321719A (en) | Length measurement device | |
CN102680830B (en) | The caliberating device of piezoelectric actuator | |
CN105300275A (en) | A wavelength-corrected multi-beam step plane mirror laser interferometer and its measuring method | |
CN204479608U (en) | Combination grating micro-machine acceleration transducer | |
Pachisia et al. | Multiple reflection assisted Laser Doppler Vibrometer setup for high resolution displacement measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120718 |