CN102576853B - 制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池 - Google Patents

制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池 Download PDF

Info

Publication number
CN102576853B
CN102576853B CN201080045500.7A CN201080045500A CN102576853B CN 102576853 B CN102576853 B CN 102576853B CN 201080045500 A CN201080045500 A CN 201080045500A CN 102576853 B CN102576853 B CN 102576853B
Authority
CN
China
Prior art keywords
electrolyte
battery unit
battery
unit
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080045500.7A
Other languages
English (en)
Other versions
CN102576853A (zh
Inventor
崔上圭
刘光虎
申荣埈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lg Energy Solution
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN102576853A publication Critical patent/CN102576853A/zh
Application granted granted Critical
Publication of CN102576853B publication Critical patent/CN102576853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种制造锂离子聚合物电池的方法,其特征在于,将电解液注入锂离子聚合物电池时,在电解液浴中浸没电池单元以使电解液浸渍到单元内部。根据本发明,电解液可以同时浸渍,活化后电解液安置于电池单元的内部,由此电池单元的密封时,能够防止电解液沾粘在密封部分(即电解液粘附密封)的现象。

Description

制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池
技术领域
本发明涉及一种袋型锂离子聚合物电池和其制造方法,更具体地,涉及一种将电解液注入电池单元内部的方法。
背景技术
锂离子聚合物电池通过将折叠单元的外部边缘用铝袋包装材料包裹而制得。为制造所述电池,将电池单元置入铝袋中然后在其中注入电解液,其之后被活化,进行排气(Degasing)处理,最终密封。在此过程中,存在于袋的密封(sealing)部分的内壁面上的电解液被密封到一起(胶合密封电解液),或者当密封最终与真空抽吸同时进行时,电解液的气相分子在真空抽吸同时通过扩散渗透进密封部分。微裂纹(microcrack)或者由电解液分子涂在密封部分上导致的缺陷(defect)作为与外部的电流通路导致局部介质破损(或微裂纹)或严重地劣化密封强度。
为解决该问题,EP 0994519提出了一种将电池单元充满电解液的方法,其中电解液通过一个连接到电池单元的顶(top)部的喷嘴注入,从而将电解液浸渍于电池单元。此外,韩国公开专利No.10-0686838公开了一种锂二次电池,其中在较低的绝缘板上设置网状形态的具有不同高度的多个突出部以提高电解液的流动性,从而提高电解液的浸渍性。然而,即便以这种方法,电解液粘合密封的问题不能被令人满意地解决。并且,仍然有必要准备一种方法来有效地注射电解液。
同时,韩国注册的No.10-0824869展示了以下优点,在制造聚合物或者角型电池的过程中可省略排气过程,因此可缩短时间和过程,此外,如果该电池为聚合物型电池,则可对包装材料进行多样化,如果该电池为角型电池,则可以被压缩。然而,此发明具有一个问题,使用了由于电池单元内的HF增加而使电池单元的性能劣化的聚合物袋来代替具有双层结构的聚合物包装材料,因为水分渗透过度发生。因此,通过所述专利,无法得到阻止由已知的热熔方法导致的电解液粘合密封和阻止由于电介质破损导致的电池单元使用寿命缩短的效果。
此外,上述专利文献中所述,浸渍电解液后对电极组件施加压力而生效,但具有的问题是,如果在活化过程之前和之后进行压缩,则各电极组件(折叠单元)紧密连接而在电极组件之间产生电荷的移动,由此形成单元内串联连接,导致可能发生通电。
发明内容
发明要解决的问题
本发明的一个目的在于,在制备锂离子聚合物电池的过程中,在为包装电池单元进行密封时预防电解液在袋内壁的湿润(wetting)现象,从而实现完全密封并强化密封强度。
本发明的另一个目的是提供一种省却排气(Degassing)过程而简单制造电池的方法。
解决问题的方法
为达到上述目的,本发明提供一种用包装材料来包装电池单元而制备锂离子聚合物电池的方法,其特征在于,将所述电池单元浸泡在电解液浴中,使得电解液浸渍到电池单元内部。
所述电池单元的浸渍是指,将包括阴极、阳极和隔膜的电池单元整体浸入于电解液浴。
所述电解液的浸渍包括在90KPa至100KPa的压力下进行的湿润过程。
所述电解液的浸渍后,可在电池单元被从电解液浴取出并安装的状态下进行的成型过程,所述成型过程在SOC(荷电状态,State of Charge)30%至SOC 50%进行。
所述电解液的浸渍后,可以活化电池单元,将活化的电池单元插入在袋内并密封。
所述电池单元活化后,通过电解液的老化(aging)过程,使得电池单元内的电解液达到一个电解液浸渍量。此时,所述老化过程在19℃至25℃下进行。
优选地,在所述老化过程中可进行从电池单元中去除过量电解液的过程。
为达到上述目的,本发明提供一种电池单元,其包括阴极、阳极和隔膜,其中在单元内部含有一种胶状类型的电解液。
为达到上述目的,本发明提供一种锂离子聚合物电池,其通过将所述电池单元放入包装材料内并真空密封而制造。
优选地,所述电池单元的充电和放电效率为99.7%至99.9%,所述电池单元的电解液泄漏量为0.2%至0.5%。
发明效果
根据本发明,在电解液的注入过程中,将电池单元浸在电解液浴中以使电解液浸入电池单元内部的气隙之间,从而电解液可以同时充入,之后电池单元通过活化,从而电解液被安置在电池单元内部的气隙之间。这样,即使在最终密封时进行真空抽吸,也不会出现电解液覆盖或涂在密封部分的现象。
此外,在制造锂离子聚合物电池时,消除了包装材料密封部分(粘合密封)的电解液覆盖或涂污的可能性,所有的表面在相同条件下密封,从而达到高于需求的密封强度。此外,还可预防原本由于电解液粘合密封导致的微裂缝(microcrack)或缺陷(defect)所引起的绝缘抗性损坏。
附图说明
图1是表示本发明的一个示例性实施方案的孵化和包装(incubation&packaging)方法制造锂离子聚合物电池的过程的图。
图2和3是表示实施例和对比例的电池单元的密封部分的截面的图片。
具体实施方式
现有的袋型锂离子聚合物电池的制造中,将完成的电池的折叠单元放到包装材料中并包装,注入电解液并进行活化过程,打开包装材料以放出在活化过程中产生的气体,最后进行密封操作。此时,注入电解液过程中在包装材料的内壁发生电解液湿润(wetting)现象,或者气/液电解液会扩展,这是由于在排气(Degasing)过程中单元打开之后的最终密封操作时的真空抽吸导致压力差,在此过程中,由于电解液覆盖或涂污在包装材料的密封部分,在单元内部和外部之间可能会产生电流通道。这样致使绝缘抗性损坏,并且显著地劣化密封强度,从而导致电池单元性能的劣化。
因此,在本发明的一个示例性实施方案中,通过孵化(incubation)和包装方法,在电池单元内浸渍电解液,从而在袋的每一个被密封的面上保持相同条件的密封强度,并可省却排气(degassing)过程。
具体而言,本发明提供一种制造袋型电池的方法,其特征在于,在制造袋型电池的过程中将电池单元在充满电解液的电解液浴中浸没一段时间,从而使得电解液浸渍在电池单元的内部。
首先,通过堆叠和折叠(stacking&folding)方法或者胶质滚轧(jellyrolling)方法以相同方法完成一种折叠单元,之后在充满电解液的电解液浴(electrolytic bath)中固定,以进行电解液的润湿(wetting)、成型(formation)和老化(aging)过程,取出单元并且调节至规定的电解液浸渍量。
上述的湿润过程是提供驱动力(driving force)使得注入的电解液良好地浸入电极的内部、隔膜或双单元之间的过程。在本发明的一个实施方案中,由于可在电池单元浸没在电解液浴而非包装材料中的情况下吸收电解液,因此可省略用于导致浸入的湿润过程,即使进行湿润过程,也可缩短湿润(wetting)时间。此时,优选地,湿润过程在真空室(vaccumchamber)中90KPa至100KPa的压力下进行。例如,如果湿润过程在低于90KPa的压力下进行,则电解液不容易流入至电池单元中,如果湿润过程在高于100KPa的压力下进行,则电解液将会被过量引入,使得电池单元内的电解液流出。
在本发明中,湿润过程进行30分钟,此时,优选地,进行规定时间(例如5分钟)之后在停顿较短时间(例如1分钟)之后再重复进行,而不是持续进行该湿润过程,从而平稳地进行湿润过程。
成型过程指的是首次施加电流的活化过程。成型过程在电池单元被拿出至电解液浴外并安装的状态下进行,至达到设定的电解液量。此时,优选地,成型过程在SOC(荷电状态,State of Charge)30%至SOC 50%进行。例如,如果在低于SOC 30%的情况下进行成型过程,则SEI(固体电解质中间相,Solid Electrolyte Interface)薄膜产生较少,相反,如果在高于SOC 50%的情况下进行成型过程,则SEI薄膜过度产生,会妨碍平稳的成型过程。
老化过程指的是使电池稳定化的过程。老化过程也在安装状态并在19℃至25℃进行。例如,如果老化过程在低于19℃进行,则电解液的浸渍不佳,如果老化过程在高于25℃进行,则发生活性材料的涌出。
为了测量电解液是否适当浸渍,最直接的方法采用测量电解液浸渍量的方法。具体而言,电池单元浸泡在电解液浴中之前单元和安装底座的重量与电池单元浸泡在电解液浴中之后的单元和安装底座的重量差别成为浸渍电解液的量,当浸渍的电解液量达到电解液的设定量,则认为电解液的注入完成,活化过程被实施。同时,作为第二种检验电解液浸渍量的方法,实时测量单元的阻抗。由阻抗获得的电容值在浸渍完成时趋于饱和(saturation),以此间接检验了浸渍的完成。
完成的电池单元具有一种干电池的形态,其中电解液以胶质状态固定。将所述干电池置于包装材料中并真空密封。
通过如上所述的孵化和包装(incubation&packaging)方法使用单独的电解液浴将电解液注入电池单元并且用包装材料包裹,则在电解液注射步骤或者在最终的密封步骤中,电解液覆盖或涂污包装材料密封部分从而降低密封强度或损坏绝缘抗性的可能性被显著降低,并可实现完全密封。
为了在电池单元浸渍电解液,优选地,电池单元的体(body)部的整体浸渍于电解液中。即,如图1所示,除了从电池单元最上部突出的阳极端和阴极端,以使包括阴极、阳极和隔膜的单元的体部完全浸入到电解液中。根据上述的方法,电池单元的整个体部可以同时吸收入电解液,也即,电解液可以均匀地浸入单元的顶部、底部、左边和右边部分,此外,电解液可以在短时间内从单元最外面的角浸渍至中心部分。因此,如上文所述,根据本发明的示例性实施方案,可省略通常在电解液注入步骤中的扩展电解液的加压或者真空加压过程。
电池单元的浸渍根据单元的大小和电解液浓度会有所差异,单元浸没在电解液浴中大约2小时,进行活化过程,之后,将单元置于安装底座或者空浴槽(bath)中使电解液流下或蒸发,从而除去过量的电解液。通过此过程,将渗透入电池单元气隙中的电解液以胶质的形式固定在单元中,同时,调整电池单元内的电解液达到设定的浸渍量。之后,电解液被安置在电池单元内,所以尽管在之后的袋子封闭过程中进行真空抽吸,电解液也不会覆盖或涂污密封部分。
此外,在电池单元制造过程中,电池单元的活化过程可以在电池单元浸渍在电解液浴中的情况下进行。即,不是将电池单元和电解液注入袋中,暂时将其密封并进行活化反应,之后打开袋子并进行排气(degassing)的过程,而是将电池单元浸泡在电解液浴中,在电解液浸渍电池单元内部一定程度的状态下,直接进行活化过程。从而,在活化过程中产生的气体直接排入在大气中,所以不需要排气过程。此外,在本发明的实施方案中,并不需要以下过程:当通常注射电解液的时候,为使得电解液易于湿润(wetting),在真空状态下安置电池单元,并进行加压等的过程。
根据本发明一个实施方案的制造电池的方法,电解液充分浸渍电池单元的内部之后进行活化,并除去过量的电解液,之后进行密封而制得电池。因此,电池制造过程变得非常简单。
此外,本发明提供一种电池单元,其特征在于,将电池单元在电解液浴中浸泡特定时间使得电解液均匀地浸渍在整个单元。所述电池单元是其中通过电解液的同时浸渍、活化和老化过程以胶质形式安置于单元内部的干电池。
此外,本发明提供一种锂离子聚合物电池,其以包装材料对干电池进行真空密封所完成。
通过以下实施例详细叙述本发明。
实施例
将电解液(电解盐:LiPF6;溶剂:EMC/DMC/DEC/EC;添加剂:PS、VC、FEC)放进电解液浴槽,在其中放入电池单元(15Ah类)使得电极部分完全浸入,之后在室温放置2小时。
之后,在电池单元浸于电解液浴中的状态下,通过1.5A、3hr、1个周期的周期反应进行电池单元的活化过程。
随后,将电池单元从电解液浴拿出,并放在安装底座上,在室温下放置一个小时。将以这种方式完成的电池单元放在铝袋(D-EL408H2级,DNP)中并且真空密封(上部和下部,180℃,2.5s,95kPa)。
对比例
根据常规方法注入电解液,然后对其进行湿润(wetting)、成型(foamation)、排气(degassing)。最后,进行包装以制造电池单元。
通过实施例和对比例制造的电池单元进行充电和放电测试,其中放电容量基于15Ah的充电容量多次测定。测量结果显示,实施例的放电容量范围是14.95Ah至14.99Ah,对比例的放电容量范围是14.75Ah至14.80Ah。基于实施例和对比例的放电容量计算的充电和放电效率(放电容量/充电容量*100),分别得到99.7%至99.9%和98.3%至98.7%。
所述充电和放电效率的显著区别是因为,根据本发明在充满电解液的电解液浴槽中浸渍电池单元的情况下,浸渍和湿润与现有技术相比更均匀地进行,从而使初始不可逆的部分最小。此外,根据对比例的方法,由于电池单元中浸渍缺陷导致的湿润不足而导致锂全面从隔膜沉淀,这导致厚度增加和容量不足。在这种情况下,在实际电极的表面留着不均匀的反应痕迹。
另外,图2和3表示了根据实施例和对比例所制造的电池单元的封闭部分的截面图。由图2和3可看出,对比例的电池单元中发现电解液的泄漏和微裂缝,而本发明制造方法制得的电池单元中不存在。例如,浸渍60g的电解液时,如果根据对比例的方法进行,则在抽真空的同时进行密封,因此电解液被截留,电解液的盐(salt)存在于密封部分,导致2g至3g的电解液泄漏量(3%至5%)。与此相比,如果根据实施例的方法浸渍60g电解液,则泄漏量为0.1至0.3g(0.2%至0.5%),显著低于对比例的泄漏量。因此,根据本发明实施例的制造方法,能够解决由于在密封部分中粘合密封电解液可能导致的问题,例如,电解液的泄漏和电解液在密封部分的污染问题等。

Claims (10)

1.一种制造锂离子聚合物电池的方法,其特征在于,将包括阴极、阳极和隔膜的电池单元浸没在电解液浴中使得电解液浸渍到电池单元内部,并且
其中,在电解液浸渍后,在荷电状态为30%至50%下进行成型过程,成型过程指的是首次施加电流的活化过程,成型过程在电池单元从电解液浴取出并安装的情况下进行,至达到设定的电解液量。
2.权利要求1所述的方法,其特征在于,所述电解液的浸渍,在电池单元的阴极、阳极、和隔膜全部浸没在电解液中的情况下发生。
3.权利要求1所述的方法,其特征在于,所述电解液的浸渍包括在90KPa至100KPa压力下进行的湿润过程。
4.权利要求1所述的方法,其特征在于,将活化的电池单元插入在袋内并密封。
5.权利要求4所述的方法,其特征在于,所述电池单元活化后,进行电解液的老化过程,使得电池单元内的电解液达到一个电解液浸渍量。
6.权利要求5所述的方法,其特征在于,所述老化过程在19℃至25℃进行。
7.权利要求5所述的方法,其特征在于,所述老化过程后从电池单元中除去过量电解液。
8.一种锂离子聚合物电池,其通过权利要求1制造锂离子聚合物电池的方法而制造。
9.权利要求8所述的电池,其特征在于,所述电池单元的充电和放电效率为99.7%至99.9%。
10.权利要求8所述的电池,其特征在于,其中电池单元的电解液泄漏量为0.2%至0.5%。
CN201080045500.7A 2009-10-07 2010-10-07 制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池 Active CN102576853B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090095030 2009-10-07
KR10-2009-0095030 2009-10-07
PCT/KR2010/006865 WO2011043608A2 (ko) 2009-10-07 2010-10-07 리튬 이온 폴리머 전지의 제조방법, 전지셀 및 이를 포함하는 리튬 이온 폴리머 전지

Publications (2)

Publication Number Publication Date
CN102576853A CN102576853A (zh) 2012-07-11
CN102576853B true CN102576853B (zh) 2015-08-26

Family

ID=43857288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080045500.7A Active CN102576853B (zh) 2009-10-07 2010-10-07 制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池

Country Status (5)

Country Link
US (1) US10727471B2 (zh)
EP (1) EP2472645B1 (zh)
KR (1) KR101082496B1 (zh)
CN (1) CN102576853B (zh)
WO (1) WO2011043608A2 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510410B2 (ja) * 2011-08-02 2014-06-04 株式会社Gsユアサ 電池
KR101532926B1 (ko) * 2012-11-08 2015-07-01 주식회사 엘지화학 이차전지 제조 방법
US10062896B2 (en) * 2012-11-08 2018-08-28 Lg Chem, Ltd. Method of manufacturing secondary battery
KR20170070001A (ko) * 2014-08-08 2017-06-21 테크트로닉 인더스트리스 컴파니, 리미티드 배터리 파우치, 배터리 셀 및 파우치 또는 배터리 셀의 제조 방법
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
DE102016225173A1 (de) * 2016-12-15 2018-06-21 Robert Bosch Gmbh Verfahren und System zur Herstellung einer Batteriezelle
CN106848177A (zh) * 2017-03-08 2017-06-13 江西迪比科股份有限公司 一种锂离子二次电池的注液工艺
KR102447619B1 (ko) * 2017-09-18 2022-09-27 주식회사 엘지에너지솔루션 지그를 이용한 고정 과정을 포함하는 파우치형 전지셀 제조방법
EP3486985A1 (en) * 2017-11-16 2019-05-22 Technische Universität München Electrochemical cell, as well as process and apparatus for manufacturing the same
CN208819975U (zh) 2018-02-27 2019-05-03 创科(澳门离岸商业服务)有限公司 具有安全保护功能的软包电池
KR20200129907A (ko) * 2019-05-10 2020-11-18 주식회사 엘지화학 음극의 제조방법
CN112635930B (zh) * 2020-12-22 2023-02-07 东莞东阳光科研发有限公司 一种锂硫软包电池的注液方法
CN113161621A (zh) * 2021-03-10 2021-07-23 沁新集团(天津)新能源技术研究院有限公司 锂离子电池的制备方法
DE102022001427B3 (de) 2022-04-25 2023-06-29 Mercedes-Benz Group AG Verfahren zum Einbringen von Elektrolyt
DE102022004413A1 (de) 2022-11-25 2024-05-29 Mercedes-Benz Group AG Verfahren zum Einbringen von Elektrolyt

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
ZA963605B (en) * 1995-06-07 1996-11-19 Duracell Inc Process for improving lithium ion cell
KR970031033A (ko) * 1995-11-24 1997-06-26 윤종용 전극 조립체의 제조방법
KR100212180B1 (ko) * 1996-03-15 1999-08-02 윤덕용 핫차징에 의한 ni/mh 2차전지의 활성화 처리방법
JP4027447B2 (ja) * 1996-04-24 2007-12-26 株式会社ルネサステクノロジ 半導体装置の製造方法
US6007945A (en) * 1996-10-15 1999-12-28 Electrofuel Inc. Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
JP4057674B2 (ja) * 1997-06-03 2008-03-05 株式会社東芝 電池製造装置及び電池製造方法
US6171723B1 (en) * 1997-10-10 2001-01-09 3M Innovative Properties Company Batteries with porous components
US6387561B1 (en) 1998-10-13 2002-05-14 Ngk Insulators, Ltd. Electrolyte-solution filling method and battery structure of lithium secondary battery
JP2000231915A (ja) * 1999-02-12 2000-08-22 Hitachi Maxell Ltd ポリマー電解質電池の製造方法
KR100367284B1 (ko) * 1999-02-22 2003-01-09 티디케이가부시기가이샤 2차전지 및 그 제조방법
KR20020019008A (ko) * 2000-02-04 2002-03-09 다니구찌 이찌로오, 기타오카 다카시 전지 제조방법 및 이를 이용한 전지
US6790243B2 (en) * 2000-02-11 2004-09-14 Comsat Corporation Lithium-ion cell and method for activation thereof
JP2001332304A (ja) * 2000-05-24 2001-11-30 Sony Corp 電解質およびそれを用いた電池
JP4060549B2 (ja) * 2001-06-19 2008-03-12 Tdk株式会社 電気化学素子の外装体
AU2003302519A1 (en) * 2002-11-29 2004-06-23 Mitsui Mining And Smelting Co., Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
KR100563055B1 (ko) * 2003-08-19 2006-03-24 삼성에스디아이 주식회사 권취형 전극 조립체 및 이를 구비한 이차 전지
KR100686838B1 (ko) 2005-07-12 2007-02-26 삼성에스디아이 주식회사 리튬 이차전지
KR100793011B1 (ko) 2007-02-16 2008-01-08 에스케이에너지 주식회사 리튬이차전지의 제조방법
KR100824869B1 (ko) * 2007-05-04 2008-04-23 삼성에스디아이 주식회사 리튬 폴리머 전지의 제조방법 및 리튬 폴리머 전지
JP5319899B2 (ja) * 2007-08-23 2013-10-16 株式会社東芝 非水電解液電池
US20100192362A1 (en) * 2008-09-11 2010-08-05 A123 System, Inc. Split Charge Forming Process for Battery
CN101504995A (zh) * 2009-02-11 2009-08-12 中信国安盟固利新能源科技有限公司 一种提高锰酸锂锂离子电池稳定性能和循环性能的方法

Also Published As

Publication number Publication date
US10727471B2 (en) 2020-07-28
US20110097630A1 (en) 2011-04-28
CN102576853A (zh) 2012-07-11
KR20110037921A (ko) 2011-04-13
KR101082496B1 (ko) 2011-11-11
WO2011043608A2 (ko) 2011-04-14
WO2011043608A3 (ko) 2011-07-14
EP2472645A2 (en) 2012-07-04
EP2472645B1 (en) 2015-07-01
EP2472645A4 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
CN102576853B (zh) 制备锂离子聚合物电池的方法、电池单元,以及含有所述电池单元的锂离子聚合物电池
KR100793011B1 (ko) 리튬이차전지의 제조방법
CN101872881B (zh) 性能退化的锂离子蓄电池单元的再生和再次使用
CN105814714B (zh) 电池的制造方法以及制造装置
CN102171853B (zh) 液体电解质蓄电池和填充方法
CN104303341B (zh) 二次电池的正电极、二次电池及其制造方法
KR20200129518A (ko) 이차전지의 제조방법
CN101212037A (zh) 一种电池的注液方法
CN104885285B (zh) 密闭型电池的制造方法
CN105684193A (zh) 制造非水电解质二次电池的方法
JP2012256528A (ja) 電池の製造方法及び電池製造装置
CN1151576C (zh) 一种制造软包装锂二次电池的方法
KR20110039012A (ko) 파우치형 이차전지의 제조방법 및 파우치형 이차전지
CN113540592A (zh) 一种应用于改善软包电芯产气的化成工艺
CN105814715B (zh) 电池的电解液注液装置
CN115528297A (zh) 一种钠离子电池的预钠化电池结构及预钠化方法
JP2010262867A (ja) 二次電池の製造方法
US20110126400A1 (en) Method of manufacturing lithium secondary battery
JP7202526B2 (ja) 非水電解液二次電池の製造方法
JP2018056548A (ja) 蓄電デバイスの製造用処理装置及び蓄電デバイスの製造方法
JP2002100329A (ja) 密閉型電池およびその製造方法
JP2002343337A (ja) リチウム二次電池の電解液の注入・排出方法
CN101593850A (zh) 锂离子电池的制造方法
CN104167566A (zh) 一种锂离子电池的封口化成方法
CN1627548A (zh) 锂离子电池密封结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211220

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right