CN102540231A - 定位装置及定位方法 - Google Patents

定位装置及定位方法 Download PDF

Info

Publication number
CN102540231A
CN102540231A CN2011103011998A CN201110301199A CN102540231A CN 102540231 A CN102540231 A CN 102540231A CN 2011103011998 A CN2011103011998 A CN 2011103011998A CN 201110301199 A CN201110301199 A CN 201110301199A CN 102540231 A CN102540231 A CN 102540231A
Authority
CN
China
Prior art keywords
mentioned
data
location
precision
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103011998A
Other languages
English (en)
Other versions
CN102540231B (zh
Inventor
三本木正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Publication of CN102540231A publication Critical patent/CN102540231A/zh
Application granted granted Critical
Publication of CN102540231B publication Critical patent/CN102540231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements

Abstract

一种定位装置,其特征在于,具备:GPS接收处理部(15),测定直接的位置,获得定位位置数据;3轴地磁传感器(16)和3轴加速度传感器(17),测量移动方向和移动量;自主导航控制处理部(21),计算间接的位置,获得算出位置数据;位置精度判别处理部(23),从定位位置数据与算出位置数据中选择更高精度的位置数据;CPU(10),在通过上述位置精度判别处理部(23)选择了通过上述GPS接收处理部(15)求出的定位位置数据的情况下,将该选择出的定位位置数据设定作上述基准点;通过上述自主导航控制处理部(21)求出的算出位置数据的上述精度指标,以精度从上述基准点起累积地降低的方式而被设定。

Description

定位装置及定位方法
技术领域
本发明涉及获得移动体的移动路径数据的定位装置及定位方法。
背景技术
在过去,具有兼用下述两种功能的定位装置,所述两种功能为:利用GPS(Global Positioning System,全球定位系统)等卫星定位系统的、直接测定自身的当前位置的功能,和利用具有例如加速度传感器和方位传感器的运动传感器基于自主导航而间接地计算自身的当前位置的功能。
该定位装置通过运动传感器,测量步行者、车等移动体的移动方向和移动量。
另外,该定位装置以采用卫星定位系统而求出的定位位置为基准点,累计相对于该基准点的移动方向和移动量的信息,由此能够获得移动体移动过的路径的轨迹数据。
在采用卫星定位系统的定位中,定位出的位置精度根据通过定位装置而接收到电波的定位卫星的配置和建筑物等周围环境而变化。
于是,存在的问题是,根据定位时的条件,有时会求出定位误差大的位置。
因此,在专利文献1(日本特开2004-233186号文献)中,开发了一种定位装置,该定位装置对表示卫星定位位置的精度的参数值、与预定的阈值进行比较,在卫星定位位置的精度低于通过该阈值设定的等级(level)的情况下,采用借助运动传感器而测量的移动方向和移动量的信息,计算当前位置。
但是,若连续进行自主导航,则自主导航的移动方向和移动量的信息的测量误差每次都向移动方向和移动量的信息进行累积从而变大。
因此,具有下述课题,即:由于采用自主导航而计算的移动方向和移动量的信息中包括的误差的累积的影响,从而无法获得高精度的位置数据和轨迹数据。
发明内容
本发明的目的在于提供一种能够获得定位精度高的位置数据和轨迹数据的定位装置和定位方法。
为了实现上述目的,本发明的一个实施方式涉及一种定位装置,其特征在于,具备:
位置定位单元,直接定位自身的当前位置,获得定位位置数据;
移动测量单元,测量移动方向和移动量;
位置计算单元,将通过上述移动测量单元测量出的移动方向和移动量的信息与该移动的基准点的位置数据进行累计,从而间接计算自身的当前位置,获得算出位置数据;
位置选择单元,对表示通过上述位置定位单元求出的定位位置数据的精度的精度指标、与通过上述位置计算单元求出的算出位置数据的精度指标进行比较,从定位位置数据与算出位置数据中选择更高精度的位置数据;以及
基准点设定单元,在通过上述位置选择单元选择了通过上述位置定位单元求出的定位位置数据的情况下,将该选择出的定位位置数据设定为上述基准点;
通过上述位置计算单元求出的算出位置数据的上述精度指标,以精度从上述基准点起累积地降低的方式而被设定。
为了实现上述目的,本发明的一个实施方式涉及一种定位方法,根据来自位置定位单元和移动测量单元的信息,获得移动路径中的位置数据,上述位置定位单元直接定位自身的当前位置,获得定位位置数据,上述移动测量单元测量移动方向和移动量;
该定位方法的特征在于,包括以下步骤:
位置计算步骤,将通过上述移动测量单元测量出的移动方向和移动量的信息与该移动的基准点的位置数据进行累计,从而间接计算自身的当前位置,获得算出位置数据;
位置选择步骤,对表示通过上述位置定位单元求出的定位位置数据的精度的精度指标、与在上述位置计算步骤中求出的算出位置数据的精度指标进行比较,从定位位置数据和算出位置数据中选择更高精度的位置数据;以及
基准点设定步骤,在上述位置选择步骤中选择了通过上述位置定位单元求出的定位位置数据的情况下,将该选择出的定位位置数据设定为基准点;
在上述位置计算步骤中求出的算出位置数据的上述精度指标,以精度从上述基准点起累积地降低的方式而被设定。
附图说明
图1为表示本发明的实施方式的定位装置的结构的框图;
图2为表示路径数据的获得方法的图;
图3为表示路径数据获得处理的流程图;
图4为表示路径数据的获得例的图。
具体实施方式
下面根据附图,对本发明的实施方式进行说明。
图1为表示本发明的实施方式的定位装置的结构的框图。
本实施方式的定位装置1是作为步行者的用户携带而使用的装置,具备:进行装置整体的动作的总体控制和运算处理的CPU(Central ProcessingUnit)10(基准点设定单元);为CPU10提供工作用存储空间的RAM(RandomAccess Memory)11;存储执行程序、设定数据的ROM(Read Only Memory)12;非易失性存储器13;GPS接收天线14;作为位置测定单元的GPS接收处理部15;3轴地磁传感器16;3轴加速度传感器17;显示部18(显示单元);对CPU10和3轴加速度传感器17进行供电的电源19;操作键20;自主导航控制处理部21(位置计算单元);自主导航修正处理部22(路径数据修正单元);位置精度判别处理部23(位置选择单元、精度判定单元)等。
RAM11还包括自主导航数据存储部11a(算出位置数据存储单元),暂时存储通过自主导航控制处理部21计算出的算出位置数据。
该自主导航数据存储部11a能够按顺序存储依次发送来的多个算出位置数据。
在ROM12中,存储用于使本实施方式的定位装置1进行定位处理的执行程序12a。
CPU10在电源接通时,或根据来自操作键20的输入指令,读入该执行程序12a而加以执行。
该程序12a也可存储于非易失性存储器13中。
或者,对于该程序12a,也可将执行程序12a记录于CDROM、闪存等移动型记录介质中,经由读取装置而由CPU10执行。
此外,程序12a也可采用以载波(carrier wave)为介质、经由通信线路而下载到定位装置1中的形式。
非易失性存储器13例如为EEPROM(Electrically Erasable andProgrammable Read Only Memory)。
在该非易失性存储器13中,具有:移动履历数据存储部13a,依次存储通过CPU10的控制处理而确定的移动位置数据;以及,卫星轨道数据存储部13b,存储作为GPS卫星的轨道数据的星历数据。
此外,非易失性存储器13能够存储地图数据,通过CPU10读取的地图数据显示于显示部18中。
GPS接收处理部15根据从CPU10输入的控制信号,对GPS接收天线14接收到的来自多个GPS卫星的电波信号进行解调。
此外,该GPS接收处理部15根据这些解调信号来进行运算处理,按照已设定的格式,将运算后的数据输出给CPU10。
在可从该GPS接收处理部15输出的格式中,例如包括符合NMEA-0183(National Marine Electronics Association,国家海洋电子协会)的规格的格式。
在GPS接收处理部15中运算的GPS定位位置数据含有误差。
该GPS定位位置数据的误差范围的大小根据运算处理所采用的GPS卫星的数量、GPS卫星的配置而变化。
在从GPS接收处理部15输出的数据中,作为表示这样的GPS定位位置的误差范围的指标,包含有GST消息输出(GNSS(Global NavigationSatellite System)Pseudo Error Statistics,全球导航卫星系统伪错统计)。
具体来说,在该GST消息输出中包含有:表示GPS定位位置的误差范围的椭圆的长轴半径和短轴半径的标准偏差、以及椭圆的倾斜角度、纬度误差、经度误差及高度误差的各个标准偏差的值等统计性错误项目。
3轴地磁传感器16例如为采用磁阻元件的传感器,以三维方式测量地磁的方位并输出给CPU10。
另外,3轴加速度传感器17测量3轴方向的加速度并输出给CPU10。
通过该3轴地磁传感器16和3轴加速度传感器17,构成移动测量单元。
自主导航控制处理部21根据从3轴地磁传感器16和3轴加速度传感器17送入CPU10的各个测量数据,计算定位装置1的移动方向和移动距离。
例如,自主导航控制处理部21根据重力方向的加速度变化,对携带有定位装置1的用户的步数进行测量,将预先设定的步幅与该测量出的步数相乘,由此计算移动距离。
并且,自主导航控制处理部21根据该计算出的移动距离及移动方向、与原来的位置数据,来计算算出位置数据,将该算出位置数据发送给CPU10。
该算出位置数据存储于自主导航数据存储部11a中。
如果在通过自主导航控制处理部21计算出的算出位置数据中,在已设定的步幅和实际的步幅之间具有一定的偏差,则相对计算出的移动距离,按照一定比例而产生误差。
即,由自主导航控制处理部21计算出的移动距离的误差随着用户在移动路径上的行进而连续地累积。
此外,在3轴地磁传感器16中,产生定位装置1的磁化等造成的沿一定方向的偏移(offset)从而导致的方位误差,周边环境的影响造成的暂时的方位误差。
于是,该误差的影响还出现在计算出的算出位置数据中。
图2为表示通过GPS的定位以及自主导航而计算携带有定位装置1的用户的位置的方法的图。
例如,用户直线地在路径w上在从符号“x”表示的地点a0到地点f0的各地点之间进行移动。
将在该移动时通过GPS的定位、按照规定的时间间隔(例如,每1秒)而求出的定位位置用符号“○”表示为地点a1~f1。
另外,通过GPS的定位而求出的各地点的定位位置数据的误差范围(例如,通过GST消息而表示的纬度误差的标准偏差和经度误差的标准偏差(均以米(meter)来表示)中的较大的值,在下文中记作GST误差)分别表示于各地点a1~f1的左侧。
另一方面,与通过GPS的定位而求出地点b1~f1的定时几乎同时地通过自主导航而计算出的位置分别采用符号“□”而表示为地点b2~f2。
如图2所示,通过GPS的定位而求出的地点a1~c1的GST误差为10m。
该GST误差的大小与在通常的GPS的定位中来自地平线上的GPS卫星的电波能够全部清楚地接收的情况下所期待的值相对应。
于是,求出的地点a1~c1在路径w上基本正确地被求出。
相对于该情况,通过GPS的定位而求出的地点d1~f1的GST误差为30m。
此外,地点d1~f1被求取为,从路径w上的正确的地点d0~f0偏离(例如几米)。
如图2所示,根据通过自主导航而计算出的移动距离和移动方向的数据,求取地点b2~f2。
此时,将通过上次的GPS的定位而求出的定位位置数据作为基准位置(例如,地点a1~c1),求取地点b2~f2。
在该求出的位置(地点b2~d2)上,出现相对于路径w沿顺时针方向大致为固定角度的偏移,与实际的步幅相比较,出现约长出10%的移动距离的误差。
此外,在根据通过自主导航而计算出的地点(d2)和接下来通过自主导航而计算出的移动距离与移动方向、从而计算出的位置(地点e2)上,累积地出现2次的移动方向和移动距离的误差。
此外,在根据地点(e2)和接下来通过自主导航而计算出的移动距离和移动方向、从而计算出的位置(地点f2)上,累积地出现3次的移动方向和移动距离的误差。
自主导航修正处理部22,对于存储在自主导航数据存储部11a中的自主导航的算出位置数据,基于在其前后获得的GPS的定位位置而进行修正。
已修正的自主导航的算出位置数据作为确定值而存储于非易失性存储器13中。
位置精度判别处理部23,根据从GPS接收处理部15获得的GPS的定位位置数据、以及从自主导航控制处理部21获得的自主导航位置的数据的各自的误差大小,进行选择数据处理的方法的处理。
另外,位置精度判别处理部23将GPS的定位位置的误差范围与预先设定的阈值进行比较,判别GPS定位位置的精度是否足够。
显示部18例如为进行液晶显示的画面。
或者,显示部18也可采用有机EL(Electro-Luminescent,电致发光)显示器等其它方式的显示单元。
该显示部18能够从非易失性存储器13中读取并显示地图数据,将表示所求出的位置的符号以及表示移动的轨迹的线重叠地显示。
另外,此时,成为如下结构,其中,对于表示在显示部18上显示的各位置的符号,例如根据从GST消息输出而解读出的误差范围信息,能够同时地显示表示该误差范围的椭圆。
下面根据流程图,对定位处理的动作内容进行说明。
图3为表示CPU10执行的定位控制处理的顺序的流程图。
本实施方式的定位控制处理通过操作键20的基于用户操作的输入信号而开始。
如果开始该定位控制处理,则首先,CPU10将信号发送给GPS接收处理部15,开始接收处理。
此后,CPU10根据从GPS接收处理部15输入的信号,判别是否接收到来自GPS卫星的电波(步骤S1)。
接着,在判别为接收到来自GPS卫星的电波的情况下,CPU10接着判别最新的星历数据是否存储于卫星轨道数据存储部13b中(步骤S2)。
如果判别为最新的星历数据没有存储于卫星轨道数据存储部13b中,则CPU10从GPS接收处理部15获得已接收的星历数据,将其存储于卫星轨道数据存储部13b中(步骤S3)。
此后,CPU10的处理转到步骤S4。
在判别为已存储有最新的星历数据的情况下,CPU10的处理直接转到步骤S4。
然后,CPU10进行获得当前位置信息的GPS的定位处理(步骤S4),该当前位置信息根据来自GPS接收处理部15的输入数据、通过GPS的定位而求出。
接着,CPU10的处理转到步骤S5。
在步骤S1的判别处理中判别为没有接收到来自GPS卫星的电波的情况下,CPU10的处理不进行步骤S2~S4的处理,而是转到步骤S5。
如果转到步骤S5,则CPU10根据通过3轴加速度传感器17测量出的3轴加速度的数据,获得必要的期间(例如,从进行上次的GPS的定位处理的时刻开始到进行本次的GPS的定位处理的时刻为止的期间)的数据。
接着,CPU10根据通过3轴地磁传感器16测量出的3轴地磁数据,获得必要的期间的方位数据(步骤S6)。
然后,CPU10判别在已获得的3轴加速度数据中是否包含重力加速度以外的加速度(步骤S7)。
在判别为不包含重力加速度以外的加速度的情况下,判断为作为步行者的用户相对于上次的测量位置没有移动,CPU10的处理返回到步骤S1。
另一方面,在步骤S7的判别处理中,在判别为包含重力加速度以外的加速度的情况下,CPU10判断是否设定了基准位置数据(步骤S8)。
在定位控制处理刚刚开始后,判别为不存在基准位置数据,CPU10将通过最初的GPS的定位处理(步骤S4)获得的定位位置数据和时刻数据作为基准位置/时刻的初始值,设定并登记到RAM11中(步骤S9)。
该初始值不按照误差的大小而设定,与误差信息一起显示于显示部18。
此后,CPU10的处理转到步骤S10。
在一旦设定并登记了基准位置数据的初始值之后,在步骤S7的判别处理中,判别为具有基准位置数据,直接转到步骤S10。
如果转到步骤S10,则CPU10进行自主导航处理。
在该自主导航处理中,CPU10根据已获得的3轴加速度数据和3轴地磁数据,使自主导航控制处理部21计算行进方向,此外,将3轴加速度数据的坐标系变换为以重力方向和行进方向为坐标轴的坐标系。
此后,CPU10根据该3轴加速度数据的重力方向成分的时间序列变化的模式(pattern),使自主导航控制处理部21计算用户的移动步数。
此外,CPU10进行移动量测量处理(步骤S11)。
在该移动量测量处理中,CPU10根据计算出的移动步数而使自主导航控制处理部21计算在设定的期间内的移动距离并获得该移动距离。
接着,CPU10将从GPS接收处理部15获得的GST消息展开(步骤S12)。
CPU10根据该已展开的GST消息,设定GST误差的值。
然后,CPU10使位置精度判别处理部23评价该GST误差的大小(步骤S13)。
首先,在判别为GST误差在预先设定的阈值、例如10m以下的情况下,CPU10判断为求出的定位位置数据的可靠性高。
然后,CPU10的处理转到步骤S17。
另一方面,在判别为GST误差在预先设定的其它阈值、例如100m以上的情况下,CPU10判断为求出的定位位置数据的可靠性低。
然后,CPU10的处理转到步骤S16。
在判别为GST误差在10m~100m之间的情况下,CPU10的处理转到步骤S14。
如果转到步骤S14,则CPU10进行将相对于基准位置的时间差变换为自主导航误差的处理。
在将该相对于基准位置的时间差变换为自主导航误差的处理中,CPU10首先根据预先设定的移动速度,将从当前设定的基准位置的设定时刻开始到进行下一GPS定位的定时为止的经过时间换算为可移动距离。
然后,CPU10根据该可移动距离和自主导航的规定精度(%),计算距离误差,将该距离误差设定为自主导航误差的值。
由此,该自主导航误差随着从设定了基准位置的时刻起的经过时间的变长而单调地增加。
接着,CPU10将求出的自主导航误差的值和GST误差的值送到位置精度判别处理部23,进行位置精度的判别处理(步骤S15)。
在判别为自主导航误差的值小于GST误差的值的情况下,CPU10的处理转到步骤S16。
另一方面,在判别为GST误差的值小于自主导航误差的值的情况下,CPU10的处理转到步骤S17。
如果转移到步骤S16,则CPU10执行自主导航的位置的采用处理。
在该自主导航位置的采用处理中,CPU10采用通过下述方式求出的算出位置,该方式为:将通过步骤S11的移动量测量处理而计算出的移动方向和移动距离对上次求出的位置信息进行加法运算,从而求出算出位置。
接着,CPU10将在该自主导航位置的采用处理中采用的算出位置数据,与时刻数据一起存储于自主导航数据存储部11a中。
此外,CPU10使显示部18显示该设定的算出位置和移动路径并且一并显示该算出位置的误差范围。
此后,CPU10的处理返回到步骤S1。
另一方面,如果转到步骤S17,则CPU10执行GPS的定位位置的采用处理。
在该GPS的定位位置的采用处理中,CPU10首先采用已测定出的定位位置。
在上次的基准位置的设定登记之后存在存储于自主导航数据存储部11b中的算出位置数据的情况下,CPU10将该算出位置数据、上次的基准位置数据以及已确定的GPS定位的定位位置数据送到自主导航修正处理部22。
接着,CPU10使自主导航修正处理部22进行后述的自主导航的算出位置数据的修正处理。
然后,CPU10按照时刻数据顺序,将从自主导航修正处理部22获得的这些修正后的算出位置数据以及定位位置数据存储于移动履历数据存储部13a中。
CPU10根据存储于移动履历数据存储部13a中的修正后的位置数据,将这些位置及其误差范围、与移动路径显示于显示部18中。
此后,CPU10将定位位置数据和该定位位置数据的获得时刻作为基准位置/时刻数据,更新登记于RAM11中。
之后,CPU10的处理返回到步骤S1。
另外,在上述流程图中,CPU10使位置精度判别处理部23只进行步骤S13、S15的判别处理,但是,也可以使位置精度判别处理部23进行步骤S13~S15的全部处理。
此外,在上述流程图中,CPU10在开始移动之后进行初始位置的设定,但是,也可以在最初获得GPS的定位位置数据的阶段进行初始位置的设定。
另外,对于上述初始位置的设定,也可以是,在GST误差的值变小的情况下,即使没有用户的移动,仍进行更新登记。
下面对本实施方式的定位装置1的位置决定的具体例子进行说明。
图4为表示本实施方式的定位装置的定位例子的图。
在图4的定位例中,携带有定位装置1的用户经过高层建筑物h从地点m向地点q移动。
首先,如果开始定位控制处理,则定位装置1从GPS卫星接收电波(步骤S1),如果最新的星历数据没有存储于卫星轨道数据存储部13b中,则获得最新的星历数据(步骤S2,S3)。
此后,进行GPS的定位处理(步骤S4)。
此时测定出的位置(地点m1,符号“○”)、以及时刻的数据作为基准位置/时刻的初始值,设定并登记于RAM11中(步骤S8,S9)。
另外,在第2次以后的GPS的定位处理中,例如按5秒的间隔而分别获得用户进行了移动的目的地的定位位置(地点n1~q1,符号“○”)。
另一方面,如果根据内置于定位装置1中的3轴加速度传感器17的测量数据以及3轴地磁传感器16的测量数据,检测出由用户的移动引起的加速度变化(步骤S5~S7),则计算用户的步数,进而输出移动距离和移动方位(步骤S10,S11)。
接着,定位装置1将与通过GPS的定位处理求出的这些定位位置(地点m1~q1)有关的各个GST消息输出进行展开,获得GST误差(步骤S12)。
地点m1和q1的GPS的定位精度为GST误差10m。
因此,进行GPS定位采用处理,这些定位位置作为基准位置而被设定(步骤S13,S17)。
相对于此,在高层建筑物h求出的GPS的定位位置n1~p1的GST误差均为30m。
因此,将该GPS的定位位置n1~p1的区间的各GST误差,与根据从基准位置m1的设定时刻起的经过时间而计算出的自主导航误差(步骤S14)相比较(步骤S15)。
然后,如果该区间的自主导航误差小于GST误差,则自主导航的算出位置n2~p2(分别通过符号“□”表示)通过自主导航位置采用处理,从而算出位置被采用(步骤S16)。
即,自主导航的算出位置o2~q2分别作为相对于地点n2~p2的移动距离和移动方位而被算出,缓慢累积移动距离的误差,并且呈现出大致朝固定方向的角度误差。
GPS定位位置q1的GST误差恢复到10m。
在此时执行的GPS定位位置采用处理(步骤S17)中,进行通过自主导航而计算出的算出位置的各地点n2~p2的修正处理。
具体来说,首先,对于从在先的基准位置m1到自主导航位置q2的矢量V2,进行旋转伸缩操作,计算用于使得与从在先的基准位置m1到新的基准位置q1的矢量V1一致的变换矩阵T。
即,通过该变换矩阵T,V1=TV2成立。
接着,修正处理中,将对于从在先的基准位置m1到地点n2~p2的各矢量分别进行基于该变换矩阵T的旋转伸缩操作而求出的地点n3~p3(通过符号“△”表示)分别确定为算出位置数据。
另外,在这里,即使GPS定位位置q1的GST误差保持为30m,在基于自主导航的各算出位置n2~q2中,例如在各叠加8m的自主导航误差的情况下,地点q2的累积的自主导航误差为32m。
因此,由于该自主导航误差大于GST误差的值,故仍将地点q1设定为基准位置,进行地点n2~p2的修正处理。
如上所述,本实施形式的定位装置1采用GST消息输出来规定基于GPS的定位的误差范围,由此,能够每次直接对GPS的定位的误差范围和自主导航的误差范围进行比较。
并且,定位装置1在无法通过GPS的定位来获得足够的精度的情况下,能够从自主导航的算出位置和GPS的定位位置中选择误差小的位置,所以,能够总是获得精度良好的位置数据。
此外,由于定位装置1仅将通过GPS的定位而确定的精度良好的定位位置数据设定为基准位置,所以,能够考虑基准位置设定后的自主导航的累积的误差范围来进行定位位置数据的获得。
因此,即使在同样的GST误差的情况下,定位装置1也能够考虑由于自主导航的误差累积增加所带来的影响,而进行精度高的位置数据的选择。
此外,定位装置1根据2个点的GPS的定位位置数据,对自主导航的算出位置数据进行修正,因此,能够追溯而去除自主导航的累积的移动距离误差及角度误差。
此外,定位装置1能够将累积的自主导航的算出位置数据的误差减少到大致一致的等级。
另外,由于定位装置1通过将矢量的旋转和伸缩操作组合起来的线性变换而进行自主导航的位置的修正处理,所以不必进行困难的处理即可简单地进行精度高的修正。
此外,当GPS的定位的误差范围在10m以下或100m以上时,定位装置1不与自主导航的估计误差进行大小的比较,而分别进行GPS的定位位置、自主导航的算出位置的采用处理,所以,能够避免将精度足够的数据排除或采用精度明显不足的数据的状况。
此外,对于定位装置1,由于在位置和路径数据的显示画面中,不仅显示位置数据,还显示误差数据,因此用户能够一边把握位置数据正确到何种程度一边利用显示信息。
(变形例1)
在上述实施方式的定位装置1中,CPU10能够省略图3所示的流程图中的步骤S13的GST误差在10m以下的情况下的分支。
即使GST误差在10m以内,在自主导航误差变得比GST误差大之前,CPU10根据通过自主导航而求出的移动距离和移动方位来计算路径,当自主导航误差变得比GST误差大时,进行路径的修正处理。
由于通过该变形例1,即使是GPS定位的通常界限精度以下的移动路径,定位装置1也能在自主导航的误差范围内获得位置数据,所以,能够总是获得精度高的路径数据。
另外,由于定位装置1能够不与道路信息等进行对照而获得精细的移动路径的数据,所以,能够高精度地进行屋内的经过、广场及山路等没有道路数据的场所下的路径数据的获得。
(变形例2)
在上述实施方式的定位装置1中,当在图3所示的流程图的步骤S15中判别为自主导航误差变得比GST误差大时,在进行通过步骤S17的GPS定位位置采用处理而进行的路径的修正、以及基准位置的设定处理时,在GST误差大于10m的情况下,CPU10将修正后的路径及已设定的基准位置的数据进而作为一定的期间暂定值,存储到例如自主导航数据存储部11a中。
此外,在此后GST误差降低到10m以下的情况下,CPU10对于从当初的基准位置朝向该暂定基准位置的矢量、与朝向GST误差降低到10m以下时的自主导航位置的矢量,分别计算用于进行旋转伸缩变换的变换矩阵T1、T2,进行算出位置数据的修正。
另一方面,在一定的期间内GST误差没有降低到10m以下的情况下,CPU10将已修正的路径和暂定基准位置确定为位置数据。
在这样的变形例2的定位装置中,CPU10尽可能地根据GST误差在10m以下的GPS定位数据来进行定位位置数据的修正处理,另外,即使在GST误差没有恢复到10m以下的情况下,也按照基于自主定位的算出位置数据以上的精度,进行GPS的定位位置数据的修正处理。
因此,在最终记录的轨迹数据中包含精度低的位置数据的可能性低,并且定位装置能够从整体上进行精度良好的修正。
另外,本发明并不限于上述实施方式,可进行各种变更。
例如,在上述实施方式中,定位装置采用GST消息输出的数据作为GPS的定位的误差,但也能采用其他指标。
例如,定位装置也能够根据在基于NMEA-0183规格的GSA(GPS DOP(Dilution of Precision,精度因子)and active satellites,全球定位系统精度因子和有源卫星)消息输出中包含的PDOP(Position Dilution ofprecision,位置精度因子)的值和接收频率,规定移动距离的误差范围。
例如,定位装置能够利用PDOP的2drms(twice distance root meansquare,2倍距离均方根)。
另外,在上述实施方式中,通过从设定了基准位置的时刻起的经过时间而求出表示自主导航的算出位置数据的精度的估计误差,但是也可以采用其它方法。
例如,定位装置也可以采用通过自主导航处理(步骤S10)计数的步数数据和预先设定的步幅数据的乘法运算结果、进而采用将规定的系数α(0<α<1)与该乘法运算结果的值相乘而得到的值,用作表示自主导航的算出位置数据的精度的值。
此外,在本实施方式中,定位装置采用GPS卫星的数据来进行卫星定位,但是,也可以利用GLONASS(Global Navigation Satellite System,全球导航卫星系统)等其它的卫星定位系统。
或者,定位装置也能够利用卫星以外的通信系统,该卫星以外的通信系统利用与多个便携电话的基站进行通信而得到的定位等。
此外,在上述实施方式中,定位装置通过借助GPS的定位而求出的2个点的位置数据,对借助自主导航而求出的位置数据进行修正,但是,也可以采用3个点以上的位置数据进行修正。
另外,在采用2个点的GPS定位数据的情况下,定位装置也可按照下述方式构成,该方式为:不仅按照在该2个点之间的期间获得的自主导航的算出位置数据、而且按照成为基准点的由GPS的2个点的定位位置数据得到的在此期间获得的自主导航的算出位置数据的修正,对前后的期间的自主导航的算出位置数据进行修正。
此外,在上述实施方式中,列举了步行者的移动轨迹的具体例而说明了定位装置,但是,也可以应用于涉及汽车等其它移动机构的定位装置。
此外,在上述实施方式中,定位装置按照同一时间间隔、基本同时地进行卫星定位和自主导航,但是,也可以根据作为对象的移动体的移动速度,例如将卫星定位减少为自主导航的一半的执行次数。
此外,在上述实施方式中,对于定位装置,示出了CPU10根据存储于ROM12中的程序12a,使GPS接收处理部15、自主导航控制处理部21、自主导航修正处理部22、位置精度判别处理部23等执行各处理的形态,但是,也可以将这些处理全部作为基于CPU10的运算的软件处理而进行。
另外,在上述实施方式中,定位装置在显示画面中显示求出的路径信息和误差信息,但是,也可以采用作为数值数据而输出、能够通过连接的外部设备而使用的结构。
此外,本实施方式所示的具体的结构的细部及设定的数值等,可在不脱离本发明的实质的范围内适当进行变更。

Claims (7)

1.一种定位装置,其特征在于,具备:
位置定位单元,直接定位自身的当前位置,获得定位位置数据;
移动测量单元,测量移动方向和移动量;
位置计算单元,将通过上述移动测量单元测量出的移动方向和移动量的信息与该移动的基准点的位置数据进行累计,从而间接计算自身的当前位置,获得算出位置数据;
位置选择单元,对表示通过上述位置定位单元求出的定位位置数据的精度的精度指标、与通过上述位置计算单元求出的算出位置数据的精度指标进行比较,选择更高精度的位置数据;以及
基准点设定单元,在通过上述位置选择单元选择了通过上述位置定位单元求出的定位位置数据的情况下,将该选择出的定位位置数据设定为上述基准点;
通过上述位置计算单元求出的算出位置数据的上述精度指标,以精度从上述基准点起累积地降低的方式而被设定。
2.根据权利要求1所述的定位装置,其特征在于,具备:
算出位置数据存储单元,依次存储通过上述位置计算单元计算出的移动路径中的算出位置数据;以及
路径数据修正单元,根据上述基准点的位置数据以及该基准点的设定前的上述基准点即上次基准点的位置数据,对存储在上述算出位置数据存储单元中的上述移动路径中的算出位置数据进行修正。
3.根据权利要求2所述的定位装置,其特征在于,
上述路径数据修正单元根据上述上次基准点,对存储在上述算出位置数据存储单元中的算出位置数据的矢量分别进行旋转伸缩操作,该旋转伸缩操作是如下操作:使从上述上次基准点的位置朝向上述基准点的位置的矢量,与从上述上次基准点的位置朝向在上述基准点的位置数据的获得定时通过上述位置计算单元计算出的算出位置数据的矢量相一致。
4.根据权利要求2所述的定位装置,其特征在于,
具备精度判别单元,该精度判别单元将通过上述位置定位单元求出的定位位置数据的上述精度指标、与规定的阈值进行比较,从而判别该定位位置数据的精度是否高于由上述阈值表示的精度;
通过上述位置选择单元选择通过上述位置定位单元求出的定位位置数据、并且通过上述精度判别单元判别为该定位位置数据的精度低于由上述阈值表示的精度的情况下,上述基准点设定单元将该求出的直接的位置设定为暂定基准点;
在设定了上述暂定基准点之后,通过上述精度判别单元判别为在规定的修正等待期间内通过上述位置定位单元求出的定位位置数据的精度变得高于由上述阈值表示的精度的情况下,上述基准点设定单元将该新求出的直接的位置设定为上述基准点;
在设定了上述暂定基准点之后,未通过上述精度判别单元判别为在上述修正等待期间内通过上述位置定位单元求出的定位位置数据的精度高于由上述阈值表示的精度的情况下,上述基准点设定单元将上述暂定基准点设定为上述基准点。
5.根据权利要求4所述的定位装置,其特征在于,
在通过上述精度判别单元判别为通过上述位置定位单元求出的定位位置数据的精度高于由上述阈值表示的精度的情况下,
上述位置选择单元选择通过上述位置定位单元求出的定位位置数据;
上述基准点设定单元将该定位位置数据设定为上述基准点。
6.根据权利要求1所述的定位装置,其特征在于,
具备显示单元,该显示单元显示上述位置选择单元选择的位置数据,与该位置数据的上述精度指标所表示的误差范围。
7.一种定位方法,根据来自位置定位单元和移动测量单元的信息,获得移动路径中的位置数据,上述位置定位单元直接定位自身的当前位置,获得定位位置数据,上述移动测量单元测量移动方向和移动量;
该定位方法的特征在于,包括以下步骤:
位置计算步骤,将通过上述移动测量单元测量出的移动方向和移动量的信息与该移动的基准点的位置数据进行累计,从而间接计算自身的当前位置,获得算出位置数据;
位置选择步骤,对表示通过上述位置定位单元求出的定位位置数据的精度的精度指标、与在上述位置计算步骤中求出的算出位置数据的精度指标进行比较,选择更高精度的位置数据;以及
基准点设定步骤,在上述位置选择步骤中选择了通过上述位置定位单元求出的定位位置数据的情况下,将该选择出的定位位置数据设定为基准点;
在上述位置计算步骤中求出的算出位置数据的上述精度指标,以精度从上述基准点起累积地降低的方式而被设定。
CN201110301199.8A 2010-09-01 2011-09-01 定位装置及定位方法 Active CN102540231B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010195241A JP5464101B2 (ja) 2010-09-01 2010-09-01 測位装置、測位方法、および、プログラム
JP195241/2010 2010-09-01

Publications (2)

Publication Number Publication Date
CN102540231A true CN102540231A (zh) 2012-07-04
CN102540231B CN102540231B (zh) 2016-01-06

Family

ID=44785306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110301199.8A Active CN102540231B (zh) 2010-09-01 2011-09-01 定位装置及定位方法

Country Status (4)

Country Link
US (1) US8805642B2 (zh)
EP (1) EP2426513B1 (zh)
JP (1) JP5464101B2 (zh)
CN (1) CN102540231B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116173A (zh) * 2013-01-25 2013-05-22 四川九洲电器集团有限责任公司 用于光电跟踪的误差检验装置
CN103868511A (zh) * 2014-02-21 2014-06-18 武汉眸博科技有限公司 地理位置信息估算方法、修复方法和显示方法
CN105203126A (zh) * 2014-06-17 2015-12-30 昆达电脑科技(昆山)有限公司 估测使用者移动距离的方法及穿戴式距离估测装置
CN106662630A (zh) * 2014-09-02 2017-05-10 苹果公司 使用通信耦接的电子设备来进行位置确定
CN107809444A (zh) * 2016-08-30 2018-03-16 平安科技(深圳)有限公司 一种位置信息处理方法及服务器
CN109791167A (zh) * 2016-07-01 2019-05-21 奥克托信息技术股份公司 用于定位车载设备以用于获取以及远程传输与机动车辆和摩托车的运动和驾驶参数有关的数据的校准方法
CN112352167A (zh) * 2018-06-25 2021-02-09 三菱电机株式会社 定位装置、定位方法及定位系统
CN113655506A (zh) * 2021-09-13 2021-11-16 深圳市有方科技股份有限公司 Gps的数据处理方法及终端设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130515A (ja) * 2011-12-22 2013-07-04 Sony Corp 情報処理装置、情報処理方法、及びプログラム
JP5583169B2 (ja) * 2012-05-30 2014-09-03 ソフトバンクモバイル株式会社 測位システム及び測位方法
JP6142497B2 (ja) * 2012-06-20 2017-06-07 株式会社リコー 配信装置、通信端末及び配信システム
JP2014009964A (ja) * 2012-06-27 2014-01-20 Ntt Docomo Inc 移動端末、システム及び方法
JP6349698B2 (ja) * 2013-11-27 2018-07-04 カシオ計算機株式会社 走行状態検出装置、曲がり角通過時間取得方法およびプログラム
US10133548B2 (en) 2014-01-27 2018-11-20 Roadwarez Inc. System and method for providing mobile personal security platform
RU2016129323A (ru) * 2014-01-27 2018-03-05 Роудуорез Инк. Носимая система сигнализации и способы применения
US11235777B2 (en) * 2015-10-15 2022-02-01 Harman International Industries, Incorporated Vehicle path prediction and target classification for autonomous vehicle operation
US9986506B2 (en) 2015-12-17 2018-05-29 International Business Machines Corporation Global positioning system (GPS) signal piggyback in a distributed device environment
JP6603122B2 (ja) * 2015-12-18 2019-11-06 Kddi株式会社 情報処理装置、記録方法、及びプログラム
JP6810903B2 (ja) * 2015-12-25 2021-01-13 カシオ計算機株式会社 電子機器及び軌跡情報取得方法、軌跡情報取得プログラム
WO2019234858A1 (ja) * 2018-06-06 2019-12-12 三菱電機ビルテクノサービス株式会社 移動体端末及び現在位置補正システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364491A (ja) * 1991-06-11 1992-12-16 Mazda Motor Corp 自車位置認識装置
WO1993005587A1 (en) * 1991-08-30 1993-03-18 Etak, Inc. Combined relative and absolute positioning method and apparatus
WO1999004280A1 (en) * 1997-07-14 1999-01-28 Motorola Inc. A portable dead reckoning system for extending gps coverage
JP2006177772A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd 測位装置およびそれを用いる位置情報システム
US20060189329A1 (en) * 2005-02-23 2006-08-24 Deere & Company, A Delaware Corporation Vehicular navigation based on site specific sensor quality data
JP2010032289A (ja) * 2008-07-28 2010-02-12 Sharp Corp ナビゲーション装置、ナビゲーション方法、およびナビゲーションプログラム
CN101650432A (zh) * 2009-05-20 2010-02-17 北京派瑞根科技开发有限公司 基于网络计算的物体三维运动轨迹跟踪系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212713A (ja) * 1989-02-14 1990-08-23 Mitsubishi Electric Corp 移動体用ナビゲーション装置
US5512904A (en) * 1994-06-13 1996-04-30 Andrew Corporation Method and apparatus of establishing a vehicle azimuth
JP3571305B2 (ja) * 2000-03-24 2004-09-29 クラリオン株式会社 カルマンフィルタの誤差推定値を加味した2drmsを出力するgpsレシーバ
JP4007924B2 (ja) 2003-01-30 2007-11-14 三洋電機株式会社 携帯ナビゲーション装置
JP2007225459A (ja) * 2006-02-24 2007-09-06 Clarion Co Ltd 車載器
JP5034935B2 (ja) * 2007-12-27 2012-09-26 セイコーエプソン株式会社 測位方法、プログラム、測位装置及び電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364491A (ja) * 1991-06-11 1992-12-16 Mazda Motor Corp 自車位置認識装置
WO1993005587A1 (en) * 1991-08-30 1993-03-18 Etak, Inc. Combined relative and absolute positioning method and apparatus
WO1999004280A1 (en) * 1997-07-14 1999-01-28 Motorola Inc. A portable dead reckoning system for extending gps coverage
JP2006177772A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd 測位装置およびそれを用いる位置情報システム
US20060189329A1 (en) * 2005-02-23 2006-08-24 Deere & Company, A Delaware Corporation Vehicular navigation based on site specific sensor quality data
JP2010032289A (ja) * 2008-07-28 2010-02-12 Sharp Corp ナビゲーション装置、ナビゲーション方法、およびナビゲーションプログラム
CN101650432A (zh) * 2009-05-20 2010-02-17 北京派瑞根科技开发有限公司 基于网络计算的物体三维运动轨迹跟踪系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116173B (zh) * 2013-01-25 2015-08-19 四川九洲电器集团有限责任公司 用于光电跟踪的误差检验装置
CN103116173A (zh) * 2013-01-25 2013-05-22 四川九洲电器集团有限责任公司 用于光电跟踪的误差检验装置
CN103868511A (zh) * 2014-02-21 2014-06-18 武汉眸博科技有限公司 地理位置信息估算方法、修复方法和显示方法
CN103868511B (zh) * 2014-02-21 2017-01-25 武汉眸博科技有限公司 地理位置信息估算方法、修复方法和显示方法
CN105203126B (zh) * 2014-06-17 2018-07-06 昆达电脑科技(昆山)有限公司 估测使用者移动距离的方法及穿戴式距离估测装置
CN105203126A (zh) * 2014-06-17 2015-12-30 昆达电脑科技(昆山)有限公司 估测使用者移动距离的方法及穿戴式距离估测装置
CN106662630B (zh) * 2014-09-02 2020-12-08 苹果公司 使用通信耦接的电子设备来进行位置确定
CN106662630A (zh) * 2014-09-02 2017-05-10 苹果公司 使用通信耦接的电子设备来进行位置确定
CN109791167A (zh) * 2016-07-01 2019-05-21 奥克托信息技术股份公司 用于定位车载设备以用于获取以及远程传输与机动车辆和摩托车的运动和驾驶参数有关的数据的校准方法
CN107809444A (zh) * 2016-08-30 2018-03-16 平安科技(深圳)有限公司 一种位置信息处理方法及服务器
CN112352167A (zh) * 2018-06-25 2021-02-09 三菱电机株式会社 定位装置、定位方法及定位系统
CN112352167B (zh) * 2018-06-25 2024-02-23 三菱电机株式会社 定位装置、定位方法及定位系统
CN113655506A (zh) * 2021-09-13 2021-11-16 深圳市有方科技股份有限公司 Gps的数据处理方法及终端设备

Also Published As

Publication number Publication date
US20120053889A1 (en) 2012-03-01
EP2426513B1 (en) 2016-05-18
JP5464101B2 (ja) 2014-04-09
US8805642B2 (en) 2014-08-12
EP2426513A1 (en) 2012-03-07
CN102540231B (zh) 2016-01-06
JP2012052898A (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
CN102540231A (zh) 定位装置及定位方法
CN100498224C (zh) 卫星测位装置、当前位置确定方法及导航装置
CN102455182B (zh) 定位装置及定位方法
CN102401905B (zh) 定位装置以及定位方法
CN101922937B (zh) 定位装置及定位方法
CN110645979B (zh) 基于gnss/ins/uwb组合的室内外无缝定位方法
CN101819044B (zh) 导航装置
CN101819042B (zh) 导航装置及导航方法
CN101819043B (zh) 导航装置及导航方法
JP5589900B2 (ja) 局所地図生成装置、グローバル地図生成装置、及びプログラム
CN105849589B (zh) 全球导航卫星系统、定位终端、定位方法以及记录介质
JP6160097B2 (ja) 走行状態検出装置、走行状態検出方法およびプログラム
CN104614750B (zh) 车辆位置确定方法
CN101484777A (zh) 在缺少精确gps数据时获得准确测量数据的管理行进系统和方法
CN102538780A (zh) 定位装置及定位方法
CN102331259A (zh) 轨迹信息生成装置和方法以及计算机可读存储介质
US20110307171A1 (en) GPS Location Refinement Method In Environments With Low Satellite Visibility
CN102645662A (zh) 定位装置以及定位方法
JP2011017610A (ja) 測位装置、測位方法およびプログラム
US20180246217A1 (en) Method for calibrating a GNSS antenna of a vehicle
JP2011058896A (ja) 測位装置、測位方法およびプログラム
CN113063425B (zh) 车辆定位方法、装置、电子设备及存储介质
CN103033822B (zh) 移动信息确定装置、方法以及接收机
CN108983268A (zh) 一种基于虚拟参考站的定位方法、定位系统及相关装置
JP6349698B2 (ja) 走行状態検出装置、曲がり角通過時間取得方法およびプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant