CN102505062A - 转炉快速脱硅、脱磷预处理方法 - Google Patents

转炉快速脱硅、脱磷预处理方法 Download PDF

Info

Publication number
CN102505062A
CN102505062A CN2011104602105A CN201110460210A CN102505062A CN 102505062 A CN102505062 A CN 102505062A CN 2011104602105 A CN2011104602105 A CN 2011104602105A CN 201110460210 A CN201110460210 A CN 201110460210A CN 102505062 A CN102505062 A CN 102505062A
Authority
CN
China
Prior art keywords
slag
blowing
oxygen supply
dephosphorization
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104602105A
Other languages
English (en)
Other versions
CN102505062B (zh
Inventor
刘浏
阎占辉
李峻
余健
张庆国
佟溥翘
刘伟
姚同路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN 201110460210 priority Critical patent/CN102505062B/zh
Publication of CN102505062A publication Critical patent/CN102505062A/zh
Application granted granted Critical
Publication of CN102505062B publication Critical patent/CN102505062B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种转炉快速脱硅、脱磷预处理方法,属于铁水预处理领域。采用顶吹强供氧、底吹弱搅拌,低碱度中等氧化铁炉渣脱磷工艺。当铁水[Si]≥0.4%时采用变流量变枪位供氧工艺,前期供氧强度≥2.0Nm3/t.min,后期≤1.4Nm3/t.min;[Si]<0.4%时用恒流量变枪位操作,全程供氧强度为1.4±0.2Nm3/t.min。顶吹供氧采用“硬吹”,要求L/L0≥0.3,并在吹炼过程中逐步降低枪位,将L/L0提高到0.4~0.6。通过控制渣钢间磷分配比LP≥70保证终点[P]≤0.03%,炉渣碱度达到1.7~2.0,渣中TFe 8~15%,渣中MgO为6~10%;控制终点[Si]≤0.05%以保证脱磷效果,底吹供氧强度0.16~0.25Nm3/t.min,半钢温度在1340±10℃。优点在于,在8min内稳定生产半钢[P]≤0.03%,[C]为3.4%的低磷高碳半钢水。

Description

转炉快速脱硅、脱磷预处理方法
技术领域
本发明属于铁水预处理技术领域,特别是提供了一种转炉快速脱硅、脱磷预处理方法;适用于在顶底复吹转炉内进行铁水脱硅、脱磷预处理。
技术背景
为满足市场对高品质洁净钢的大量需求,采用传统转炉冶炼工艺稳定生产低磷、低硫([P+S]≤0.02%)洁净钢水非常困难。主要原因是转炉吹炼终点温度高,不利于磷氧化,渣钢间磷分配比波动在60~100,只能在低碳区([C]≤0.06%)实现脱磷;随着熔池碳含量降低钢水氧化性提高,使渣钢间硫的分配比降到2~4%,脱硫反应效率很低。采用铁水预处理脱磷反应温度低,有利于脱磷,渣钢间磷的分配比达到200~400,是炼钢脱磷效率的3~4倍。由于铁水中碳、硅含量较高,氧化性低,有利于铁水脱硫,渣钢间硫分配比达到1000~1500,是转炉脱硫效率的200~300倍。因此,为提高脱磷、硫的反应效率,各种铁水预处理方法相继出现,以期实现高效、低成本生产高洁净度钢水。如何进行铁水脱磷预处理,降低洁净钢生产成本是当代炼钢领域主要的研究方向。目前,已经工业化的铁水脱磷预处理工艺包括:
(1)铁水包、鱼雷罐车喷粉脱磷工艺:以铁水运输设备如铁水包或混铁车作为预处理装置,采用脱硅铁水,要求初始[Si]0≤0.15%;通过喷粉装置将脱磷剂(由矿石、烧结矿、石灰、助熔剂等原料配成)喷入铁水内部或通过溜槽加到铁水表面。有时采用顶吹供氧提高脱磷速度和减少处理温降。由于反应空间小,造成氧气应用比例较低,处理过程温降大于80℃。如日本专利公开报NO.58-16007公开了一种铁水包喷吹脱磷、脱硫的预处理方法,处理结束炉渣碱度大于2.2,氧化铁小于15%。
(2)转炉脱硅、脱磷预处理工艺:预处理装置为转炉,将普通铁水或脱硫铁水兑入顶底复合吹炼转炉内,加入适量废钢和造渣熔剂,进行脱硅、脱磷预处理,工艺方法如下:
日本专利公报NO.63-195209公开了一种冶炼工艺,采用两座转炉,第一座转炉为脱磷预处理炉,第二座转炉进行脱碳精炼。脱磷预处理炉采用顶吹弱供氧,供氧强度为1.0~1.3Nm3/t.min,造中等碱度炉渣(R=2.0~2.5)脱磷,处理低硅([Si]0=0.15~0.30%)铁水,吹氧时间10min,半钢磷含量控制在0.03%以下。
专利:CN 1182799A公开了一种转炉铁水脱磷方法,要求铁水[Si]0小于0.4%,供氧强度为0.75~1.2Nm3/t.min,采用预先制作的脱磷剂作为化渣剂,处理终点炉渣碱度大于3.0,处理时间不少于18分钟。
专利:CN 1128050A公开了一种氮一氧混吹铁水预处理方法,顶吹氧采用弱供氧,供氧强度为0.8Nm3/t.min,冶炼后期混入部分氮气,混氮量达到总流量的20~40%,采用高碱度(R=3.0~4.0)造渣工艺,处理时间不少于16分钟。
专利:CN 1552919A公开了一种转炉氧氮顶吹脱磷法,顶吹氧采用弱供氧,冶炼后期混入部分氮气,混氮量达到40~75%;当处理过程产生大喷溅时采用间歇供氮工艺,处理时间10~12min。
上述转炉铁水脱硅、脱磷预处理工艺存在以下的共同缺点:
(1)均要求较低的初始铁水硅含量,工艺适应性不强;
(2)均采用弱供氧、软吹工艺,供氧时间较长并易发生炉渣喷溅;
(3)均采用中高碱度渣脱磷,石灰消耗量大,渣量大,造成脱磷、脱硅处理成本升高。
本发明针对上述转炉铁水脱磷预处理工艺存在的主要技术问题,通过研究铁液中碳、硅、磷氧化反应平衡转变规律和各元素氧化速度变化规律及其相互影响,发明一种适于顶底复合转炉快速脱硅、脱磷预处理工艺。其工艺特点是:采用顶吹强供氧,底吹弱搅拌,低碱度中等氧化铁渣脱磷工艺,使脱磷、脱硅的供氧时间比其它方法缩短2~10min。
发明内容
本发明的目的在于提供一种转炉快速脱硅、脱磷预处理方法,利用复吹转炉实现铁水快速脱硅、脱磷和稳定控制半钢终点磷、碳含量和温度。
本发明的技术原理是:复吹转炉内熔池硅的氧化速度仅与硅含量有关,如图2所示。随熔池硅含量降低脱硅速率直线下降:当[Si]≥0.3%时脱硅速度≥1000×10-6/min,为高速脱硅区;当[Si]<0.04%时脱硅速度降低到100×10-6/min以下。如图3所示,当[Si]≥0.4%时熔池反应以脱硅为主;当0.2≤[Si]<0.4%时为碳、硅同时氧化反应区,Δ[Si]/Δ[C]≈1;当[Si]<0.2%时脱硅速度大幅降低,Δ[Si]/Δ[C]<1,说明熔池反应以脱碳为主。如图4所示,熔池中磷的氧化受硅氧化的影响,磷含量伴随硅含量降低而降低。控制处理终点[Si]≤0.03%是保证半钢[P]≤0.03%的重要热力学条件。
本发明采用顶吹强供氧、底吹弱搅拌,低碱度中等氧化铁炉渣脱磷工艺;在工艺中控制的技术参数为:
采用顶底复吹转炉作为铁水脱硅、脱磷预处理反应器,以普通铁水或脱硫铁水作为原料(铁水[Si]在0.2~1%,[C]在3.8~4.5%,[S]在0.001~0.045%范围),加入废钢,废钢加入重量为原料的8~15%,并要求废钢块度:长×宽×厚≤800mm×500mm×150mm;
顶吹供氧根据铁水硅含量分为两种操作模式:
当铁水[Si]≥0.4%时,采用变流量变枪位供氧,前期供氧强度1.5~2.0Nm3/t.min,后期为1.0~1.5Nm3/t.min;
当铁水[Si]<0.4%时,采用恒流量变枪位操作,全程供氧强度为1.2~1.6Nm3/t.min;
预处理供氧采用大流量、强供氧、硬吹:控制氧射流对熔池的穿透深度比L/L00.3~0.8;采用变枪位操作;对300吨转炉开吹时首先低枪位(1.0~1.2m)点火20~30s,然后将枪位提高至化渣枪位1.5~2.0m,吹炼1~2min,促进石灰熔化;随后逐步降低氧枪高度1.0~1.8m,,将L/L0提高到0.4~0.6;为避免脱磷过程碳的严重烧损,应根据铁水硅含量严格控制吹氧量10~15Nm3/t;
为保证半钢[P]的控制目标([P]≤0.03%),要求渣钢间磷的分配比LP(P2O5/[P])为60~100;为此要求控制炉渣碱度为1.7~2.0,渣中TFe 8~15重量%,渣中MgO为6~10重量%。并要求控制半钢[Si]≤0.05%;
在吹炼初期加入全部渣料,渣料的加入配比为石灰∶烧结矿∶白云石为1∶0.5∶0.15;为提高初渣成渣速度和减少石灰加入量,通常随废钢加入脱碳炉渣5~15kg/t;
供氧过程中熔池底吹供气强度保持在0.16~0.25Nm3/t.min范围内;
出钢后半钢包内的半钢温度控制在1330~1350℃。
根据上述铁水预处理过程中碳、硅、磷的氧化规律对本发明的技术方案进一步说明如下:
根据转炉容量加入铁水和废钢,废钢比应根据市场售价和铁水供应情况灵活调整,波动在8~15%范围内。由于脱磷预处理温度始终低于废钢熔点,废钢熔化主要依靠碳向废钢内扩散使熔点降低至铁水温度后逐步熔化,因此对废钢的块度有明确要求:长×宽×厚≤800mm×500mm×150mm。
初始铁水[Si]≥0.4%采用变流量变枪位供氧操作,前3min供氧强度≥2.0Nm3/t.min,随后始终保持在≤1.4Nm3/t.min至吹炼终点。[Si]<0.4%时采用恒流量变枪位供氧操作,吹炼全过程供氧强度始终保持在1.4±0.2Nm3/t.min,枪位逐步降低。供氧操作全程采用大流量、强供氧、硬吹工艺。
兑铁后立即开始吹炼,首先低枪位点火20~30s,然后将枪位提高至化渣枪位,吹炼1~2min,促进石灰熔化。随后逐步降低氧枪高度,增强顶射流对熔池冲击深度,将L/L0提高到0.4~0.6。氧气射流对熔池的冲击深度按下式计算:
L = 346.7 × P 0 d 0 H × 3.81
式中:P0-滞止压力,MPa;d0-氧枪喉口直径,cm;H-枪位,cm;L-氧气流的穿透深度,cm。
如图5所示,控制氧射流对熔池的穿透深度比L/L0≥0.3是实现快速脱硅的重要控制参数。
为避免脱磷过程碳的严重烧损,应根据铁水硅含量严格控制吹氧量。如图6所示,随初始[Si]升高适当增加供氧量,当铁水[Si]为0.3%时供氧量为11Nm3/t。
在供氧过程中熔池应始终保持较高的底吹供气强度,一般控制在0.16~0.25Nm3/t.min。
在吹炼初期要求尽快加入全部渣料,快速形成低碱度熔渣。为提高化渣速度,降低炉渣熔点,要求在吹炼前期加完全部矿石和白云石。渣料的加入配比为石灰∶烧结矿∶白云石为1∶0.5∶0.15。为提高初渣成渣速度和减少石灰加入量,通常随废钢加入脱碳炉渣10~15kg/t。
为保证半钢[P]的目标要求([P]≤0.03%),如图7所示,要求渣钢间磷的分配比LP(P2O5/[P])≥70。稳定控制LP要求控制炉渣碱度为1.7~2.0,渣中TFe 8~15%,渣中MgO为6~10%。
为保证半钢[P]的目标要求还必须严格控制吹炼终点熔池硅含量,控制半钢[Si]≤0.05%。
为增加脱碳炉半钢冶炼的热量,采用较高半钢终点温度控制,要求出钢后半钢包内的半钢温度控制在1340±10℃。
本发明的优点在于,可在8min吹炼时间内稳定生产半钢[P]≤0.03%,半钢[C]为3.4%的低磷高碳半钢水。
附图说明
图1为脱磷转炉吹炼工艺操作图。
图2为预处理前期脱硅效率对脱磷的影响。
图3为铁水[Si]0同Δ[Si]/Δ[C]的关系。
图4为半钢[Si]控制对半钢[P]的影响。
图5为L/L0对脱硅速度的影响。
图6为铁水[Si]与耗氧量的关系。
图7为表观磷分配比与半钢[P]的关系。
具体实施方式
实施例1:
脱硫后的铁水(成份、温度见表1)兑入300t脱磷转炉后点火吹炼,前期分两次加入石灰13.52kg/t,萤石3.5kg/t和烧结矿5.11kg/t造渣(炉渣成份见表2)。吹氧量14.3Nm3/t,吹炼时间8min到达终点。脱磷半钢终点成份、温度见表1。
表1冶炼过程中金属成份(%)
  成份   C   Si   S   P   Mn   温度/℃
  铁水   4.578   0.288   0.002   0.078   0.255   1365
  半钢   3.598   0.033   0.019   0.021   0.035   1347
表2冶炼过程中炉渣成分(%)
  CaO   SiO2   MgO   FeO   MnO   P2O5   S   Al2O3   R   LP   LS
  28.19   17.71   4.55   29.72   13.90   1.65   0.024   2.40   1.59   78.6   1.26
实施例2:
脱硫后的铁水(成份、温度见表3)兑入300t脱磷转炉,前期分两次加入石灰17.67kg/t,白云石3.4kg/t和烧结矿29.68kg/t造渣(炉渣成份见表4)。吹氧量15.68Nm3/t,吹炼时间8min到达终点。脱磷半钢终点成份、温度见表4。
表3冶炼过程中金属成份(%)
  成份   C   Si   S   P   Mn   温度/℃
  铁水   4.728   0.335   0.002   0.078   0.263   1390
  半钢   3.492   0.024   0.019   0.015   0.009   1348
表4冶炼过程中炉渣成分(%)
  CaO   SiO2   MgO   FeO   MnO   P2O5   S   Al2O3   R   LP   LS
  35.39   16.74   5.55   27.96   5.62   1.91   0.054   2.45   2.11   127.3   2.84
实施例3:
脱硫后的铁水(成份、温度见表5)兑入300t脱磷转炉,前期分两次加入石灰13.73kg/t,白云石3.5kg/t和烧结矿43.09kg/t造渣(炉渣成份见表6)。吹氧量11.12Nm3/t,吹炼时间8min到达终点。脱磷半钢终点成份、温度见表6。
表5冶炼过程中金属成份(%)
  成份   C   Si   S   P   Mn   温度/℃
  铁水   4.595   0.299   0.002   0.076   0.274   1380
  半钢   3.451   0.017   0.011   0.017   0.022   1345
表6冶炼过程中炉渣成分(%)
  CaO   SiO2   MgO   FeO   MnO   P2O5   S   Al2O3   R   LP   LS
  39.29   18.97   7.47   14.84   6.02   2.23   0.052   3.57   2.07   131.2   4.7

Claims (2)

1.一种转炉快速脱硅、脱磷预处理方法,采用顶吹强供氧、底吹弱搅拌,低碱度中等氧化铁炉渣脱磷;其特征在于,在工艺中控制的技术参数为:
采用顶底复吹转炉作为铁水脱硅、脱磷预处理反应器,以普通铁水或脱硫铁水作为原料,加入废钢,废钢加入重量为原料的8~15%,并要求废钢块度:长×宽×厚≤800mm×500mm×150mm;
顶吹供氧根据铁水硅含量分为两种操作模式:
当铁水[Si]≥0.4%时,采用变流量变枪位供氧,前期供氧强度1.5~2.0Nm3/t.min,后期为1.0~1.5Nm3/t.min;
当铁水[Si]<0.4%时,采用恒流量变枪位操作,全程供氧强度为1.2~1.6Nm3/t.min;
预处理供氧采用大流量、强供氧、硬吹:控制氧射流对熔池的穿透深度比L/L00.3~0.8;采用变枪位操作;对300吨转炉开吹时首先低枪位(1.0~1.2m)点火20~30s,然后将枪位提高至化渣枪位1.5~2.0m,吹炼1~2min,促进石灰熔化;随后逐步降低氧枪高度1.0~1.8m,将L/L0提高到0.4~0.6;为避免脱磷过程碳的严重烧损,应根据铁水硅含量严格控制吹氧量10~15Nm3/t;
为保证半钢[P]的控制目标[P]≤0.03%,要求渣钢间磷的分配比LP(P2O5/[P])为60~100;为此要求控制炉渣碱度为1.7~2.0,渣中TFe 8~15重量%,渣中MgO为6~10重量%;并要求控制半钢[Si]≤0.05%;
在吹炼初期加入全部渣料,渣料的加入配比为石灰∶烧结矿∶白云石为1∶0.5∶0.15;随废钢加入脱碳炉渣5~15kg/t;
供氧过程中熔池底吹供气强度保持在0.16~0.25Nm3/t.min范围内;
出钢后半钢包内的半钢温度控制在1330~1350℃。
2.根据权利要求1所述的方法,其特征在于,普通铁水或脱硫铁水中[Si]在0.2~1%,[C]在3.8~4.5%,[S]在0.001~0.045%范围,均为重量百分数。
CN 201110460210 2011-12-31 2011-12-31 转炉快速脱硅、脱磷预处理方法 Expired - Fee Related CN102505062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110460210 CN102505062B (zh) 2011-12-31 2011-12-31 转炉快速脱硅、脱磷预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110460210 CN102505062B (zh) 2011-12-31 2011-12-31 转炉快速脱硅、脱磷预处理方法

Publications (2)

Publication Number Publication Date
CN102505062A true CN102505062A (zh) 2012-06-20
CN102505062B CN102505062B (zh) 2013-04-24

Family

ID=46217191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110460210 Expired - Fee Related CN102505062B (zh) 2011-12-31 2011-12-31 转炉快速脱硅、脱磷预处理方法

Country Status (1)

Country Link
CN (1) CN102505062B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540708A (zh) * 2013-10-14 2014-01-29 北京科技大学 一种铁水气化脱硅回收纳米SiO2的方法
CN104357615A (zh) * 2014-11-25 2015-02-18 北京首钢国际工程技术有限公司 一种转炉喷吹除尘灰铁水脱磷方法
CN104451022A (zh) * 2014-12-19 2015-03-25 山东钢铁股份有限公司 一种降低脱磷炉终渣全铁含量的方法
CN105112598A (zh) * 2015-09-29 2015-12-02 山东钢铁股份有限公司 一种将转炉产炉底渣直接用于转炉炼钢的方法
CN106636857A (zh) * 2016-09-29 2017-05-10 成都真火科技有限公司 一种合金钢的冶炼方法
CN103710485B (zh) * 2014-01-06 2017-09-29 鞍钢股份有限公司 一种转炉炉内预脱硅方法
CN107723412A (zh) * 2017-09-29 2018-02-23 唐山钢铁国际工程技术股份有限公司 一种高磷铁水的双联冶炼脱磷工艺
CN108796162A (zh) * 2018-07-04 2018-11-13 攀钢集团攀枝花钢铁研究院有限公司 一种半钢冶炼转炉快速脱磷的方法以及炼钢方法
CN110129517A (zh) * 2019-06-11 2019-08-16 北京科技大学 基于转炉双联法冶炼高硅铁水提高脱硅炉脱磷率的方法
CN112442573A (zh) * 2019-09-02 2021-03-05 江苏集萃冶金技术研究院有限公司 在同一容器内实现脱硅、脱磷和脱硫的铁水预处理方法
CN112695147A (zh) * 2020-12-18 2021-04-23 芜湖新兴铸管有限责任公司 一种轴承钢转炉低氧出钢生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195209A (ja) * 1987-02-07 1988-08-12 Sumitomo Metal Ind Ltd 製鋼方法
CN1182799A (zh) * 1997-10-08 1998-05-27 冶金工业部钢铁研究总院 铁水预脱磷方法
CN101691622A (zh) * 2009-09-25 2010-04-07 首钢总公司 一种转炉脱磷预处理与少渣脱碳的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195209A (ja) * 1987-02-07 1988-08-12 Sumitomo Metal Ind Ltd 製鋼方法
CN1182799A (zh) * 1997-10-08 1998-05-27 冶金工业部钢铁研究总院 铁水预脱磷方法
CN101691622A (zh) * 2009-09-25 2010-04-07 首钢总公司 一种转炉脱磷预处理与少渣脱碳的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘浏: "建设高效低成本洁净钢平台的关键技术", 《山东冶金》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540708B (zh) * 2013-10-14 2015-09-09 北京科技大学 一种铁水气化脱硅回收纳米SiO2的方法
CN103540708A (zh) * 2013-10-14 2014-01-29 北京科技大学 一种铁水气化脱硅回收纳米SiO2的方法
CN103710485B (zh) * 2014-01-06 2017-09-29 鞍钢股份有限公司 一种转炉炉内预脱硅方法
CN104357615A (zh) * 2014-11-25 2015-02-18 北京首钢国际工程技术有限公司 一种转炉喷吹除尘灰铁水脱磷方法
CN104357615B (zh) * 2014-11-25 2016-01-20 北京首钢国际工程技术有限公司 一种转炉喷吹除尘灰铁水脱磷方法
CN104451022A (zh) * 2014-12-19 2015-03-25 山东钢铁股份有限公司 一种降低脱磷炉终渣全铁含量的方法
CN104451022B (zh) * 2014-12-19 2016-03-16 山东钢铁股份有限公司 一种降低脱磷炉终渣全铁含量的方法
CN105112598A (zh) * 2015-09-29 2015-12-02 山东钢铁股份有限公司 一种将转炉产炉底渣直接用于转炉炼钢的方法
CN106636857A (zh) * 2016-09-29 2017-05-10 成都真火科技有限公司 一种合金钢的冶炼方法
CN106636857B (zh) * 2016-09-29 2018-05-11 成都真火科技有限公司 一种合金钢的冶炼方法
CN107723412A (zh) * 2017-09-29 2018-02-23 唐山钢铁国际工程技术股份有限公司 一种高磷铁水的双联冶炼脱磷工艺
CN107723412B (zh) * 2017-09-29 2019-09-10 唐山钢铁国际工程技术股份有限公司 一种高磷铁水的双联冶炼脱磷工艺
CN108796162A (zh) * 2018-07-04 2018-11-13 攀钢集团攀枝花钢铁研究院有限公司 一种半钢冶炼转炉快速脱磷的方法以及炼钢方法
CN108796162B (zh) * 2018-07-04 2020-04-28 攀钢集团攀枝花钢铁研究院有限公司 一种半钢冶炼转炉快速脱磷的方法以及炼钢方法
CN110129517A (zh) * 2019-06-11 2019-08-16 北京科技大学 基于转炉双联法冶炼高硅铁水提高脱硅炉脱磷率的方法
CN110129517B (zh) * 2019-06-11 2020-08-28 北京科技大学 基于转炉双联法冶炼高硅铁水提高脱硅炉脱磷率的方法
CN112442573A (zh) * 2019-09-02 2021-03-05 江苏集萃冶金技术研究院有限公司 在同一容器内实现脱硅、脱磷和脱硫的铁水预处理方法
CN112695147A (zh) * 2020-12-18 2021-04-23 芜湖新兴铸管有限责任公司 一种轴承钢转炉低氧出钢生产方法
CN112695147B (zh) * 2020-12-18 2022-03-01 芜湖新兴铸管有限责任公司 一种轴承钢转炉低氧出钢生产方法

Also Published As

Publication number Publication date
CN102505062B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN102505062B (zh) 转炉快速脱硅、脱磷预处理方法
CN100485062C (zh) 一种以铁水为主原料冶炼不锈钢的方法
CN100560743C (zh) 钢水炉外脱磷生产超低磷钢的方法
CN102212643B (zh) 一种转炉少渣冶炼工艺
CN103205524B (zh) 一种半钢冶炼低硫钢的方法
CN105525055B (zh) 一种转炉少渣冶炼脱碳期喷溅的控制方法
CN104250672B (zh) 一种复吹转炉高效脱磷的方法
CN102559985B (zh) 转炉低磷钢冶炼方法
CN101696462A (zh) 一种半钢冶炼低磷钢的生产方法
CN106148630A (zh) 一种转炉冶炼低磷低硫钢水的方法
CN101962700A (zh) 使用半钢冶炼低磷钢水的方法
CN105112599A (zh) 一种超低磷钢冶炼方法
CN106282477B (zh) 一种超低磷钢的冶炼方法
US20210214813A1 (en) Slag Discharging Method in Process of Producing Ultra-Low Phosphorus Steel and Method for Producing Ultra-Low Phosphorus Steel
CN1189575C (zh) 一种转炉炼钢方法
CN102277470B (zh) 一种冶炼低硅冷镦钢的方法
JP6011728B2 (ja) 溶銑の脱燐処理方法
CN111670258B (zh) 铁水的脱磷方法
CN105132611A (zh) 一种转炉单渣生产超低磷钢的方法
CN102936638B (zh) 一种采用顶底吹炼的感应炉脱磷方法
CN102051444A (zh) 一种钢包精炼炉的脱硫方法及用于板坯钢种的脱硫方法
CN106987683B (zh) 一种高效脱磷固体颗粒添加剂和利用固体颗添加剂冶炼高磷铁水生产低磷钢的方法
CN104263875A (zh) 一种顶吹转炉采用高磷铁水生产合金焊线钢的脱磷方法
CN101545024A (zh) 一种脱磷铁水在转炉中的吹炼方法
CN103966387B (zh) 采用半钢炼钢的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130424

Termination date: 20151231

EXPY Termination of patent right or utility model