CN102495468B - 减小极紫外光刻投影系统变形的投影物镜结构优化方法 - Google Patents

减小极紫外光刻投影系统变形的投影物镜结构优化方法 Download PDF

Info

Publication number
CN102495468B
CN102495468B CN 201110409462 CN201110409462A CN102495468B CN 102495468 B CN102495468 B CN 102495468B CN 201110409462 CN201110409462 CN 201110409462 CN 201110409462 A CN201110409462 A CN 201110409462A CN 102495468 B CN102495468 B CN 102495468B
Authority
CN
China
Prior art keywords
catoptron
finite element
reflector
optimization method
border width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110409462
Other languages
English (en)
Other versions
CN102495468A (zh
Inventor
李艳秋
杨光华
刘菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 201110409462 priority Critical patent/CN102495468B/zh
Publication of CN102495468A publication Critical patent/CN102495468A/zh
Application granted granted Critical
Publication of CN102495468B publication Critical patent/CN102495468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种减小极紫外光刻投影系统变形的投影物镜结构优化方法,其采用有限元仿真软件建立以反射镜中心厚度和边缘宽度为参数的待优化反射镜的有限元模型;然后加载反射镜的热边界条件和结构边界条件,采用有限元仿真软件获得反射镜各节点的结构变形,进而计算反射镜通光孔径区域2D结构变形RMS值;在有限元仿真软件中设定反射镜的中心厚度和边缘宽度为设计变量,反射镜通光孔径2D结构变形RMS值为目标函数;改变反射镜中心厚度和边缘宽度的大小,使目标函数逼近最小;将目标函数最小值对应的反射镜中心厚度和边缘宽度作为优化结果。使用本发明能够在无需引入外加装置的基础上,减小各面反射镜的变形,降低反射镜变形对曝光系统光刻性能的影响。

Description

减小极紫外光刻投影系统变形的投影物镜结构优化方法
技术领域
本发明涉及极紫外光刻物镜变形控制技术领域,具体设计一种减小极紫外光刻投影系统变形的投影物镜结构优化方法。
背景技术
极紫外光刻(EUVL)作为22nm~14nm技术节点极大规模集成电路光刻工艺主流技术的地位日益显现。在EUVL中为了得到接近衍射极限的分辨率,投影物镜总波像差的均方根(RMS)值要小于1nm(λ/14,λ=13.5nm)。对于六镜系统,这就要求每一面镜子表面变形允许的RMS值小于0.2nm(
Figure GDA00002891465600011
Figure GDA00002891465600012
)。但在EUV波段,几乎所有已知光学材料都具有很强的吸收性,无法采用传统的折射式光学系统,所以极紫外投影物镜系统采用反射式设计,同时反射镜上镀Mo/Si多层膜增强反射率。虽然Mo/Si多层膜反射率很高,仍然接近35%~40%的EUV能量被反射镜吸收。由此造成反射镜表面温度升高,进而导致镜面结构变形,同时还有反射镜自身重力、装卡应力的影响,使反射镜发生几纳米甚至十几纳米的变形,这就对极紫外投影物镜系统的光刻性能提出了挑战。
通常情况下,对于极紫外投影物镜变形的控制主要是针对某一种因数引起的变形来控制,如为了减小投影物镜热变形大小,采用在反射镜中加入温度控制装置等;为了减小投影物镜重力变形和装卡应力变形人们采用无接触装卡或运动学装卡等。还有一种就是采用自适应光学方法来减小反射镜的变形。这些方法都需要引入外加装置,这样就对外加装置的精度提出很高的要求,同时提高了成本。
发明内容
有鉴于此,本发明所要解决的问题是:寻找到极紫外光刻投影物镜各面反射镜的最佳厚度和边缘宽度,从而在无需引入外加装置的基础上,减小各面反射镜的变形,降低反射镜变形对曝光系统光刻性能的影响。
本发明解决方案是:
由于极紫外光刻投影物镜系统采用的是反射式光学系统,因此光学系统中的每一面反射镜的中心厚度和边缘宽度在一定范围内可以变化,而反射镜中心厚度和边缘宽度的变化会引起反射镜变形大小的变化。因此,本发明采用有限元优化设计的方法,寻找到反射镜变形最小时的最佳厚度和边缘宽度,以此来减小反射镜的变形。由于对投影系统成像质量产生影响的是通光孔径区域的变形,且通光孔径区域Z轴方向的变形对成像质量的影响可以通过调整掩模与硅片之间的距离来校正,而通光孔径区域2D结构变形对成像质量的影响很难校正。因此主要寻找通光孔径区域2D结构变形随反射镜厚度和边缘宽度的变化。具体步骤如下:
步骤1、确定反射式极紫外光刻投影系统中反射镜的材料和结构参数。
步骤2、确定工作过程中反射镜的热边界条件和结构边界条件。
步骤3、采用有限元仿真软件建立以反射镜的中心厚度和边缘宽度为参数的待优化反射镜的有限元模型,其中,所述边缘宽度为通光口径外边缘到反射镜边缘的径向距离;然后加载反射镜的热边界条件和结构边界条件,采用有限元仿真软件获得反射镜各节点的结构变形,计算通光口径内所有节点的XY平面内结构变形的均方根RMS值,即为反射镜通光孔径区域2D结构变形RMS值。所述XY平面垂直于反射镜光轴。
步骤4、确定反射镜的中心厚度和边缘宽度的取值范围,在有限元仿真软件提供的优化设计器中设定反射镜的中心厚度和边缘宽度为设计变量,反射镜通光孔径2D结构变形RMS值为目标函数;利用优化设计器改变反射镜中心厚度和边缘宽度的大小,使目标函数逼近最小;将目标函数最小值对应的反射镜中心厚度和边缘宽度作为优化结果。
采用上述方法针对反射式极紫外光刻投影系统中的每个反射镜进行结构优化,最终获得达到减小紫外光刻投影系统变形的效果。
有益效果:
本发明优化投影物镜结构的方法,从投影物镜镜体结构着手,分析投影物镜镜体结构对变形的影响,寻找投影物镜变形最小的镜体结构,以此来减小投影系统的变形。本方法不需要引入外加装置,提升了极紫外光刻物镜系统控制变形的潜力,并且不仅针对一种因素引起的变形使用,同时还适用于多种因数引起的变形控制。
附图说明
图1为六面反射极紫外光刻投影物镜系统二维结构图。
图2为本发明减小紫外光刻投影系统变形的投影物镜结构优化方法流程图。
图3为反射镜热负载示意图。
图4为运动学侧面三点支撑方式节点限制图。
图5为EUVL空间结构布局图。
图6为M2反射镜仿真最后时刻温度分布图(℃)。
图7为M2反射镜仿真最后时刻结构变形分布图(mm)。
具体实施方式
下面结合附图与具体实例进一步对本发明进行详细说明。
为满足22nm产业化极紫外光刻的需求,设计像方孔径达到0.3,像方视场宽度达到1.5mm,六面反射投影物镜系统,如图1所示。命名靠近掩模的反射镜为M1,其余各面反射镜的命名沿着光路依次类推,最后一面反射镜命名为M6。在典型产业化EUVL样机产率的光刻机模型下(表1),本发明以优化系统中的M2反射镜结构来控制M2反射镜变形为例来说明。
Figure GDA00002891465600031
Figure GDA00002891465600041
表1产业化EUVL样机产率模型
如图2所示,该投影物镜结构优化方法流程图具体包括如下步骤:
步骤1、确定反射式极紫外光刻投影系统中反射镜的材料和结构参数。
在极紫外光刻中,入射极紫外光波长为13.5nm。在此波长下,大多数材料甚至气体对于极紫外光都有很强的吸收性。因此不同于传统的折射式光学系统,EUVL采用反射式光学系统,工作环境为真空。为减小反射镜变形和提高成像特性,反射镜基底选用膨胀系数极小的低膨胀系数玻璃(ULE玻璃),并镀41层Mo/Si交替膜。表2是反射镜材料特性参数。
Figure GDA00002891465600042
表2反射镜材料的特性参数
步骤2、确定工作过程中反射镜的热边界条件和结构边界条件。
反射镜变形分析包括热分析和结构变形分析两部分。相应的有限元分析中边界条件为:热边界条件和结构边界条件。其中
热边界条件包括:①在曝光过程中反射镜通光孔径吸收的EUV能量即能量加载大小、②能量加载方式、③设定反射镜温度高于环境温度时向外辐射的热量。
①根据典型的产业化EUVL样机参数模型中EUV能量到达硅片的大小结合反射镜的反射率沿着光路逆推,可以算出待优化的反射镜吸收的EUV能量。
对于M2反射镜,从表1中提取EUV能量到达硅片的大小为321mW,反射率为67.5%,考虑到反射镜间的真空条件,先推导M6反射镜的出射能量=321mW,入射能量=321/67.5%=475.56mW,那么M6反射镜的吸收能量=475.56-321=154.56mW。以此类推得到M5、M4、M3、M2、M1的反射镜通光孔径吸收的EUV能量。其中M2反射镜的反射镜通光孔径吸收的EUV能量为744.51mW。
②根据典型的产业化EUVL样机参数模型中曝光时间=9s和每片硅片占用总时间=36s,可以确定出反射镜吸收EUV辐射9秒,然后停止吸收EUV辐射27秒,如图3所示,反射镜采用加载—停止—加载—停止循环的能量加载方式,且加载和停止的时间根据光刻要求的曝光时间和每片硅片占用总时间来确定。该实例中,加载时间设定为9秒,停止时间设定为27秒。
③另外,设定环境温度和反射镜起始温度为20℃,一旦反射镜升温与周围环境出现温差,就发生向环境连续净辐射传热。其具体实现方式为:设定反射镜有限元模型的起始温度为20℃;在建立的反射镜有限元模型的表面设置多个第一表面效应单元,在反射镜有限元模型之外的一个空间节点上设置一个第二表面效应单元用于模拟环境温度,并设置空间节点的温度为20℃,建立第一表面效应单元和第二表面效应单元温度之间的辐射关系。
结构边界条件包括:反射镜装卡方式和自身重力。
①对于反射镜装卡,这里采用侧面三点装卡的方式,三点分布在反射镜侧面的水平中线上,且两两之间的角度为120°。对于M2反射镜,采用120°将其等分,在三个分割面与反射镜侧面相交形成的线段的中心节点处实施完全约束,如图4所示。
②根据反射镜的空间设置方向和光路方向确定出重力加载方向。对于M2反射镜,如图5示出的EUVL的空间结构布局图,根据空间设置方向和光路确定M2反射镜的膜层朝下、基底朝上,重力加载方向是重力的反向,因此可以确定出M2反射镜的重力加载方向是从膜层指向基底。再例如,M5的重力加载方向是从基底指向膜层。
步骤3、根据步骤1确定的材料和结构参数,采用诸如ANSYS的有限元仿真软件建立以反射镜中心厚度和边缘宽度为参数的待优化反射镜的有限元模型,然后加载步骤2确定的反射镜的热边界条件和结构边界条件,采用ANSYS获得反射镜各节点的结构变形,计算通光口径内所有节点的XY平面内结构变形的均方根RMS值,即为反射镜通光孔径区域2D结构变形RMS值。其中,边缘宽度为:通光口径外边缘到反射镜边缘的径向距离。
本步骤中,在建立反射镜有限元模型时,反射镜的中心厚度和边缘宽度分别设为参数H和D,并令初始值如下:H=10mm,D=10mm。
在采用ANSYS获取结构变形时,可以采用间接耦合分析的方法:先在反射镜有限元模型上加载热边界条件,得到温度分布情况,如图6所示;然后将反射镜温度分布结合装卡约束和重力约束再加载到反射镜上,得到M2反射镜结构变形分布,如图7所示。最后M2反射镜结构变形分布即各节点的变形量进行均方根计算,最终获得M2反射镜通光孔径区域2D结构变形RMS值为2D_RMS=3.032nm。
步骤4、设定反射镜中心厚度和边缘宽度为设计变量,反射镜通光孔径2D结构变形RMS值为目标函数。利用ANSYS优化设计改变投影物镜中心厚度和边缘宽度的大小,使目标函数逼近最小。将目标函数最小值对应的反射镜中心厚度和边缘宽度作为优化结果。
本步骤中,进入优化设计器OPT,声明反射镜的中心厚度H和边缘宽度D为设计变量,通光孔径区域的2D结构变形RMS值2D_RMS为目标函数。根据极紫外光刻投影物镜无渐晕设计,将边缘宽度的参数范围设为0~10mm;考虑到反射镜材料的价格和实际情况,将反射镜中心厚度的范围设为5~40mm。
然后,选择合适的优化工具和优化方法,反复优化中心厚度和边缘宽度,使目标函数2D_RMS参数逼近最小值。优化方法的选择决定了优化过程的快慢,这里可以首先采用子问题法优化反射镜中心厚度和边缘宽度,然后再采用扫描法进行二次优化。优化结果如下(这里单位都为毫米):
Figure GDA00002891465600071
Figure GDA00002891465600081
从优化结果中可以看出,组合18中H=39.911mm,D=10.000mm,通光孔径区域2D结构变形最小,所以M2反射镜最佳厚度为39.911mm,最佳边缘宽度为10mm。此时,反射镜通光口径2D结构变形RMS值由3.03nm降为2.13nm。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种减小极紫外光刻投影系统变形的投影物镜结构优化方法,用于对反射式极紫外光刻投影系统中的反射镜进行结构优化,其特征在于,该方法包括:
采用有限元仿真软件建立以反射镜的中心厚度和边缘宽度为参数的待优化反射镜的有限元模型,其中,所述边缘宽度为通光口径外边缘到反射镜边缘的径向距离;然后加载反射镜的热边界条件和结构边界条件,采用有限元仿真软件获得反射镜有限元模型各节点的结构变形,计算通光口径内所有节点的XY平面内结构变形的均方根RMS值,即为反射镜通光孔径区域2D结构变形RMS值;所述XY平面垂直于反射镜光轴;
在有限元仿真软件提供的优化设计器中设定反射镜的中心厚度和边缘宽度为设计变量,所述反射镜通光孔径2D结构变形RMS值为目标函数;利用优化设计器在反射镜的中心厚度和边缘宽度的取值范围内改变反射镜中心厚度和边缘宽度的大小,使目标函数逼近最小;将目标函数最小值对应的反射镜中心厚度和边缘宽度作为优化结果。
2.如权利要求1所述的优化方法,其特征在于,所述热边界条件包括:曝光过程中反射镜通光孔径吸收的EUV能量即能量加载大小、能量加载方式,并且设置反射镜温度高于环境温度时向外辐射的能量。
3.如权利要求2所述的优化方法,其特征在于,所述反射镜通光孔径吸收的EUV能量为:根据EUV能量到达硅片的大小结合反射镜的发射率沿光路逆推,计算得出待优化的反射镜吸收的EUV能量。
4.如权利要求2所述的优化方法,其特征在于,所述能量加载方式为:加载-停止-加载-停止循环的能量加载方式。
5.如权利要求4所述的优化方法,其特征在于,所述能量加载方式的加载时间设定为9秒,停止时间设定为27秒。
6.如权利要求2所述的优化方法,其特征在于,所述反射镜温度高于环境温度时向外辐射的能量的设置方式为:设定反射镜起始温度为20℃;在建立的反射镜有限元模型的表面设置多个第一表面效应单元,在反射镜有限元模型之外的一个空间节点上设置一个第二表面效应单元用于模拟环境温度并设置空间节点的温度为20℃,建立第一表面效应单元和第二表面效应单元之间的辐射关系。
7.如权利要求1所述的优化方法,其特征在于,所述结构边界条件包括反射镜装卡方式和自身重力:
所述装卡方式为侧面三点式装卡,三点分布在反射镜侧面的水平中线上,且两两之间的角度为120°,并在这三点处实施完全约束;
根据反射镜的空间设置方向和光路方向确定出重力加载方向。
8.如权利要求1所述的优化方法,其特征在于,所述优化设计器的优化过程中,中心厚度的取值范围为5~40mm,边缘宽度的取值范围为0~10mm。
9.如权利要求1所述的优化方法,其特征在于,所述有限元仿真软件采用ANSYS软件,其优化设计器的优化方法选定为:首先采用子问题法优化进行第一次优化,再采用扫描法进行二次优化。
10.如权利要求1所述的优化方法,其特征在于,所述加载反射镜的热边界条件和结构边界条件,采用有限元仿真软件获得反射镜有限元模型各节点的结构变形为:先在反射镜有限元模型上加载热边界条件,得到温度分布情况;然后将反射镜温度分布结合结构边界条件再加载到反射镜有限元模型上,得到反射镜结构变形分布。
CN 201110409462 2011-12-09 2011-12-09 减小极紫外光刻投影系统变形的投影物镜结构优化方法 Active CN102495468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110409462 CN102495468B (zh) 2011-12-09 2011-12-09 减小极紫外光刻投影系统变形的投影物镜结构优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110409462 CN102495468B (zh) 2011-12-09 2011-12-09 减小极紫外光刻投影系统变形的投影物镜结构优化方法

Publications (2)

Publication Number Publication Date
CN102495468A CN102495468A (zh) 2012-06-13
CN102495468B true CN102495468B (zh) 2013-11-06

Family

ID=46187306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110409462 Active CN102495468B (zh) 2011-12-09 2011-12-09 减小极紫外光刻投影系统变形的投影物镜结构优化方法

Country Status (1)

Country Link
CN (1) CN102495468B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768473B (zh) * 2012-07-13 2014-05-07 北京理工大学 一种极紫外光刻投影物镜的优化设计方法
CN104317168B (zh) * 2014-10-28 2016-03-02 中国科学院长春光学精密机械与物理研究所 极紫外光刻系统中与杂散光有关的镜面加工误差分析方法
CN105652439B (zh) * 2016-03-25 2017-12-22 北京理工大学 一种组合放大倍率的成像物镜系统设计方法
CN112363372B (zh) * 2020-11-19 2023-03-10 东方晶源微电子科技(北京)有限公司深圳分公司 一种负显影光刻工艺的仿真方法、负显影光刻胶模型、opc模型及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387711A (zh) * 2008-10-27 2009-03-18 苏州大学 大口径非球面镜的制造方法
CN101446683A (zh) * 2001-04-26 2009-06-03 Hoya株式会社 眼镜镜片的设计方法和眼镜镜片
CN201348670Y (zh) * 2009-01-22 2009-11-18 中国科学院西安光学精密机械研究所 一种大口径反射镜的三点支撑装置
CN102165371A (zh) * 2008-09-25 2011-08-24 卡尔蔡司Smt有限责任公司 具有优化的调节可能性的投射曝光设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446683A (zh) * 2001-04-26 2009-06-03 Hoya株式会社 眼镜镜片的设计方法和眼镜镜片
CN102165371A (zh) * 2008-09-25 2011-08-24 卡尔蔡司Smt有限责任公司 具有优化的调节可能性的投射曝光设备
CN101387711A (zh) * 2008-10-27 2009-03-18 苏州大学 大口径非球面镜的制造方法
CN201348670Y (zh) * 2009-01-22 2009-11-18 中国科学院西安光学精密机械研究所 一种大口径反射镜的三点支撑装置

Also Published As

Publication number Publication date
CN102495468A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
JP6483626B2 (ja) 特にマイクロリソグラフィー投影露光装置内のミラーの熱作動用装置
CN102495468B (zh) 减小极紫外光刻投影系统变形的投影物镜结构优化方法
WO2012013746A1 (en) Euv exposure apparatus
KR101809343B1 (ko) 마이크로리소그래픽 장치
KR20160131110A (ko) 패턴 배치 에러 인식의 최적화
US10459345B2 (en) Focus-dose co-optimization based on overlapping process window
CN111213090B (zh) 图案化过程的优化流程
KR20130123423A (ko) 투영 노광 도구를 조작하는 방법
US11422472B2 (en) Patterning process improvement involving optical aberration
WO2011038840A1 (en) Catadioptric projection objective comprising deflection mirrors and projection exposure method
CN104641298A (zh) 光刻方法和设备
US20150116703A1 (en) Reflective Optical Element
JP4817844B2 (ja) ゼロ転移温度周辺の熱膨張係数に応じて温度の上昇に対する傾きの符号が異なる材料で構成されたミラーを備えたeuv投影レンズ
US10261425B2 (en) Projection exposure apparatus with a highly flexible manipulator
Habets et al. A multiphysics modeling approach for thermal aberration prediction and control in extreme ultraviolet lithography
Gao et al. Modeling and analysis of the active surface system for the large single-dish sub-mm telescope
KR102652685B1 (ko) 패턴화 장치의 광학적 특성의 성분의 서브세트의 결정
Hector et al. Multilayer coating requirements for extreme ultraviolet lithography masks
EP4310582A1 (en) Systems and methods for modifying and training neuromorphic photonic circuits
WO2023001459A1 (en) Systems and methods for thermally stable mounting of optical columns
KR20240064651A (ko) 패턴 선택 시스템들 및 방법들
Bianucci et al. Low CoO grazing incidence collectors for EUVL HVM
CN116783557A (zh) 用于预测投影系统中的像差的方法和系统
JP2022521373A (ja) リフレクタ製造方法及び関連するリフレクタ
WO2013072388A1 (en) Projection lens of a microlithographic projection exposure apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant