CN102473749A - 太阳能电池的制造方法和制造装置 - Google Patents

太阳能电池的制造方法和制造装置 Download PDF

Info

Publication number
CN102473749A
CN102473749A CN2010800297516A CN201080029751A CN102473749A CN 102473749 A CN102473749 A CN 102473749A CN 2010800297516 A CN2010800297516 A CN 2010800297516A CN 201080029751 A CN201080029751 A CN 201080029751A CN 102473749 A CN102473749 A CN 102473749A
Authority
CN
China
Prior art keywords
type
substrate
gas
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800297516A
Other languages
English (en)
Inventor
松本光弘
村田和哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN102473749A publication Critical patent/CN102473749A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

当制造依次叠层p型层、i型层、n型层而构成的太阳能电池时,在使含n型掺杂剂的气体的流量与含硅的气体的流量之比为0.03以下、稀释气体的流量与含硅的气体的流量之比为70以上、原料气体的总压力为200Pa以上的成膜条件下,形成n型微晶硅薄膜作为n型层。

Description

太阳能电池的制造方法和制造装置
技术领域
本发明涉及太阳能电池的制造方法和制造装置。
背景技术
已知有使用多晶、微晶或者非晶硅的太阳能电池。特别是,具有叠层有微晶或者非晶硅的薄膜的结构的太阳能电池,基于资源消耗的观点、降低成本的观点和效率化的观点受到关注。
一般地,薄膜太阳能电池被形成为:在表面为绝缘性的基板上依次叠层第一电极、1个以上的半导体薄膜光电转换单元和第二电极。各个太阳能电池单元被构成为:从光入射侧开始叠层p型层、i型层和n型层。
另外,作为提高薄膜太阳能电池的转换效率的方法,已知有沿光入射方向叠层2种以上的光电转换单元的方法。在薄膜太阳能电池的光入射侧配置包含带隙宽的光电转换层的第一太阳能电池单元,之后配置包含与第一太阳能电池单元相比带隙窄的光电转换层的第二太阳能电池单元。由此,能够在入射光的宽的波长范围进行光电转换,作为装置全体能够实现转换效率的提高。
例如已知有使非晶硅(a-Si)太阳能电池单元为顶部单元,使微晶(μc-Si)太阳能电池单元为底部单元的结构。另外,还公开有非晶太阳能电池单元的制造方法、制造装置中的等离子体电极的间隔等。(专利文献1~3等)。例如在专利文献1公开有:使非晶太阳能电池单元的n型层为微晶硅层,当形成该n型层时,使将硅烷类气体和含氢的稀释气体混合所得的原料气体的稀释气体的流量相对于硅烷类气体的流量为4倍以下,使硅烷类气体的分压为1.2Torr以上5.0Torr以下,使等离子体电极和基板的距离为8mm以上15mm以下的非晶硅类薄膜光电转换装置的制造方法。
现有技术文献
专利文献
专利文献1:日本专利第3046965号公报
专利文献2:日本特开平8-306944号公报
专利文献3:日本特开平9-27628号公报
发明内容
发明要解决的问题
通常,当在非晶太阳能电池单元的n型层使用微晶硅层时,与使用非晶硅层的情况相比,通过提高掺杂剂的活性化率,开路电压Voc提高,同时光吸收导致的损失降低,短路电流Jsc也提高。
所以,期待在非晶太阳能电池单元的n型层使用微晶硅层的情况下,通过使n型层的成膜条件最优化,进一步提高薄膜太阳能电池的效率。
本发明的目的在于:提供能够解決上述问题的太阳能电池的制造方法和制造装置。
用于解决课题的技术手段
本发明的一个方面是太阳能电池的制造方法,其在基板上依次将添加有p型掺杂剂的p型薄膜、i型非晶硅薄膜和添加有n型掺杂剂的n型微晶硅薄膜叠层而制造太阳能电池,该太阳能电池的制造方法的特征在于:当形成上述n型微晶硅薄膜时,使含n型掺杂剂的气体的流量与含硅的气体的流量之比为0.03以下,稀释气体的流量与含硅的气体的流量之比为70以上,原料气体的总压力(全压力)为200Pa以上。
在此,优选当形成上述n型微晶硅薄膜时,使产生原料气体的等离子体的等离子体电极的单位面积的投入功率为80mW/cm2以上600mW/cm2以下。
另外,优选上述含硅的气体的流量为:上述基板的单位面积的流量为0.01sccm/cm2以下。
另外,优选当形成上述n型微晶硅薄膜时,上述基板的表面和与上述基板相对的等离子体电极的间隙为20mm以下。上述基板被载置在基板载体上而被输送,在形成上述n型微晶硅薄膜时,上述基板被与上述基板载体之间具有间隙的基板加热器加热,在此情况下特别有效。例如在上述基板被以立起的状态输送的立式内联型制造装置中特别有效。
另外,优选在相同的成膜腔室中形成上述i型非晶硅薄膜和上述n型微晶硅薄膜。
发明的效果
根据本发明能够进一步提高薄膜太阳能电池的效率。
附图说明
图1是表示本发明的实施方式中的串列型太阳能电池的结构的附图。
图2是表示本发明的实施方式中的串列型太阳能电池的a-Si单元的结构的附图。
图3是表示本发明的实施方式中的串列型太阳能电池的制造装置的结构的附图。
图4是表示本发明的实施方式中的串列型太阳能电池的成膜腔室的内部结构的附图。
图5是表示本发明的实施方式中的串列型太阳能电池的制造装置的另外例子的结构的附图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
图1是表示本发明的实施方式中的串列型太阳能电池100的结构的截面图。本实施方式中的串列型太阳能电池100,具有如下结构:以透明绝缘基板10作为光入射侧,从光入射侧开始叠层有:透明导电膜12;作为顶部单元具有宽的带隙的非晶硅(a-Si)(光电转换)单元102;中间层14;作为底部单元具有比a-Si单元102窄的带隙的微晶硅(μc-Si)(光电转换)单元104;第一背面电极层16;第二背面电极层18;填充材料20和保护膜22。
以下,对于本发明的实施方式中的串列型太阳能电池100的结构和制造方法进行说明。本发明的实施方式中的串列型太阳能电池100具有的特征在于:a-Si单元102所包含的n型层的制造方法。
透明绝缘基板10能够使用例如玻璃基板、塑料基板等至少在可见光波长区域中具有透过性的材料。在透明绝缘基板10上形成有透明导电膜12。透明导电膜12优选将在氧化锡(SnO2)、氧化锌(ZnO)、氧化铟锡(ITO)等掺杂锡(Sn)、锑(Sb)、氟(F)、铝(Al)等的透明导电氧化物(TCO)中的至少一种或者多种组合使用。特别是,氧化锌(ZnO),透光性高,电阻率低,耐等离子体特性也优秀,所以作为优选。透明导电膜12例如能够通过溅射法等形成。透明导电膜12的膜厚优选在0.5μm以上5μm以下的范围内。另外,优选在透明导电膜12的表面设置具有光限制效应(locked in effect)的凹凸。
在透明导电膜12上依次叠层p型层30、i型层32、n型层34的硅类薄膜,形成a-Si单元102。图2表示a-Si单元102部分的放大截面图。
a-Si单元102能够通过将混合有(单)硅烷(SiH4)、二硅烷(Si2H6)、二氯硅烷(SiH2Cl2)等的含硅的气体、甲烷(CH4)等的含碳的气体、乙硼烷(B2H6)等的含p型掺杂剂的气体、磷化氢(PH3)等的含n型掺杂剂的气体和氢气(H2)等的稀释气体的原料气体等离子体化来进行成膜的等离子体CVD形成。
例如等离子体CVD优选通过如图3所示那样的内联型的制造装置200实施。图3表示能够连续形成a-Si单元102和μc-Si单元104双方的内联型的制造装置200。内联型的制造装置200具有将以下腔室连接的结构:准备室;a-Si单元102的p型层30、i型层32、n型层34的成膜腔室;中间层的成膜腔室;μc-Si单元104的p型层、i型层、n型层的成膜腔室;和待机室。各腔室被构成为经门阀等连接,能够将透明绝缘基板10沿输送方向依次输送至各成膜腔室。通过形成这样的结构,在成膜时,能够不受其他的成膜腔室的影响而连续形成多个薄膜。另外,在形成各薄膜期间,没有透明绝缘基板10暴露于大气的问题、不混入杂质,能够形成高品质的薄膜,能够制造高效率的太阳能电池。
图4表示内联型的制造装置200的内部结构。图4表示相对于透明绝缘基板10的输送方向(与纸面垂直的方向)垂直切断内联型的制造装置200的截面图。图4所示的内联型的制造装置200也被称为立式,使透明绝缘基板10以立起的状态在装置内输送。
此外,一般地,p型层30、i型层32、n型层34分别在不同的成膜腔室中成膜,但是其内部结构大致相同,所以在此,以n型层34的成膜用的成膜腔室为例进行说明。
制造装置200,在由腔室壁40包围的成膜腔室内具有:基板加热器42、基板载体44、输送装置46、等离子体电极48、防护板50。另外,等离子体电极48经由在成膜腔室外设置的匹配箱54与等离子体电源52电连接。成膜腔室能够通过真空泵(未图示)真空排气。此外,本实施方式中的制造装置200被构成为,能够同时输送2个透明绝缘基板10,成膜也能够2个同时进行。
基板加热器42设置于成膜腔室内的输送路径的中央部。等离子体电极48沿成膜腔室内的两个侧壁配置。基板加热器42以加热面与等离子体电极48相对的方式设置。基板载体44被构成为通过输送装置46能够沿输送方向移动。基板载体44以使透明绝缘基板10与等离子体电极48相对的方式、将其在等离子体电极48和基板加热器42之间以立起的状态输送。通过由输送装置46使基板载体44移动,在制造装置200所包含的各薄膜的成膜腔室间输送透明绝缘基板10。基板载体44在等离子体产生时担负作为接地电极的作用,同时也担负将从基板加热器42接受的热向透明绝缘基板10传递的基座的作用。
从等离子体电源52经由匹配箱54向等离子体电极48投入高频功率(电力)。匹配箱54,在制造装置200内用于调整阻抗,以在透明绝缘基板10和等离子体电极48之间产生等离子体。等离子体电极48也可以为设置有用于从气体供给管线(未图示)供给原料气体的气体喷淋孔的结构。
另外,也可以在制造装置200配置防护板50。防护板50被设置为用于不在成膜腔室内的不需要的位置通过等离子体成膜。
在这样的结构中,通过以成膜条件的流量和压力供给原料气体,并且从等离子体电源52向等离子体电极48投入功率(电力),在等离子体电极48和透明绝缘基板10的间隙产生原料气体的等离子体,在透明绝缘基板10的表面进行成膜。以下,针对串列型太阳能电池100的形成方法详细地进行说明。
在透明绝缘基板10上形成数百nm厚的具有凹凸形状的透明导电膜12。另外,当串并联集成化太阳能电池单元时,也可以利用YAG激光将透明导电膜12图案化为条状。
p型层30形成于透明导电膜12上。p型层30是多个单层非晶硅层、微晶硅层、微晶碳化硅层、或者将这些层多层组合而成的复合层。
例如使其为含有从透明导电膜12朝向i型层32膜厚增加,并且对特定的波长的光的吸收系数变化的非晶碳化硅层的层。进而,为了避免调整带隙、形成i型层32时的等离子体的影响,也可以在低吸收非晶碳化硅层上形成含有非晶碳化硅或者微晶碳化硅的缓冲层。更加具体来讲,例如在透明导电膜12上成膜以第一掺杂剂浓度掺杂有p型掺杂剂(硼等)的高吸收非晶碳化硅层,在高吸收非晶碳化硅层上形成以比第一掺杂剂浓度低的第二掺杂剂浓度掺杂有p型掺杂剂(硼等)的低吸收非晶碳化硅层。在该情况下,第二掺杂剂浓度优选为第一掺杂剂浓度的1/5至1/10的范围内。
另外,例如p型层30是掺杂有p型掺杂剂(硼等)的非晶碳化硅层、不掺杂p型掺杂剂而形成的硅层和不掺杂p型掺杂剂而形成的缓冲层的叠层结构。
在等离子体CVD中,能够调整含硅的气体、含碳的气体、含p型掺杂剂的气体和稀释气体的混合比、压力和等离子体产生用高频功率而形成p型层30。优选投入功率(电力)为13.56MHz的RF功率,等离子体电极的单位面积的功率密度为5mW/cm2以上100mW/cm2以下。
使i型层32为在p型层30上形成的未掺杂的膜厚50nm以上500nm以下的非晶硅膜。i型层32的膜质,能够通过调整含硅的气体和稀释气体的混合比、压力和等离子体产生用高频功率而变化。优选投入功率(电力)为13.56MHz的RF功率,等离子体电极的单位面积的功率密度为5mW/cm2以上100mW/cm2以下。另外,i型层32成为a-Si单元102的发电层。
n型层34是在i型层32上形成的掺杂有n型掺杂剂(磷等)的膜厚10nm以上100nm以下的n型微晶硅层(n型μc-Si:H)。n型层34的膜质,能够通过调整含硅的气体、含碳的气体、含n型掺杂剂的气体和稀释气体的混合比、压力和等离子体产生用高频功率而变化。优选投入功率(电力)为13.56MHz的RF功率,等离子体电极的单位面积的功率密度为80mW/cm2以上600mW/cm2以下。
优选n型层34的成膜时的原料气体的压力高于i型层32的成膜时的原料气体的压力。具体来讲,使n型层34的成膜时的将含硅的气体、含碳的气体、含n型掺杂剂的气体和稀释气体混合而得的原料气体的压力高于200Pa,优选为250Pa以上。在使功率密度为n型层34的成膜时使用的范围时,当为超过650Pa的形成压力时,具有产生的等离子体不均匀的问题。由于该等离子体的不均匀性,在基板的四个角附近容易形成非晶的区域,难以在透明绝缘基板10的整个面形成n型微晶硅。因此,优选形成压力在650Pa以下。另外,当基板加热器42和基板载体44分离配置时,当形成压力超过400Pa时,具有在基板加热器42和基板载体44之间产生异常放电的问题。因此,优选形成压力在400Pa以下。
另外,当作为含硅的气体使用硅烷(SiH4)、作为稀释气体使用氢气(H2)和作为含n型掺杂剂的气体使用磷化氢(PH3)时,优选使用以硅烷(SiH4)∶氢气(H2)∶磷化氢(PH3)的流量比以在1∶70以上∶0.03以下的比例混合所得的原料气体。此时,优选硅烷(SiH4)的流量以成为成膜对象的透明绝缘基板10的单位面积0.01sccm/cm2以下进行供给。
在a-Si单元102上形成中间层14。中间层14优选使用氧化锌(ZnO)、氧化硅(SiOx)等的透明导电性氧化物(TCO)。特别优选使用掺杂有镁Mg的氧化锌(ZnO)、氧化硅(SiOx)。中间层14例如能够通过溅射法等形成。中间层14的膜厚优选在10nm以上200nm以下的范围。此外,也可以不设置中间层14。
在中间层14上形成:依次叠层有p型层、i型层、n型层的μc-Si单元104。
μc-Si单元104,能够通过使将(单)硅烷(SiH4)、二硅烷(Si2H6)、二氯硅烷(SiH2Cl2)等的含硅的气体、甲烷(CH4)等的含碳的气体、乙硼烷(B2H6)等的含p型掺杂剂的气体、磷化氢(PH3)等的含n型掺杂剂的气体和氢气(H2)等的稀释气体混合的原料气体等离子体化来进行成膜的等离子体CVD形成。
等离子体CVD,与a-Si单元102同样地,适合使用例如13.56MHz的RF等离子体CVD。RF等离子体CVD能够为平行平板型。也可以为在平行平板型的电极中不配置透明绝缘基板10一侧设置用于供给原料气体的气体喷淋孔的结构。等离子体的投入功率密度,优选为5mW/cm2以上100mW/cm2以下。
例如构成为对以下的层进行叠层的结构:膜厚5nm以上50nm以下的掺杂有硼的p型微晶硅层(p型μc-Si:H)、膜厚0.5μm以上5μm以下的未掺杂的i型微晶硅层(i型μc-Si:H)和膜厚5nm以上50nm以下的掺杂有磷的n型微晶硅层(n型μc-Si:H)。
其中,并不限定于μc-Si单元104,只要是使用了i型微晶硅层(i型μc-Si:H)作为发电层即可。
在此之后,当串并联集成化太阳能电池单元时,对a-Si单元102和μc-Si单元104进行图案化。对横方向距透明导电膜12的图案化位置50μm的位置照射YAG激光,图案化a-Si单元102和μc-Si单元104。
接着,在μc-Si单元104上,作为第一背面电极层16、第二背面电极层18形成反射性金属和透明导电性氧化物(TCO)的叠层结构。作为第一背面电极层16能够使用银(Ag)、铝(Al)等的金属。另外,作为第二背面电极层18能够使用氧化锡(SnO2)、氧化锌(ZnO)、氧化铟锡(ITO)等的透明导电性氧化物(TCO)。TCO例如能够通过溅射法等形成。优选第一背面电极层16和第二背面电极层18合计为1μm左右的膜厚。优选在第一背面电极层16和第二背面电极层18的至少一方设置用于提高光限制效应的凹凸。
还有,通过填充材料20,以保护膜22覆盖第二背面电极层18的表面。填充材料20和保护膜22能够为EVA、聚酰亚胺等的树脂材料。由此能够防止向串列型太阳能电池100的发电层的水分侵入等。
以上是本发明的实施方式中的串列型太阳能电池100的制造方法。此外,在本实施方式中,是分别设置有a-Si单元102的i型层32和n型层34的成膜腔室的内联型的制造装置200,但也可以作为如图5所示那样的页片式的制造装置200的结构,在相同的成膜腔室成膜a-Si单元102中的i型层32和n型层34。由此,能够提高a-Si单元102的制造速度。
<实施例>
以下,对于本发明的实施例和比较例进行说明。以下,表示作为透明绝缘基板10使用边长33cm×43cm、4mm厚的玻璃基板,在透明绝缘基板10上通过热CVD作为透明导电膜12使用表面形成具有凹凸形状的600nm厚的SnO2的结构时的例子。透明导电膜12利用波长1064nm、能量密度13J/cm3、脉冲频率3kHz的YAG激光图案化为条状。
另外,在制造装置200中,等离子体电极48为能够从电极表面喷淋状供给原料气体的喷淋板型,电极面积为2675cm2
在透明绝缘基板10上依次形成p型层30、i型层32、n型层34。表1表示p型层30、i型层32的成膜条件,表2表示n型层34的成膜条件。各实施例1~3分别是作为n型层34,使硅烷(SiH4)∶氢气(H2)∶磷化氢(PH3)的流量比为1∶100∶0.01,使原料气体的总压力为200Pa~280Pa,使向等离子体电极48的投入功率密度为112mW/cm2的情况。另外,比较例1为原料气体的总压力(全压力)为160Pa。还有,比较例2为使硅烷(SiH4)∶氢气(H2)∶磷化氢(PH3)的流量比为1∶3∶0.01,使原料气体的总压力为160Pa,使等离子体电极48的投入功率密度为15mW/cm2的情况。此外,当硅烷(SiH4)∶氢气(H2)的流量比小于1∶70时,不形成n型微晶硅层,形成n型非晶硅层。
表1
Figure BDA0000127297460000091
表2
Figure BDA0000127297460000101
表3表示μc-Si单元104的成膜条件。其中,μc-Si单元104的成膜条件并不限定于此。
表3
Figure BDA0000127297460000102
然后,对横向距透明导电膜12的图案化位置50μm的位置照射YAG激光,将a-Si单元102和μc-Si单元104图案化为条状。YAG激光使用能量密度0.7J/cm3、脉冲频率3kHz的激光。
接着,通过溅射Ag电极形成第一背面电极层16,通过溅射ZnO膜形成第二背面电极层18。然后,对横向距a-Si单元102和μc-Si单元104的图案化位置50μm的位置照射YAG激光,将第一背面电极层16、第二背面电极层18图案化为条状。YAG激光使用能量密度0.7J/cm3、脉冲频率4kHz的激光。
在形成串列型太阳能电池后,在大气中以150℃进行退火处理2小时。表4表示退火处理前和退火处理后的实施例1~3和比较例1、2的串列型太阳能电池100的开路电压Voc、短路电流密度Jsc、占空因数FF和效率η。在表4中表示以比较例2中的开路电压Voc、短路电流密度Jsc、占空因数FF和效率η为1时,与实施例1~3和比较例1的比。
[表4]
Figure BDA0000127297460000111
当如实施例1~3的方式使n型层34为微晶硅层时,与如比较例2的方式使n型层34为非晶硅层的情况相比,开路电压Voc和短路电流Jsc提高,与之相随,占空因数FF也提高。这被认为是由于使n型层34为微晶硅层,层内的掺杂剂的活性化率提高,开路电压Voc提高,由于光吸收导致的损失被降低,短路电流Jsc也提高。
另外,当如实施例1~3那样使n型层34的成膜时的原料气体的压力为200Pa以上时,与如比较例2那样比160Pa低的情况相比,退火后的短路电流Jsc和占空因数FF提高。这被认为是:当以较低压力形成n型层34时,由于成膜中的离子的冲击,微晶硅层的结构散乱而使膜质降低。当在这样的n型层34上形成其他层时,相互电接触性能变差,串联电阻增大,因此短路电流Jsc和占空因数FF降低。当n型层34的成膜时的原料气体的压力为200Pa时,能够认为通过退火处理实现特性改善,在160Pa时对n型层34的损坏变大,不认为特性充分地回复。另外,当原料气体的压力比200Pa低时,退火处理前的效率η低于比较例2。
此外,当硅烷(SiH4)的流量超过成为成膜对象的透明绝缘基板10的单位面积(单位面积流量)0.01sccm/cm2时,成膜时产生硅片(粉上的小硅片),附着于成膜腔室的内壁。能够认为将这样的成膜条件用于工业是困难的。
另外,当提高n型层34的成膜时的原料气体的压力时,当向等离子体电极48的投入功率密度不足80mW/cm2时,产生的等离子体的空间的均匀性降低,等离子体电极48的周边部的等离子体密度降低,作为n型层34不能使整个面为微晶硅层。特别是,随着等离子体电极48的面积变大,等离子体的空间的不均匀性变高。另一方面,当向等离子体电极48的投入功率密度超过600mW/cm2时,发现在成膜时产生硅片(粉上的硅小片)向成膜腔室的内壁的付着显著,也附着于基板滤波片。能够认为将这样的成膜条件用于工业是困难的。
另外,在n型层34的成膜时,当透明绝缘基板10的表面和与透明绝缘基板10相对的等离子体电极48的间隙超过20mm时,等离子体电极48的周边部的等离子体密度降低,不能使n型层34的整个面成为微晶硅层。特别是,当透明绝缘基板10和等离子体电极48的间隙变得比20mm宽时,如立式内联的制造装置200这样在基板加热器42和基板载体44之间具有隙间时、在防护板50和等离子体电极48和之间具有隙间时,在这些位置有可能发生等离子体的异常放电的问题。所以优选使透明绝缘基板10的表面和与透明绝缘基板10相对的等离子体电极48的间隙在20mm以下。
符号说明
10:透明绝缘基板
12:透明导电膜
14:中间层
16:第一背面电极层
18:第二背面电极层
20:填充材料
22:保护膜
30:p型层
32:i型层
34:n型层
40:腔室壁
42:基板加热器
44:基板载体
46:输送装置
48:等离子体电极
50:防护板
52:等离子体电源
54:匹配箱
100:串列型太阳能电池
102:a-Si单元
104:μc-Si单元
200:制造装置

Claims (7)

1.一种太阳能电池的制造方法,其在基板上依次将添加有p型掺杂剂的p型薄膜、i型非晶硅薄膜和添加有n型掺杂剂的n型微晶硅薄膜叠层而制造太阳能电池,该太阳能电池的制造方法的特征在于:
当形成所述n型微晶硅薄膜时,使含n型掺杂剂的气体的流量与含硅的气体的流量之比为0.03以下,稀释气体的流量与含硅的气体的流量之比为70以上,原料气体的总压力为200Pa以上。
2.如权利要求1所述的太阳能电池的制造方法,其特征在于:
当形成所述n型微晶硅薄膜时,使产生原料气体的等离子体的等离子体电极的单位面积的投入功率为80mW/cm2以上600mW/cm2以下。
3.如权利要求1所述的太阳能电池的制造方法,其特征在于:
所述含硅的气体的流量为:所述基板的单位面积的流量为0.01sccm/cm2以下。
4.如权利要求1所述的太阳能电池的制造方法,其特征在于:
当形成所述n型微晶硅薄膜时,所述基板的表面和与所述基板相对的等离子体电极的间隙为20mm以下。
5.如权利要求1所述的太阳能电池的制造方法,其特征在于:
在相同的成膜腔室中形成所述i型非晶硅薄膜和所述n型微晶硅薄膜。
6.如权利要求4所述的太阳能电池的制造方法,其特征在于:
所述基板被载置在基板载体上而被输送,
在形成所述n型微晶硅薄膜时,所述基板被与所述基板载体之间具有间隙的基板加热器加热。
7.如权利要求4所述的太阳能电池的制造方法,其特征在于:
所述基板被以立起的状态输送。
CN2010800297516A 2009-06-30 2010-05-14 太阳能电池的制造方法和制造装置 Pending CN102473749A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-155500 2009-06-30
JP2009155500 2009-06-30
PCT/JP2010/058191 WO2011001747A1 (ja) 2009-06-30 2010-05-14 太陽電池の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
CN102473749A true CN102473749A (zh) 2012-05-23

Family

ID=43410830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800297516A Pending CN102473749A (zh) 2009-06-30 2010-05-14 太阳能电池的制造方法和制造装置

Country Status (6)

Country Link
US (1) US20120115272A1 (zh)
EP (1) EP2450958A1 (zh)
JP (1) JP4712127B2 (zh)
KR (1) KR20120036900A (zh)
CN (1) CN102473749A (zh)
WO (1) WO2011001747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600139B (zh) * 2013-10-31 2016-08-17 江苏武进汉能光伏有限公司 非晶硅薄膜太阳能电池及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302373B1 (ko) 2011-12-21 2013-09-06 주식회사 테스 태양전지 제조방법
US8735210B2 (en) 2012-06-28 2014-05-27 International Business Machines Corporation High efficiency solar cells fabricated by inexpensive PECVD
KR20150078549A (ko) * 2013-12-31 2015-07-08 한국과학기술원 집적형 박막 태양전지의 제조 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582648A (en) * 1988-11-15 1996-12-10 Canon Kabushiki Kaisha Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
JP3046965B1 (ja) * 1999-02-26 2000-05-29 鐘淵化学工業株式会社 非晶質シリコン系薄膜光電変換装置の製造方法
JP2002261312A (ja) * 2001-03-02 2002-09-13 Kanegafuchi Chem Ind Co Ltd ハイブリッド型薄膜光電変換装置の製造方法
JP2009094198A (ja) * 2007-10-05 2009-04-30 Kaneka Corp ハイブリッド薄膜太陽電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136011A (ja) 1985-12-10 1987-06-19 松下電器産業株式会社 分極性電極
US5858819A (en) * 1994-06-15 1999-01-12 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
JP3241234B2 (ja) 1995-04-28 2001-12-25 シャープ株式会社 薄膜太陽電池およびその製造方法
JP2918813B2 (ja) 1995-07-13 1999-07-12 キヤノン株式会社 光起電力素子及びその製造方法
JP4109861B2 (ja) * 2000-12-12 2008-07-02 キヤノン株式会社 真空処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582648A (en) * 1988-11-15 1996-12-10 Canon Kabushiki Kaisha Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
JP3046965B1 (ja) * 1999-02-26 2000-05-29 鐘淵化学工業株式会社 非晶質シリコン系薄膜光電変換装置の製造方法
JP2002261312A (ja) * 2001-03-02 2002-09-13 Kanegafuchi Chem Ind Co Ltd ハイブリッド型薄膜光電変換装置の製造方法
JP2009094198A (ja) * 2007-10-05 2009-04-30 Kaneka Corp ハイブリッド薄膜太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600139B (zh) * 2013-10-31 2016-08-17 江苏武进汉能光伏有限公司 非晶硅薄膜太阳能电池及其制备方法

Also Published As

Publication number Publication date
US20120115272A1 (en) 2012-05-10
WO2011001747A1 (ja) 2011-01-06
KR20120036900A (ko) 2012-04-18
JPWO2011001747A1 (ja) 2012-12-13
EP2450958A1 (en) 2012-05-09
JP4712127B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
US8648251B2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
US6784361B2 (en) Amorphous silicon photovoltaic devices
JP4940290B2 (ja) 光電変換装置及びその製造方法
US20080245414A1 (en) Methods for forming a photovoltaic device with low contact resistance
CN104538464B (zh) 一种硅异质结太阳能电池及其制作方法
JP4902779B2 (ja) 光電変換装置及びその製造方法
JP4767365B2 (ja) 薄膜太陽電池及びその製造方法
EP2296193A2 (en) Photovoltaic device and method for manufacturing the same
CN102473749A (zh) 太阳能电池的制造方法和制造装置
JP5232362B2 (ja) 集積化薄膜光電変換装置の製造方法および、その製造方法で得られうる集積化薄膜光電変換装置。
WO2010022527A1 (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light- induced degradation for improved stabilized performance
US20100326507A1 (en) Solar cell and manufacturing method thereof
US20130291933A1 (en) SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION
US20130167917A1 (en) Thin film type solar cells and manufacturing method thereof
US20110056560A1 (en) Solar cell module and manufacturing method thereof
JP5373045B2 (ja) 光電変換装置
JP2011176084A (ja) 光電変換モジュール及びその製造方法
JP2010283162A (ja) 太陽電池及びその製造方法
TWI466306B (zh) 具有高透光率之可撓式太陽能電池結構及其製備方法
US20120067416A1 (en) Photovoltaic Device
Veneri et al. Thin film Silicon Solar Cells
JP2011014617A (ja) 太陽電池及びその製造方法
CN102364703A (zh) 非晶硅薄膜太阳能电池的制造方法
JP2009200441A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120523