CN102473747A - 化合物薄膜太阳能电池 - Google Patents

化合物薄膜太阳能电池 Download PDF

Info

Publication number
CN102473747A
CN102473747A CN2009801609565A CN200980160956A CN102473747A CN 102473747 A CN102473747 A CN 102473747A CN 2009801609565 A CN2009801609565 A CN 2009801609565A CN 200980160956 A CN200980160956 A CN 200980160956A CN 102473747 A CN102473747 A CN 102473747A
Authority
CN
China
Prior art keywords
solar cell
aforementioned
film
light absorbing
absorbing zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801609565A
Other languages
English (en)
Inventor
中川直之
堀田康之
樱田新哉
西田靖孝
伊藤聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN102473747A publication Critical patent/CN102473747A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的目的在于提供一种在维持较高的转换效率的状态下、由尽可能不含有以Se或Cd为代表的有害元素和以In或Ga为代表的稀有元素的材料构成的化合物薄膜太阳能电池。化合物薄膜太阳能电池的特征在于:其至少具备基板、设置于所述基板上的背面电极、设置于所述背面电极上的取出电极、设置于所述背面电极上的光吸收层、设置于所述光吸收层上的缓冲层、设置于所述缓冲层上的透明电极层、设置于所述透明电极层上的防反射膜、以及设置于所述透明电极层上的取出电极,所述光吸收层为Cu(Al1-x-yGaxIny)(Te1-zOz)2,而且该化合物具有黄铜矿型晶体结构,其中,x和y在数学式1的范围且z=0,或者x和y在数学式2的范围且0.001≤z≤0.0625,数学式1:Eg=2.25-1.02x-1.29y,1.5≥Eg≥1.0;数学式2:Eg=2.25-1.02x-1.29y,2.25≥Eg≥1.0。

Description

化合物薄膜太阳能电池
技术领域
本发明涉及一种化合物薄膜太阳能电池。
背景技术
作为用作太阳能电池的光吸收层的化合物半导体,广为人知的是以CdTe为代表的II-VI系和以CuInSe2为代表的I-III-VI2系。对于具有黄铜矿型结构的I-III-VI2系化合物半导体,作为I族元素,主要由Cu构成,作为III族元素,由In和/或Ga构成,作为VI族元素,由Se和/或S构成。伴随着相关材料的多样性,通过适时选定材料,便能够容易地对带隙加以控制。实际上,还进行了通过使CuInSe2(Eg=1.04eV)和带隙较大的CuGaSe2(Eg=1.68eV)固溶而将带隙调整为对太阳光的吸收最合适的1.4eV的研究。
对于将Cu(In1-xGax)(Se1-ySy)2用作光吸收层的化合物薄膜太阳能电池,含有In和Ga作为构成元素。In和Ga为稀有金属,从而基于其资源埋藏量较少或者难以产出在经济上能够采掘的高品位的矿石等理由,稳定供给变得困难的可能性较高。另外,基于在精炼上需要非常高超的技术和较大的能量等理由,从矿石开始的精炼并不容易,从而成为价格高涨的原因。
高效的CIGS(Cu(In1-xGax)Se2)太阳能电池可以通过CIGS具有化学计量组成至III族元素稍微过剩组成的p型半导体的薄膜来获得。作为制作方法,可以使用多元蒸镀法,特别是可以使用3阶段法。在3阶段法中,在第1层蒸镀In、Ga、Se以形成(In、Ga)2Se3膜,接着仅供给Cu和Se而使整个膜的组成成为Cu过剩组成,最后再次供给In、Ga、Se助熔剂而使膜的最终组成成为(In、Ga)过剩组成。蒸镀法可以精密地控制化学组成,从而可以制作高效率的CIGS太阳能电池,但受到工艺上的制约,难以实现大面积化。
现有技术文献
专利文献
专利文献1:日本专利第3244408号
发明内容
发明所要解决的课题
在化合物薄膜太阳能电池中,作为光吸收层,使用CuInxGa1-xSe2(CIGS)(CuInSe2和CuGaSe2的固溶体)或者CdTe,而且其由含有有害金属或稀有金属的材料构成,因而存在下述问题,即环境负荷较大,太阳能电池的制造成本升高。
本发明为了解决这样的问题,其目的在于提供在维持较高的转换效率的状态下、由尽可能不含有以Se或Cd为代表的有害元素和以In或Ga为代表的稀有金属的材料构成的化合物薄膜太阳能电池及其制造方法。
用于解决课题的手段
一种化合物薄膜太阳能电池,其特征在于:其至少具备基板、设置于所述基板上的背面电极、设置于所述背面电极上的取出电极、设置于所述背面电极上的光吸收层、设置于所述光吸收层上的缓冲层、设置于所述缓冲层上的透明电极层、设置于所述透明电极层上的防反射膜、以及设置于所述透明电极层上的取出电极,所述光吸收层为Cu(Al1-x yGaxIny)(Te1-zOz)2(其中,x和y在(数学式1)的范围且z=0,或者x和y在(数学式2)的范围且0.001≤z≤0.0625),而且所述化合物具有黄铜矿型晶体结构。
(数学式1)Eg=2.25-1.02x-1.29y(1.5≥Eg≥1.0)
(数学式2)Eg=2.25-1.02x-1.29y(2.25≥Eg≥1.0)
发明的效果
根据本发明,可以提供一种由尽可能不含有以Se或Cd为代表的有害元素和以In或Ga为代表的稀有金属的材料构成的化合物薄膜太阳能电池。
附图说明
图1是CuAl(Te1-zOz)2(z=0.03125)的晶胞的图。
图2是CuAl(Te1-zOz)2(z=0.03125)的状态密度(A)以及能带图(B)。
图3是本发明的化合物薄膜太阳能电池的基本结构的示意图。
图4是光吸收层和缓冲层界面的能带图。
图5是CuAlTe2薄膜的X射线衍射结果。
图6是CuAlTe2薄膜的光学特性评价结果。
具体实施方式
下面参照表以及附图就用于实施本发明的方式进行详细的说明。
以往,在I-III-VI2系黄铜矿型化合物半导体中,使用Se作为VI族元素。然而,Se具有较强的毒性,而且带隙增大,因而存在需要大量使用作为稀有金属的Ga或In这样的环境问题和成本问题。
Te的毒性比Se低,与使用Se作为VI族元素的黄铜矿型化合物半导体相比,具有带隙较小、可以减少稀有金属的使用量这一优选的特性。
CuAlTe2、CuGaTe2以及CuInTe2均显示黄铜矿结构,并形成固溶体。
表1表示在I-III-VI2系中VI族元素由Te构成的黄铜矿型化合物半导体的带隙。在表1中,CuAlTe2为发明人等的实验值,CuGaTe2和CuInTe2的值为文献的实验值。由表1表明:在I-III-VI2系中仅改变III族元素,便可以大幅度地调制带隙。
作为对太阳光谱优选的带隙,为1.0eV~1.5eV。作为最合适的太阳光谱的带隙,大多设定为1.4eV~1.5eV。也有在1.2eV附近转换效率最大的报告。
[表1]
  化学式   带隙(eV)
  CuAlTe2   2.25
  CuGaTe2   1.23
  CuInTe2   0.96
这些固溶体可以在带隙最小的CuInTe2的0.96eV到带隙最大的CuAlTe2的2.25eV之间自由地调制带隙。表2例示出了用Ga或In置换CuAlTe2中Al的一部分时的带隙。表中的数值以固溶体的摩尔比表示。
[表2]
Figure BDA0000135777970000041
在用Ga置换了CuAlTe2中Al的一部分的情况(Cu(Al1-xGax)Te2)下,作为太阳能电池的光吸收层,为了设定为优选的带隙即1.0eV~1.5eV的范围,优选以满足0.73≤x≤1.0的条件的组成制作固溶体。
在用In置换了CuAlTe2中Al的一部分的情况(Cu(Al1-yIny)Te2)下,作为太阳能电池的光吸收层,为了设定为优选的带隙即1.0eV~1.5eV的范围,优选以满足0.58≤y≤0.97的条件的组成制作固溶体。
还可以用In和Ga这两种元素置换Al。在此情况下,作为组成范围,优选为Cu(Al1-x-yGaxIny)Te2(其中,x和y满足Eg=2.25-1.02x-1.29y(1≥x+y>0,1.5≥Eg≥1.0))。
还可以将用Se或S部分置换作为光吸收层的I-III-VI2系黄铜矿型化合物半导体的VI族元素的Te的一部分而得到的化合物半导体(Se、S的量比Te的量(mol)少)用作光吸收层。此时,优选带隙在1.0~1.5eV的范围内并保持黄铜矿型结构。
为了实现高效率化,研究了黄铜矿型化合物半导体Cu(Al1-x-yGaxIny)Te2的中间能级的导入。本发明人进行了各种研究,结果发现:通过用氧置换VI族元素的Te的一部分(Cu(Al1-x-yGaxIny)(Te1-zOz)2),可以形成合适的带隙的中间能级。在氧置换中,具体的研究利用第一性原理计算来进行。图1例示了用O置换黄铜矿型化合物半导体CuAlTe2的一部分Te而得到的物质的分子结构。CuAlTe2的晶胞的晶格常数使用
Figure BDA0000135777970000042
带隙使用块状单晶的值2.06eV。作为例示,晶胞的总原子数64个中的32个Te的一个Te用氧置换而成的体系CuAl(Te1-zOz)2(z=0.03125)的计算结果如图2所示。根据状态密度和能带结构,已经确认通过氧置换,在带隙内形成了明显的中间能级。根据计算结果,如果CuAl(Te1-zOz)2的氧置换量z为0.001~0.0625,则能形成中间能级,有望获得高的转换效率。氧置换量越少,状态密度变得越陡峭。
CuAlTe2薄膜的光学带隙为2.25eV,通过用In或Ga置换Al,便可以将带隙控制到1.0eV。无论对于具有各种带隙的任何母相,通过形成中间能级,都可以取入长波长侧的光,从而可以期待太阳能电池的高效率化。
由于Te的蒸气压比Se低,因而容易操作,可以期待容易地对制膜时的组成进行控制。再者,如果将Te系的黄铜矿型化合物半导体用作母相,则可以减少用于调整为最合适的带隙的In或Ga的添加量,从而可以抑制偏析,可以制作组成均匀的薄膜。
图3表示本发明的化合物薄膜太阳能电池的一个例子的示意剖视图。化合物薄膜太阳能电池由基板11、背面电极12、光吸收层13、缓冲层14a和14b、透明电极层15、取出电极16以及防反射膜17构成。
作为基板11,优选使用青板玻璃,也可以使用不锈钢、Ti或Cr等金属板、或者聚酰亚胺等树脂。
作为背面电极,可以使用W等金属膜。其中,优选使用Mo膜。
作为缓冲层14,可以使用CdS、Zn(O,S,OH)或者添加有Mg的ZnO。图4表示在化合物薄膜太阳能电池中的pn结界面的能带结构。可以认为光吸收层13的黄铜矿型化合物半导体是p型半导体,以CdS或者ZnO:Mg为代表的缓冲层14a为n型半导体,以ZnO为代表的缓冲层14b作为n+型层发挥作用。通过选定缓冲层14a的材料,以便在pn结界面感应导带不连续量(CBO)ΔEc,由此可以降低载流子的复合。导带不连续量(CBO)ΔEc优选为0eV~0.4eV,进一步优选为0.1eV~0.35eV。导带结构或者导带不连续量可以通过光电子放出的逆过程即逆光电子能谱直接进行评价。在实际的太阳能电池结构中,光吸收层上形成的窗层和缓冲层的厚度十分厚,分别为几μm和几十nm,因而为了对距表面位置较深的界面进行评价,必须无损伤和劣化地除去各层,通常可以使用通过离子束进行的较低的蚀刻。
透明电极层15必须透过太阳光、而且具有导电性,例如可以使用含有2wt%的氧化铝(Al2O3)的ZnO:Al或者以来自于乙硼烷的B作为掺杂剂而得到的ZnO:B。
作为取出电极16,例如可以使用Al、Ag或Au。再者,为了提高与透明电极15的附着力,也可以在沉积Ni或Cr之后,再沉积Al、Ag或Au。
作为防反射膜17,例如优选使用MgF2
以下,就本发明的实施例进行详细的说明。
实施例
(实施例1)
作为基板11,使用青板玻璃基板,然后采用溅射法沉积了700nm左右的成为背面电极12的Mo薄膜。溅射是以Mo为靶,在Ar气体气氛中通过施加RF200W来进行。
在沉积成为背面电极12的Mo薄膜之后,再同样采用RF(射频)溅射沉积2μm左右的成为光吸收层13的Cu(Al1-yIny)Te2薄膜。这里,将靶的设计组成的y设定为0.8,以便使带隙达到1.18eV左右。制膜在Ar气体气氛中通过施加RF200W来进行。
制膜后,将制膜室抽真空,在超高真空气氛下于500℃进行加热处理。刚溅射制膜后的Cu(Al1-yIny)Te2薄膜是非晶质的,而且粒径也非常小,但通过进行在高温下的加热处理,实现结晶化,粒径也达到100nm以上,从而能够有助于太阳能电池的高效率化。
图5是在与上述制膜条件同样的条件下沉积作为母相的CuAlTe2而得到的薄膜的X射线衍射结果。可知在上述制膜条件下制作的成为光吸收层13的薄膜为黄铜矿型结构的单相膜。根据制作的CuAlTe2薄膜的光学特性评价,估算光学带隙为2.25eV(图6)。
在得到的光吸收层13上,沉积50nm左右的添加有Mg的ZnO薄膜作为缓冲层14a。如图4所示,将Mg的添加量设定为20%,以便在光吸收层13和缓冲层14a的界面形成能带偏移(band offset)。制膜使用RF溅射,但考虑到在界面的等离子体损伤,以50W的输出功率进行。在该缓冲层14a上,沉积ZnO薄膜作为缓冲层14b,接着沉积1m左右的成为透明电极15的含有2wt%氧化铝(Al2O3)的ZnO:Al。作为取出电极16,采用蒸镀法沉积NiCr以及Au。膜厚分别设定为100nm和300nm。最后,作为防反射膜17,采用溅射法沉积500nm左右的MgF2,从而制作出图3所示的化合物薄膜太阳能电池。
(实施例2)
作为基板11,使用青板玻璃基板,然后采用溅射法沉积了700nm左右的成为背面电极12的Mo薄膜。溅射是以Mo为靶,在Ar气体气氛中通过施加RF200W来进行。
在沉积成为背面电极12的Mo薄膜之后,再同样采用RF溅射沉积2μm左右的成为光吸收层13的CuAlTe2薄膜。制膜在Ar气体气氛中通过施加RF200W来进行。
制膜后,将制膜室抽真空,在超高真空气氛下于500℃进行加热处理。刚溅射制膜后的CuAlTe2薄膜是非晶质的,而且粒径也非常小,但通过进行在高温下的加热处理,实现结晶化,粒径也被设定为100nm以上。
以90keV的能量向制作的CuAlTe2薄膜中将氧进行离子注入,然后,为了补偿因离子注入而形成的缺陷,采用受激准分子激光退火进行再结晶化,进行利用O的与Te的部分置换。
在得到的光吸收层13上,沉积50nm左右的添加有Mg的ZnO薄膜作为缓冲层14a。将Mg的添加量设定为40%,以便对于宽带隙的CuAlTe2,在光吸收层13和缓冲层14a的界面形成能带偏移。制膜使用RF溅射,但考虑到在界面的等离子体损伤,以50W的输出功率进行。在该缓冲层14a上,沉积ZnO薄膜作为缓冲层14b,接着沉积1μm左右的成为透明电极15的含有2wt%氧化铝(Al2O3)的ZnO:Al。作为取出电极16,采用蒸镀法沉积NiCr以及Au。膜厚分别设定为100nm和300nm。最后,作为防反射膜17,采用溅射法沉积500nm左右的MgF2,由此制作出图3所示的化合物薄膜太阳能电池。
符号说明
11基板        12背面电极
13光吸收层    14a缓冲层
14b缓冲层     15透明电极层
16取出电极    17防反射膜

Claims (5)

1.一种化合物薄膜太阳能电池,其特征在于:其至少具备基板、设置于所述基板上的背面电极、设置于所述背面电极上的取出电极、设置于所述背面电极上的光吸收层、设置于所述光吸收层上的缓冲层、设置于所述缓冲层上的透明电极层、设置于所述透明电极层上的防反射膜、以及设置于所述透明电极层上的取出电极,
所述光吸收层为Cu(Al1-x-yGaxIny)(Te1-zOz)2,而且该化合物具有黄铜矿型晶体结构,其中,x和y在数学式1的范围且z=0,或者x和y在数学式2的范围且0.001≤z≤0.0625,
数学式1:Eg=2.25-1.02x-1.29y,1.5≥Eg≥1.0;
数学式2:Eg=2.25-1.02x-1.29y,2.25≥Eg≥1.0。
2.根据权利要求1所述的化合物薄膜太阳能电池,其特征在于:
所述光吸收层中Te的一部分被Se、S、或者Se及S之中的任一种置换,
被置换的Se、S的总摩尔数小于Te的摩尔数。
3.根据权利要求1所述的化合物薄膜太阳能电池,其特征在于:
所述缓冲层为CdS、Zn(O,S,OH)或者ZnO:Mg。
4.根据权利要求1所述的化合物薄膜太阳能电池,其特征在于:
在所述光吸收层和所述缓冲层的界面形成的能带结构的导带不连续量ΔEc为0<ΔEc≤0.4eV。
5.根据权利要求1所述的化合物薄膜太阳能电池,其特征在于:
所述透明电极层中使用ZnO、ZnO:Al或ZnO:B。
CN2009801609565A 2009-09-25 2009-09-25 化合物薄膜太阳能电池 Pending CN102473747A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004842 WO2011036717A1 (ja) 2009-09-25 2009-09-25 化合物薄膜太陽電池

Publications (1)

Publication Number Publication Date
CN102473747A true CN102473747A (zh) 2012-05-23

Family

ID=43795491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801609565A Pending CN102473747A (zh) 2009-09-25 2009-09-25 化合物薄膜太阳能电池

Country Status (4)

Country Link
US (1) US20120227803A1 (zh)
JP (1) JPWO2011036717A1 (zh)
CN (1) CN102473747A (zh)
WO (1) WO2011036717A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346179A (zh) * 2013-07-08 2013-10-09 深圳先进技术研究院 太阳能电池器件及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235024A (ja) * 2011-05-06 2012-11-29 Toshiba Corp 光電変換素子および太陽電池
JP5710368B2 (ja) * 2011-05-06 2015-04-30 株式会社東芝 光電変換素子および太陽電池
JP5710369B2 (ja) * 2011-05-06 2015-04-30 株式会社東芝 光電変換素子および太陽電池
JP5701673B2 (ja) * 2011-05-06 2015-04-15 株式会社東芝 光電変換素子および太陽電池
JP5784358B2 (ja) * 2011-05-06 2015-09-24 株式会社東芝 光電変換素子および太陽電池
KR20230068438A (ko) * 2020-09-22 2023-05-17 케일룩스 코포레이션 통합 탠덤 태양광 모듈 제작을 위한 방법 및 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937260A (zh) * 2005-09-19 2007-03-28 允瞻通讯有限公司 薄膜太阳能电池元件及其制造方法
JP2009117431A (ja) * 2007-11-02 2009-05-28 Univ Of Yamanashi pn接合型太陽電池およびその製造方法
US20090208636A1 (en) * 2006-06-19 2009-08-20 In-Solar Tech Co., Ltd Method for producing light-absorbing layer for solar cell
US20090217969A1 (en) * 2005-10-31 2009-09-03 Rohm Co., Ltd. Method for Manufacturing Photoelectric Converter and Photoelectric Converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070074757A1 (en) * 2005-10-04 2007-04-05 Gurdian Industries Corp Method of making solar cell/module with porous silica antireflective coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1937260A (zh) * 2005-09-19 2007-03-28 允瞻通讯有限公司 薄膜太阳能电池元件及其制造方法
US20090217969A1 (en) * 2005-10-31 2009-09-03 Rohm Co., Ltd. Method for Manufacturing Photoelectric Converter and Photoelectric Converter
US20090208636A1 (en) * 2006-06-19 2009-08-20 In-Solar Tech Co., Ltd Method for producing light-absorbing layer for solar cell
JP2009117431A (ja) * 2007-11-02 2009-05-28 Univ Of Yamanashi pn接合型太陽電池およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIGUEL QUINTERO, ET AL.: "T(z) Phase Diagram and Optical Energy Gaps in CuGa(SezTe1-z)2 Alloys", 《JOURNAL OF ELECTRONIC MATERIALS》 *
TAKASHI MINEMOTO, ET AL.: "Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346179A (zh) * 2013-07-08 2013-10-09 深圳先进技术研究院 太阳能电池器件及其制备方法
CN103346179B (zh) * 2013-07-08 2015-09-16 深圳先进技术研究院 太阳能电池器件及其制备方法

Also Published As

Publication number Publication date
WO2011036717A1 (ja) 2011-03-31
US20120227803A1 (en) 2012-09-13
JPWO2011036717A1 (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
US9087954B2 (en) Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell
Jo et al. 8% Efficiency Cu2ZnSn (S, Se) 4 (CZTSSe) thin film solar cells on flexible and lightweight molybdenum foil substrates
US8747706B2 (en) Cu—In—Zn—Sn-(Se,S)-based thin film for solar cell and preparation method thereof
US20080023336A1 (en) Technique for doping compound layers used in solar cell fabrication
CN102473747A (zh) 化合物薄膜太阳能电池
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
JP2010192689A (ja) 太陽電池、及び太陽電池の製造方法
US8044477B1 (en) Photovoltaic device and method for making
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
US20110073186A1 (en) Target for a sputtering process for making a compound film layer of a thin solar cell, method of making the thin film solar cell, and thin film solar cell made thereby
KR20150142094A (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
US20140290739A1 (en) Thin-film solar battery and method of making same
WO2012118771A2 (en) Improved thin-film photovoltaic devices and methods of manufacture
WO2011108033A1 (ja) 化合物薄膜太陽電池及びその製造方法
US20140291147A1 (en) Target materials for fabricating solar cells
JP6083785B2 (ja) 化合物太陽電池およびその製造方法
CN108401469B (zh) 太阳能电池及其制造方法
EP2702615B1 (en) Method of preparing a solar cell
WO2014125903A1 (ja) Cigs系化合物太陽電池
US20140170803A1 (en) CIGS Absorber Formed By Co-Sputtered Indium
JP2010192690A (ja) 太陽電池の製造方法
Dimmler et al. Scalability and pilot operation in solar cells of CuInSe2 and their alloys
KR101131008B1 (ko) Se 또는 S계 박막태양전지 및 그 제조방법
US20120080306A1 (en) Photovoltaic device and method for making
KR20150136721A (ko) 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120523