CN102460153A - 监控神经精神疾病治疗的生物标记 - Google Patents

监控神经精神疾病治疗的生物标记 Download PDF

Info

Publication number
CN102460153A
CN102460153A CN2010800258668A CN201080025866A CN102460153A CN 102460153 A CN102460153 A CN 102460153A CN 2010800258668 A CN2010800258668 A CN 2010800258668A CN 201080025866 A CN201080025866 A CN 201080025866A CN 102460153 A CN102460153 A CN 102460153A
Authority
CN
China
Prior art keywords
treatment
biomarker
kinds
biological sample
vagal stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800258668A
Other languages
English (en)
Inventor
B·皮
J·比雷洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ridge Diagnostics Inc
Original Assignee
Ridge Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ridge Diagnostics Inc filed Critical Ridge Diagnostics Inc
Publication of CN102460153A publication Critical patent/CN102460153A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Bioethics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Evolutionary Computation (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Microbiology (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

鉴定和测量神经精神疾病的药效生物标记物的方法和监控对象治疗反应的方法。例如,监控患有神经精神疾病的对象迷走神经刺激的有效性的材料和方法。

Description

监控神经精神疾病治疗的生物标记
相关申请的交叉引用
本发明要求2009年4月6日申请的美国临时公开序列号61/166,986的优先权。
技术领域
本发明涉及监控具有神经精神疾病的对象治疗有效性的材料和方法。
背景技术
神经精神疾病包括重症抑郁、精神分裂、狂躁症、创伤后压力障碍、妥瑞氏症、帕金森症、和强迫症。这些疾病使人衰弱且难以诊断和有效治疗。大多数临床疾病不是由于单一生物变化产生的,而是多因子间相互作用的结果。取决于每个个体的具体变化,患有相同临床病症的不同个体(如重症抑郁)可能表现不同范围或程度的症状。
发明概述
本文部分基于开发用于鉴定神经精神疾病的药效生物标记物的方法,所述方法可由于监控对象的治疗反应。
一方面,本文特征为一种鉴定神经精神疾病的生物标记物的方法,包括(a)计算患有神经精神疾病对象的第一诊断疾病评分,其中所述第一诊断疾病评分在给予所述对象迷走神经刺激前计算;(b)提供给予所述迷走神经刺激前获自所述对象的第一生物样品中一种或多种分析物水平数值;(c)在给予所述迷走神经刺激后计算所述对象的第二诊断疾病评分;(d)提供给予所述迷走神经刺激后获自所述对象的第二生物样品中一种或多种分析物水平数值;和(e)鉴定一种或多种分析物为所述神经精神疾病的生物标记物,其中如果所述一种或多种分析物在所述第一和第二生物样品间差异表达则将其鉴定为生物标记物,其中所述一种或多种分析物的所述差异表达与所述对象诊断评分中阳性或阴性的变化相关。
所述神经精神疾病可为重型抑郁障碍(MDD)。所述诊断评分可用临床评估确定。如果分析物表达水平与所述第二诊断评分相对于所述第一诊断评分的阳性或阴性变化相关联,则该分析物可鉴定为所述神经精神疾病的生物标记物。所述迷走神经刺激的给予可包括重复迷走神经刺激。所述第一和第二生物样品可选自下组:血液、血清、脑脊液、血浆、和淋巴细胞。所述第二生物样品可在给予所述对象迷走神经刺激后数小时、数天、数周、或数月从所述对象中收集。可在给予所述对象迷走神经刺激后的时间间隔内重复步骤(c)、(d)和(e)。可用分子成像技术和/或临床评价工具如汉密尔顿抑郁分级(Hamilton Rating Scale for Depression,HAM-D)评分监控所述对象。所述对象可接受一种或多种其他形式的治疗干预(例如一种或多种他形式的治疗干预选自下组:认知行为治疗、药物治疗、实际行动的治疗干预、群体治疗、个体间治疗、精神动力治疗、放松或冥想治疗、和传统精神治疗)。所述方法还可包括提供来自所述对象的第一和第二生物样品,和/或给予所述对象迷走神经刺激。所述方法可为计算机执行的方法。
另一方面,本文特征为一种鉴定神经精神疾病的生物标记物的方法,包括(a)提供来自对象的第一生物样品;(b)测定所述对象的第一诊断疾病评分;(c)给予所述对象迷走神经刺激;(d)提供迷走神经刺激后获得的所述对象的第二生物样品,并测定所述第一生物样品和所述第二生物样品中一种或多种分析物的表达;(e)所述迷走神经刺激后测定所述对象的第二诊断疾病评分;和(f)鉴定一种或多种分析物为所述神经精神疾病的生物标记物,其中如果所述一种或多种分析物在所述第一和第二生物样品间差异表达则将其鉴定为生物标记物,其中所述一种或多种分析物的所述差异表达与所述对象诊断评分的变化相关。
所述神经精神疾病可为MDD。所述诊断评分可用临床评估确定。所述迷走神经刺激的给予可包括重复迷走神经刺激。所述第一和第二生物样品可选自下组:血液、血清、脑脊液、血浆和淋巴细胞。所述第二生物样品可在给予所述对象迷走神经刺激数小时、数天、数周、或数月后从所述对象中收集。可在给予所述对象迷走神经刺激后的时间间隔内重复步骤(c)、(d)和(e)。所述方法还包括用分子成像技术监控所述对象。所述方法还可包括给予所述对象一种或多种其他形式的治疗干预。所述一种或多种其他形式的治疗干预可选自下组:认知行为治疗、药物治疗、实际行动的治疗干预、群体治疗、个体间治疗、精神动力治疗、放松或冥想治疗、和传统精神治疗。所述方法可为计算机执行的方法。
本发明的特征还在于在患神经精神疾病的哺乳动物中评估治疗反应的方法,包括(a)测定所述哺乳动物的第一诊断疾病评分,其中用给予治疗前获自哺乳动物的第一生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、和至少两种代谢标记物的水平的数值计算所述第一诊断疾病评分;(b)测定所述哺乳动物的第二诊断疾病评分,其中用给予治疗后获自哺乳动物的第二生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、和至少两种代谢标记物的水平的数值计算所述第二诊断疾病评分;和(c)基于所述第一诊断疾病评分和所述第二诊断疾病评分的比较而维持、调整、或停止所述哺乳动物的治疗。所述哺乳动物可以是人。所述治疗可为迷走神经刺激。可用所述第一生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、至少两种代谢标记物、和至少两种神经营养性标记物水平的数值计算所述第一诊断疾病评分。可用所述第二生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、至少两种代谢标记物、和至少两种神经营养性标记物的水平的数值计算所述第二诊断疾病评分。所述方法可包括使用超图(hypermap)以比较第一和第二诊断疾病评分,所述超图包括使用所述炎症标记物水平的评分、所述至少两种HPA轴标记物水平的评分、和所述至少两种代谢标记物水平的评分以比较第一和第二诊断疾病评分。
除非另外定义,否则,本文中所使用的所有技术和科学术语都具有本发明所属领域普通技术人员通常所理解的同样含义。虽然在本发明的实施或测试中可以采用类似于或等同于本文所述的那些方法和材料,但是下面描述了合适的方法和材料。本文中述及的所有出版物、专利申请、专利和其他参考文献都通过引用全文纳入本文。此外,材料、方法和实施例都仅是说明性,并不构成限制。
从下述发明详述和所附权利要求书很容易了解本发明的其他特征和优点。
附图简要说明
图1是显示使用确定的患者群体和具有或没有疾病相关内容的生物标记物库来鉴定疾病相关生物标记物的步骤的流程图。
图2是显示可用于鉴定表明对神经精神疾病治疗的阳性或阴性反应的药效生物标记物的步骤的流程图。
图3是显示用基于质谱的差异蛋白质检测法来建立药效生物标记物组的步骤的流程图。
图4是治疗前后用源自血浆蛋白质检测的算法绘制的HAM-D评分和MDD评分(MDDSCORETM)。治疗开始前的MDD患者用实心圆圈表示。用LEXAPROTM治疗两周的同一MDD患者用空心正方形表示,且箭头表示HAM-D评分和MDDSCORETM的变化方向。处于基线的正常对象用空心圆圈表示。
图5是用在50个MDD患者(实心圆圈)和20个正常对象(空心圆圈)的研究中获得MDDSCORETM的数据集的生物标记物超图(BHYPERMAPTM)。
图6是表明神经精神疾病治疗的阳性或阴性反应的患者图谱位置变化的生物标记物超图(BHYPERMAPTM)。用LEXAPROTM进行治疗(Rx)。处于基线的MDD患者用实心圆圈表示。实心三角代表治疗2-3周后的患者,空心正方形代表治疗8周后的患者。空心圆圈代表未治疗的正常对象。
图7示出使用本文所述的生物标记物分析的基于计算机的诊断系统的示例。
图8示出可以在图7所示基于计算机的诊断系统中使用的计算机系统的示例。
发明详述
本发明部分基于诊断抑郁症状和通过评估(如测量)生物标记物表达来监控治疗的方法的鉴定。如本文所述,本文提供鉴定和确认与对象迷走神经刺激(VNS)后的阳性或阴性变化相关的药效生物标记物的材料和方法。在评估治疗效果相关的生理学变化中使用VNS来对抗抗抑郁药物的优势是VNS治疗本身持续时间短且其本质上是物理性的而不是生化的。本文所提供的方法和材料可用于诊断具有神经精神障碍的患者、确定治疗选择、和提供治疗效果的定量检测。
迷走神经刺激
本文提供VNS前和后确定对象的诊断评分的方法。VNS是用于治疗神经精神疾病如重型抑郁(如难治性抑郁症)和双相型障碍的侵入性最小的技术。VNS涉及从植入的类起搏器脉冲发生器和神经刺激电极给迷走神经输送间歇电刺激。例如,可植入的装置可经编程给左迷走神经输送轻度、间歇的电脉冲。所述左迷走神经的刺激可诱导健康对象和MDD对象中行为和感情的短期和长期变化。综述可见Park等,Acta Neurochir Suppl.97:407-16(2007)。
可使用许多给予VNS的方法。一个示例性的实验方案可在互联网的vnstherapy.com上找到。可用开/关刺激循环给予VNS。在一些情况下,刺激循环可为30秒电刺激(“开”状态)然后5分钟无电刺激(“关”状态)。一示例组刺激参数可包括:输出电流1mA、频率20Hz、脉冲宽度500微秒、“开”状态30秒、和“关”状态5分钟。在一些情况中,所述输出电流的范围可从约0到约2.25mA。在一些情况中,所述频率范围可从约2到约30Hz(如约2、约5、约10、约15、约20、约25、或约30Hz)。在一些情况中,所述脉冲宽度可从约130到约750微秒(如约130、约150、约200、约250、约300、约350、约400、约450、约500、约550、约600、约650、约700、或约750微秒)。在一些情况中,所述“开”状态可从约7到约60秒,所述“关”状态可从约0.3分钟到约180分钟(例如约0.3、约0.5、约1、约2、约5、约10、约20、约30、约40、约50、约60、约90、约120、约150、约180分钟)。发出脉冲的可植入装置可重编程以改变刺激循环。模拟刺激可用作对照或VNS的安慰剂。VNS TherapyTM脉冲模型102R发生器(VNSTherapyTM Pulse Model 102R Generator)系统和VNS TherapyTM脉冲双重模型102R发生器(VNS TherapyTM Pulse Duo Model 102R Generator)系统(赛博罗尼克公司,美国得克萨斯州休斯顿(Cyberonics,Inc.,Houston,TX))是可用于抑郁治疗和生物标记物研究的FDA批准的脉冲发生装置例子。所述设备可与双向电引线联用将刺激从所述脉冲发生装置转移到所述对象的左迷走神经。可用任何合适的方法植入脉冲发生装置和/或用于VNS的电引线。例如,可在门诊过程中将用于VNS的装置植入全身麻醉的对象。在一些情况下,植入可按照用于将脉冲发生器放入癫痫症对象的方法进行。
诊断评分
本发明提供确定对象诊断评分的材料和方法。本文所述方法的示例性对象是人,但对象也可以包括用作人类疾病模型的动物(例如,小鼠、大鼠、兔、狗和非人灵长类)。本文所提供的方法可用于在开始新的治疗方案或继续现有治疗方案前建立基线评分。治疗后测量诊断评分可与基线比较以观察相对于基线的阳性或阴性变化。基线和治疗后诊断评分可通过任何合适的评估方法测量。例如,在MDD中可进行所述对象症状和健康的临床评估。“黄金标准”诊断方法是结构化的临床面谈。在一些情况下,对象诊断评分可用临床实施的汉密尔顿抑郁分级(HAM-D)测量,其为一种评估抑郁情绪、抑郁的植物性症状和认知症状、和同时发病的焦虑症的17个项目分级。HAM-D可在评估时用于定量抑郁症的严重程度。参见Michael Taylor和Max Fink,Melancholia:The Diagnosis,Pathophysiology,and  Treatment of Depressive Illness(《精神忧郁:抑郁病的诊断、病理生理学和治 疗》),91-92,剑桥大学出版社(Cambridge University Press)(2006)。研究已证明VNS后HAM-D评分有改善。可用其他临床评估方法。在一些情况下,可用自评级(self-rating scales)如贝克抑郁评分问卷(Beck Depression Inventory)等级。许多神经精神疾病评级基于观察者。例如,蒙哥马利-艾斯博格
Figure BPA00001480537400061
抑郁评级可用于测量对象抑郁诊断评分。为了测量基于对象总体社会、职业、和心理功能的诊断评分,可用功能等级的整体评估(GlobalAssessment of Functioning Scale)。
在一些情况下,可用数学算法测量诊断评分。例如,可以针对任何临床病症确定用于测定个体疾病状态或治疗反应的算法。例如,可用与治疗前和/或治疗后确定的临床病症相关的度量法(如多种分析物的血清水平)确定诊断或评估治疗反应的算法。本文所用“分析物”是可以在诸如但不限于免疫测定或质谱等分析过程中客观地测量和确定的物质或化学成分。本文所讨论的算法可为包含多参数的数学函数,所述参数可用例如医疗设备、临床评估评分、或生物样品的生物或生理分析所量化。各数学函数可以是针对确定与所选临床病症相关的参数水平进行加权调整的表达式。算法一般可以用公式1的形式来表达:
诊断评分=f(x1,x2,x3,x4,x5,…xn)      (1)
所述诊断评分是所述诊断或预后结果的值,“f”是任意数学函数,“n”是任意整数(例如,从1到10,000的整数),并且x1、x2、x3、x4、x5…xn是“n”个参数,其为例如由医疗设备、临床评估评分、和/或生物样品(例如人类生物样品如血液、血清、血浆、尿液或脑脊液)的试验结果所确定的测量结果。
算法的参数可被单独地加权。这样的算法的示例以公式2来表达:
诊断评分=a1*x1+a2*x2-a3*x3+a4*x4-a5*x5    (2)
在此,x1、x2、x3、x4和x5是由医疗设备、临床评估评分、和/或生物样品的试验结果所确定的测量结果,而a1、a2、a3、a4和a5分别是x1、x2、x3、x4和x5的加权调整因子。
诊断评分可以用来量化定义医疗状况或疾病或医学治疗的效果。例如,计算机可用于提供算法,然后其可用于测定疾病如抑郁的诊断评分。在这样的实施方式中,可以基于公式1确定抑郁程度,通式如下:
抑郁诊断评分=f(x1,x2,x3,x4,x5…xn)
抑郁诊断评分是可用于测量个体的抑郁状况或严重性的量化数字,“f”是任何数学函数,“n”可以是任何整数(例如,从1到10,000的整数),并且x1、x2、x3、x4和x5是“n”个参数,其为例如用医疗设备、临床评估评分、和/或生物样品(例如人类生物样品)的试验结果所确定的测量结果。
在更普遍的形式中,可以通过将多个公式应用于具体的生物标记物测量组来生成多重诊断评分Sm,如等式(3)所示:
诊断评分Sm=Fm(x1,…xn)                   (3)
多重评分可用于例如鉴定特定类型和亚型抑郁症和/或相关的疾病。在一些情况下,所述抑郁症为重型抑郁症(MDD)。多重评分也可以是指示患者治疗进展或所选治疗的效用的参数。亚型抑郁症的诊断评分可加入抗抑郁或其他药物的选择或优化中。
生物标记物表达水平变化可用公式4的形式来表示:
Cmi=Mib-Mia  (4)
其中Mib和Mia分别是治疗前和后生物标记物的表达水平。对象诊断评分的变化可用等式5的形式表示:
H=HAM-Db-HAM-Da  (5)
其中HAM-Db和HAM-Da分别为治疗前和后的诊断评分。可用预定的过程来仅选择HAM-Da评分高于最小临界值(Eh=功效临界值)的对象。基于统计显著性定义为p<0.05的统计评价,选择p值小于0.05的生物标记物作为与治疗响应(therapy-responsive)的MDD关联的生物标记物。
MDD评分和HAM-D评分如何用于监控治疗诱导的变化的示例示于图4。箭头表示从MDD患者治疗前(实心圆圈)向LEXAPROTM治疗两周后(空心正方形)的评分变化的方向性。
生物标记物超图的应用(BHYPERMAPTM)
本发明还提供使用生物标记物超图评估VNS前和后患者的方法。本方法独特地包括构建相对于单独或组合分析单生物标记物的多分析物超图。生物标记物超图使用来自人生物标记物集合的多重标记物和相关的算法以区分患者的个体组。使用反映不同生理参数的生物标记物聚类(如激素与炎症标记物),患者的生物标记物反应可在多维超空间上作图。如本文所述,四类生物标记物用在治疗反应变化的作图过程中:
炎症生物标记物
HPA轴生物标记物
代谢生物标记物
神经营养生物标记物
可构建用于4类生物标记物的4种向量;所述向量共同形成超空间上的点。可用电脑程序分析所述数据、对所述向量绘图、和构建所述超图。为了便于观察,可用构建自所述四类生理上确定的生物标记物中三个的向量得到三维超图。这最初可针对患者在他/她首次检测时完成并有助于他们的分类。图5显示了所述概念。使用不同的系数针对50个MDD患者和20个年龄匹配的正常对象构造超空间向量。用临床样品的多重生物标记物数据在超空间图上显示个体患者(实心圆圈)和正常对象(空心圆圈),图中所述轴是HPA轴、炎症和代谢生物标记物。与所述MDD评分提供所述患者的数值不同,所述超图揭示了与不同类标记物的表达相关的信息。举例来说,小正方形的患者具有较高值的代谢和炎症标记物,而大矩形的患者除了其他两组标记物外还具有较高值的HPA轴标记物。因为基于不断增加的患者收集临床相关的信息(例如疾病严重程度),所以此技术可对患者管理更有潜力。
此外,通过加入患者反应的数据,超图可解答有关优选治疗方案和评估治疗有效性的问题。举例来说,用并入围绕选择性5-羟色胺再摄取抑制剂(SSRI)的生物标记物变化和临床反应的大量患者数据超图,可鉴定与对VNS与LEXAPROTM[5-羟色胺和去甲肾上腺素再摄取抑制剂(SNRI)]的反应增加相关联的超图(图形)区域。
图6显示了生物标记物超图指示用LEXAPROTM治疗的一系列患者的阳性或阴性治疗反应的具体实例。处于基线的MDD患者用实心圆圈表示。实心三角代表治疗2-3周后的患者,空心正方形代表治疗8周后的患者。空心圆圈代表未治疗的正常对象。
鉴定与神经精神疾病和治疗相关的生物标记物
本文提供鉴定治疗响应的生物标记物的方法。如本文所使用的,“生物标记物”是可作为正常生物或致病过程或对治疗干预的药理反应的指示剂而客观地加以测量和评估的一种特征。生物标记物图和其关联的算法可包含一种或多种分析物(如蛋白质、核酸和代谢物)、身体检查或其组合。
本文所用的“药效”生物标记物是可用于量化地评估(例如,测量)治疗或治疗性干预对疾病的病程、严重性、状况、症候或消退的影响的生物标记物。在一些实施方式中,可基于分析物表达水平和对象的诊断评分(如抑郁症的HAM-D评分)相对于一种或多种治疗前基线评分的阳性或阴性变化之间的相互关系或确定的关系鉴定药效生物标记物。在一些情况下,可从收集自VNS或模拟刺激前和后的对象的样品中测量分析物表达水平。所述VNS前样品的分析物表达水平可与所述VNS后样品的分析物水平比较。如果表达变化与阳性或阴性临床结果相关,其由所述VNS后诊断评分相对于所述VNS前诊断评分的改善确定,则所述分析物可鉴定为MDD和其他神经精神疾病的药效生物标记物。
本文提供的方法和材料鉴定的药效生物标记物可为先前未知的因子或已知与神经精神疾病相关的生物分子。图1图示了使用生物标记物库鉴定潜在的神经精神生物标记物的程序。作为起始点,库可包括广泛指示炎症、细胞黏附、免疫反应、或组织重塑的分析物。在一些实施方式中(例如,在初始库开发期间),库可包括十几种或更多标记物、一百种标记物、或数百种标记物。例如,生物标记库可包括几百种(如约200、约250、约300、约350、约400、约450、约500)蛋白分析物。可加入新的标记物,如对个体疾病状态特异的标记物和/或更加广泛的标记物,如生长因子。生物标记物库可通过鉴定研究发现的疾病相关蛋白而进一步确定(例如,使用诸如同位素编码的亲和标签(ICAT)、精确质谱及时间标签或其他质谱分析差异显示技术)。在此方法中,库对特定疾病状态的特异性可变得更高。
许多生物分子在患有不同神经精神疾病的对象内为上调或下调。许多转录因子、生长因子、激素、和其他生物分子与神经精神疾病相关。用于确定MDD和其他神经精神疾病的生物标记物的参数可选自例如由炎症生物标记物、HPA轴因子、代谢生物标记物、和神经营养性因子组成的功能组,包括神经营养蛋白、胶质细胞系衍生神经营养因子家族配体(GFLs)、和神经生成细胞因子。例如,神经精神疾病可为涉及所述炎症反应的因子。炎症涉及各种各样的蛋白质,且这些蛋白质中的任一种对损伤或破坏该蛋白质的正常表达和功能的遗传突变都是开放的。炎症还诱生高全身水平的急性期蛋白。这些蛋白质包括C-反应蛋白质、血清淀粉样蛋白A、血清淀粉样蛋白P、血管加压素以及糖皮质激素,它们都造成一系列全身效应。炎症还涉及促炎性细胞因子和趋化因子的释放。研究表明炎症反应系统的异常功能破坏免疫系统的反馈调节,因此导致神经精神和免疫疾病的发展。事实上,已经报告了由慢性炎症反应(例如,类风湿性关节炎)表征的若干疾病伴随着抑郁症。而且,近期的证据将炎症细胞因子水平提高与抑郁和恶病质联系起来,且实验显示引入细胞因子诱导人类和啮齿类的抑郁和恶病质症状,表明分子水平可能有共同的病原。例如,向动物给予促炎性细胞因子(如癌症或丙型肝炎治疗中)可诱发“病态行为”,这是一种与人类的抑郁行为症状非常类似的行为改变模式。目前正评估靶向特异细胞因子分子的治疗性试剂如肿瘤坏死因子同时药理学治疗抑郁和恶病质的潜力。总之,“抑郁症的炎症反应系统(IRS)模型(Inflammatory Response System(IRS)model ofdepression)”(Mae Adv.Exp.Med.Biol.461:25-46(1999))提出,充当神经调节物质的促炎性细胞因子代表了在抑郁症的行为、神经内分泌和神经化学特征的调节中的关键因子。
在一些情况中,神经精神疾病生物标记物可为神经营养性因子。大多数神经营养因子属于三种家族之一:(1)神经营养蛋白,(2)胶质细胞系衍生神经营养因子家族配体(GFLs)、和(3)神经生成细胞因子。各家族有其自身不同的信号家族,然而引起的细胞反应常常重叠。诸如脑源的神经营养因子(BDNF)和其受体TrkB的神经营养因子是负责发育中神经细胞的生长和存活以及维持成熟神经细胞的蛋白。神经营养因子可促进CNS和PNS内神经细胞的初始生长和发育以及体内体外受损神经细胞的再生长。神经营养因子常由靶标组织释放以指导发育中轴突的生长。研究表明神经营养因子的合成缺陷可导致关联抑郁症中所述认知修复的海马区和前额皮质里细胞凋亡增加。
在一些情况下,神经精神生物标记物可为所述HPA轴因子。所述HPA轴,也被称为边缘系统-下丘脑-垂体-肾上腺轴(LHPA轴),是下丘脑(大脑的中空漏斗形部分)、垂体(位于下丘脑之下的豌豆形结构)及肾上腺(adrenal or suprarenal)(位于肾脏顶部的小型锥形器官)之间一组复杂的直接影响和反馈的相互作用。这些器官之间的相互作用组成所述HPA轴,其为神经内分泌系统的主要部分,控制身体应激反应并调节消化、免疫系统、感情、和能量储存及消耗。在几种精神病和神经精神疾病以及酒精中毒和中风中所述HPA轴调节异常。HPA轴生物标记物的例子包括ACTH和皮质醇。皮质醇抑制促肾上腺皮质激素释放激素(CRH)的分泌,导致ACTH分泌的反馈抑制。在人类受到慢性应激时这一正常反馈系统可能垮掉,且这可能是抑郁症的根本原因。
在一些情况下,代谢因子可为神经精神疾病的有效生物标记物。代谢因子生物标记物是一组提供对健康和疾病状态中代谢过程认识的生物标记物。人类疾病存在复杂的下游效应,影响多种生物化学途径。例如,抑郁和其他神经精神疾病常常与代谢疾病如糖尿病相关。因此,各种代谢物和控制代谢过程的蛋白质和激素可用来诊断抑郁症如MDD、对疾病严重程度分级、和监控对象对所述抑郁症治疗的反应。
表1提供示例性但非限制性的炎症生物标记物列表。
表1
  基因标志   基因名称   聚类
  A1AT   α1抗胰蛋白酶   炎症
  A2M   α2巨球蛋白(Macroglobin)   炎症
  AGP   α1-酸性糖蛋白   炎症
  ApoC3   载脂蛋白CIII   炎症
  CD40L   CD40配体   炎症
  IL-1(α或β)   白介素1   炎症
  IL-6   白介素6   炎症
  IL-13   白介素13   炎症
  IL-18   白介素18   炎症
  IL-1ra   白介素1受体拮抗剂   炎症
  MPO   髓过氧化物酶   炎症
  PAI-1   纤溶酶原激活物抑制剂-1   炎症
  RANTES   RANTES(CCL5)   炎症
  TNFA   肿瘤坏死因子α   炎症
  STNFR   可溶性TNF.受体(I,II)   炎症
表2提供示例性但非限制性的HPA轴生物标记物列表。
表2
  基因标志   基因名称   聚类
  无   皮质醇   HPA轴
  EGF   表皮生长因子   HPA轴
  GCSF   粒细胞集落刺激因子   HPA轴
  PPY   胰腺多肽   HPA轴
  ACTH   促肾上腺皮质激素   HPA轴
  AVP:   精氨酸加压素   HPA轴
  CRH:   促肾上腺皮质激素释放激素   HPA轴
表3提供示例性但非限制性的代谢生物标记物列表。
表3
  基因标志   基因名称   聚类
  ACRP30  脂连蛋白(Adiponectin)   代谢
  ASP   酰基化刺激蛋白   代谢
  FABP   脂肪酸结合蛋白   代谢
  INS   胰岛素   代谢
  LEP   瘦素   代谢
  PRL   促乳素   代谢
  RETN   抵抗素(Resistin)   代谢
  无   睾酮   代谢
  TSH   甲状腺刺激激素   代谢
  无   甲状腺素   代谢
表4提供示例性但非限制性的神经营养生物标记物列表。
表4
  基因标志   基因名称   聚类
  BDNF   脑源神经营养因子   神经营养
  S100B   S100B   神经营养
  NTF3   神经营养蛋白3   神经营养
  RELN   颤蛋白   神经营养
  GDNF   胶质细胞系衍生的神经营养因子   神经营养
  ARTN   青蒿琥酯(Artemin)   神经营养
评定生物标记物
本文还提供评定疾病相关的和药效的生物标记物的材料和方法。针对生物标记物的认可和评定目前没有一致的框架用于常规使用。需要该框架以促进药物和治疗方案发展中的生物标记物的创新和有效研究以及随后的应用。而且,目前尚没有被食品与药品管理局完全认可的认证程序。然而,显然多个实验室的积累数据(可能一种生物标记物组合模型)会推动研究的有效执行和用于特定指示的生物标记物的最终官方认证。在本文所述的包括神经精神疾病如MDD的复杂疾病评估中,进行对了解清楚的患者和对照正常对象的研究作为生物标记物评定程序的部分。生物标记物评定是分等级的、“有的放矢”的认证程序,其把生物标记物和生物学及临床终点联系起来。随着具有生物标记物图的临床经验的发展,有关生物标记物评定和生物标记最终官方认证的信息也针对特异疾病应用以及药效和功效标记物而开发。
传统的积累临床研究(如检测生物样品、临床测量、图像分析)可用于所述评定程序。在一些情况下,可在统计学有意义的VNS或安慰剂(即无电脉冲)治疗患者组中测量生物标记物表达。可调整所述分组的患者的年龄和性别以符合总群体中MDD患者的分布。此研究可揭示VNS治疗中安慰剂效果的可能性和本质。在MDD情况下,对用如抗抑郁药物、电子震动治疗(ECT)、或认知行为治疗(CBT)治疗的患者中观察到的正向变化有VNS阳性反应的生物标记之间可进行比较。
分析物检测和算法计算
可使用许多方法对治疗特异性的分析物表达定量。例如,可采用一种或多种医疗器械或临床评价评分获得测量结果以评价对象症状,或使用生物样品的测试来确定特定分析物的水平。如本文所用,“生物样品”指包含细胞或细胞成分的样品,由该样品可获得核酸、多肽或其他分析物。根据进行的分析类型,可以通过标准技术分离得到血清、血浆或血细胞。血清和血浆是示例性生物样品,但也可使用其他生物样品。例如,可在尿液中测量特异的单胺,且已发现整体抑郁患者的尿液中比健康对照对象产生更多的儿茶酚胺(CAs)和代谢物。其他合适的生物样品的例子包括但不限于:脑脊液、胸膜液、支气管灌洗液、痰、腹膜液、膀胱洗液、分泌物(例如乳房分泌物)、口腔洗涤液、擦拭物(例如口腔擦拭物)、分离的细胞、组织样品、接触制剂(touch preps)和细针抽吸物。在一些情况下,如果生物样品要立即测试,则该样品可以保持在室温;否则该样品分析前应冷藏或冷冻(例如在-80℃)。在一些情况下,按VNS或模拟刺激后规律时间间隔从对象收集样品。在一些情况下,可在VNS或模拟刺激后数分钟、数小时、数天或数周后收集样品。
定量生物标记物的多重方法尤其有效。多重分析的平台的例子是FDA批准的基于流动相的鲁米耐克斯(Luminex)分析系统(xMAP;在luminexcorp.com上在线),其允许在单一样品中进行最多100个独立测试的多重分析。该多重技术采用流式细胞分析来监测抗体/肽/寡核苷酸或受体标签或标记的微球。由于该系统的体系结构是开放的,鲁米耐克斯容易调整成适合宿主特定疾病的模式。
进行分析物定量的另一种有用的技术是免疫分析,这是一种基于抗体与其抗原的特异性结合测定物质浓度(例如,在生物学组织或诸如血清、血浆、脑脊液或尿液等液体中)的生物化学试验。选择用于生物标记物定量的抗体必须对其抗原具有高亲和力。开发了许多不同的标记和分析策略以满足以高灵敏度、准确性、可靠性和方便性定量测量血浆蛋白质的要求。例如,可采用酶联免疫吸附试验(ELISA)定量测定生物样品中的生物标记物。在“固相夹心ELISA”中,未知量的特异性“捕获”抗体可固定于多孔板的表面,使样品吸附于捕获抗体。然后,第二种特异性的标记抗体在该表面上洗涤,使其结合抗原。将第二抗体与酶连接,并在最后的步骤中加入能够由该酶转化而产生可检测的信号(例如荧光信号)的物质。对于荧光ELISA,当合适波长的光照射到样品时可使用读板仪来测量产生的信号。分析终点的定量测定包括读取多孔板上不同孔中有色溶液的吸光度。使用许多整合了分光光度计的读板仪以精确测量有色溶液。一些自动化系统,例如BIOMEK
Figure BPA00001480537400141
1000(加利福尼亚州福特顿的贝克曼仪器有限公司(Beckman Instruments,Inc.;Fullterton,CA)),其还具有内置检测系统。通常,可使用计算机将未知数据点与实验得到的浓度曲线进行拟合。
在一些情况下,生物样品中的分析物表达水平可用质谱设备(如多同位素成像质谱(MIMS)设备)或任何合适的技术测量,包括例如测量RNA表达的技术。该方法包括例如PCR和使用双标记荧光团探针(如TAQMANTM,加利福尼亚州福斯特城的应用生物系统公司)的定量实时PCR法。在一些情况下,DNA微阵列可用于在基因组级别研究基因表达图谱。微阵列允许在单一实验中同时测量成千上万信使RNA的水平变化。微阵列可用于在治疗方案前、中、和/或后检测大部分基因组的基因表达。微阵列和生物信息学的结合可用于鉴定与特定治疗方案或阳性或阴性治疗反应相关的生物分子。在一些情况下,微阵列可与蛋白组学分析联用。
可用于同时定量多重蛋白参数的平台包括例如美国临时申请号60/910,217和60/824,471,美国实用申请号11/850,550,和PCT公开号WO2007/067819所述的平台,上述所有发表物通过引用全文纳入本文。可以使用的平台的例子采用精确人类生物实验有限公司(Precision Human Biolaboratories,Inc.现在是美国北卡罗来纳州三角科技园的里奇诊断有限公司(Ridge Diagnostics,Inc.,Research TrianglePark,N.C.))开发的MIMS无标记实验技术。简单的说,薄膜周围的局部干涉为光学检测的基础。对于生物分子相互作用分析,具有SiO2干涉层的玻璃芯片可用作传感器。所述层表面的分子结合增加了所述干涉膜的光学厚度,其可如例如美国临时申请号60/910,217和60/824,471所示而检测。
对于新生物标记物的潜力,可进行传统二维凝胶电泳以分离蛋白,然后质谱(如MALDI-TOF、MALDI-ESI)和生物信息学分析用于蛋白鉴定和表征。可用其他不同的蛋白定量方法。例如,可用串联质谱(MS/MS)同时测量蛋白质和肽的同一性和相对丰度。
图7示出使用本文描述的生物标记物分析的基于计算机的诊断系统示例。所述系统包括生物标记物库数据库710,该数据库储存不同组的生物标记物组合以及基于例如本文所述方法生成的生物标记物的算法得到的每种组合的相关的系数。所述数据库710储存在系统的数字存储器中。该系统包括患者数据库720,以储存进行分析的一种或多种患者的个体生物标记物的测定值。诊断处理引擎730可通过一种或多种计算机处理器来实现,用于将生物标志物文库数据库710中的一种或多种集合的生物标记物的组合应用于储存在数据库720中特定患者的患者数据以针对选择用于诊断患者的一组生物标记物组合产生的诊断输出。可对患者数据应用两种或更多这种集合,以提供两种或更多种不同的诊断输出结果。处理引擎730的输出可储存在输出装置740中,所述输出装置740可以是例如显示器、打印机或数据库。
一种或多种计算机系统可用于实现图7的系统和用于结合任一种本发明所述的计算机实现方法所描述的操作。图8示出了这种计算机系统800的例子。所述系统800可包括各种形式的数字计算机,例如笔记本、台式机、工作站、个人数字助理、服务器、刀片服务器(blade servers)、大型机和其他合适的计算机。所述系统800也可包括移动设备,例如个人数字助理、手机、智能电话和其他类似的计算设备。此外,所述系统可包括便携式存储介质,例如通用串行总线(USB)闪存驱动器。例如,所述USB闪存驱动器可储存操作系统和其他应用软件。所述USB闪存驱动器可包括输入/输出组件,例如无线发射器或可插入另一计算设备的USB端口的USB连接器。
在图8所示的具体实施例中,所述系统800包括处理器810、存储器820、储存装置830以及输入/输出装置840。每个组件810、820、830和840用系统总线850互连。所述处理器810能够处理用于在所述系统800内执行的指令。所述处理器可采用许多体系结构中的任一种进行设计。例如,所述处理器810可以是CISC(复杂指令集计算机)处理器、RISC(精简指令集计算机)处理器、或MISC(最少指令集计算机)处理器。
在一些实施方式中,所述处理器810是单螺口处理器。在其他实施方式中,所述处理器810是多螺口处理器。所述处理器810能够处理存储在存储器820中或者存储装置830中的指令以在输入/输出装置840的用户界面上显示图形信息。
所述存储器820存储所述系统800内的信息。在一些实施方式中,所述存储器820是计算机可读介质。在其他实施方式中,所述存储器820是易失性存储单元。在另一些实施方式中,所述存储器820是非易失存储单元。
所述存储装置830能够为所述系统800提供大容量储存。在一些实施方式中,所述存储装置830是计算机可读介质。在各种不同的实施方式中,所述存储装置830可以是软盘设备、硬盘设备、光盘设备或者磁带设备。
所述输入/输出装置840为所述系统800提供输入/输出操作。在一些实施方式中,所述输入/输出装置840包括键盘和/或定位设备。在一些实施方式中,所述输入/输出装置840包括用于显示图形用户界面的显示元件。
所描述的特征可以以数字电子电路形式或者计算机硬件、固件、软件形式或它们的组合实现。所述装置可用物化包含于信息载体的计算机编程产品的形式实现,例如供可编程处理器执行的机器可读存储装置中;且方法步骤可以通过执行指令程序的可编程处理器来进行,以通过操作输入数据并产生输出来执行所述实现的功能。所述特征优选以可在可编程系统上执行的一种或多种计算机程序的形式实现,所述可编程系统包括至少一个偶联的以从数据存储系统接收数据和指令并将数据和指令发送至该数据存储系统的可编程处理器、至少一个输入装置和至少一个输出装置。计算机程序是一组可以在计算机中直接或间接使用以执行某些活动或带来某些结果的指令。计算机程序可以任何形式的编程语言编写,包括汇编或编译语言,且其可以任何形式配置,包括作为独立程序或者作为模块、组件、子例程或者其他适合在计算机环境中使用的单元。例如,计算机程序可用MDD患者的一组生物标记物途径的生物标记物测定结果来计算向量并确定所述患者的数据在VNS治疗的其他患者超图上的位置。
用于执行指令程序的合适处理器包括作为示例的通用和专用微处理器和任何类型的计算机的唯一处理器或多重处理器之一。一般而言,处理器从只读存储器或随机存取存储器或两者接收指令和数据。计算机的基本元件是用于执行指令的处理器和用于存储指令和数据的一种或多种存储器。一般而言,计算机还包括用于存储数据文件的一种或多种大容量存储设备,或者操作性偶联这些设备以与之通信;此类设备包括诸如内部硬盘和可移动盘的磁盘、磁光盘、以及光盘。适用于物化地包含计算机程序指令和数据的存储设备包括:所有形式的非易失性存储器,包括作为示例的诸如EPROM、EEPROM和闪存设备等半导体存储设备;诸如内部硬盘和可移动盘等磁盘;磁光盘;以及CD-ROM和DVD-ROM盘。处理器和存储器可由ASIC(专用集成电路)补充或结合在ASIC中。
为了提供与用户的交互,可在具有诸如用于向用户显示信息的CRT(阴极射线管)或LCD(液晶显示器)监视器之类的显示设备以及用户可以籍之向计算机提供输入的键盘和诸如鼠标或跟踪球的定位设备的计算机上实现本发明的各特征。
可在包括诸如数据服务器的后端组件的计算机系统中,或者在包括诸如应用服务器或因特网服务器的中间件组件的计算机系统中,或者在包括诸如具有图形用户界面或因特网浏览器的客户计算机的前端组件的计算机系统中,或者在它们的组合中,实现这些特征。系统的组件可通过诸如通信网络的任何形式或介质的数字数据通信来连接。通信网络的例子包括局域网(“LAN”)、广域网(“WAN”)、对等网络(具有自组或静态元件)、网格计算基础设施和因特网。
计算机系统可包括客户机和服务器。客户机和服务器一般相距甚远且通常通过网络进行交互,例如本文所描述的网络。客户机和服务器的关系根据在相应计算机上运行且彼此具有客户机-服务器关系的计算机程序来产生。
使用生物标记物信息的方法
诊断评分和药效生物标记物可用于但不限于对治疗进行监测。例如,可向临床医师提供诊断评分和/或生物标记物水平,用于建立或改变对象的治疗过程。当选择治疗且治疗开始时,可以在两个或更多个间隔通过收集生物样品定期地监测受检者,测量生物标记物水平以产生对应于给定时间间隔的治疗前和后的诊断评分,并比较各时间的诊断评分。基于这些评分以及就诊断评分的升高、降低或稳定所观察到的任何趋势,或是药效生物标记物水平的变化,临床医师、治疗师或者其他健康护理专业人员可以选择继续原先的治疗、中止治疗、或者调节治疗方案,目的是随着时间的流逝而看到改善。例如,与对特定神经精神疾病的治疗方案的阳性反应相关的的药效生物标记物的水平的增加可指示患者对治疗的阳性反应。此药效生物标记物的水平降低指示对治疗没有阳性反应和/或需要对当前治疗计划再评估。有关生物标记物表达水平和诊断评分的维持不变可对应于有关神经精神病症状的维持不变。对于除VNS外还服用抗抑郁药或进行其他形式治疗(如,认知行为或电脉冲治疗)的患者,所述生物标记物图谱可能不同,且所述诊断评分向正常患者评分的变化可指示有效的治疗组合。随着所述治疗积累经验的增加,可生成特异的生物标记物图谱以监控与特异抗抑郁药物治疗等联用的VNS的反应。
报告了患者的诊断评分之后,健康护理专业人员可采取一项或多项行动来影响患者护理。例如,健康护理专业人员可以在患者病历上记录诊断评分和生物标记物表达。在一些情况下,健康护理专业人员可以记神经精神疾病的诊断或另外转换患者的病历,以反映患者的医疗状态。在一些情况下,健康护理专业人员可以回顾和评价患者病历,并且可以评价用于临床干预患者病症的多种治疗方案。
对于重型抑郁症和其他感情障碍,治疗监控可协助临床医生调整治疗剂量和持续时间。个体生物标记物水平更加非常类似正常内稳态的改变子集的指示可协助临床医生评估方案的有效性。健康护理专业人员可在接收了关于患者诊断评分的信息之后启动或调节MDD症状的治疗。在一些情况下,可将过去诊断评分和/或生物标记物水平的报告与最新传达的诊断评分和/或疾病状态进行比较。基于这种比较,健康护理专业人员可以推荐改变疗法。在一些情况下,健康护理专业人员可以招募患者进行MDD症状的新治疗性干预的临床试验。在一些情况下,健康护理专业人员可以选择等待直到患者的症状需要临床干预才开始治疗。
健康护理专业人员可以向患者或患者家属传达诊断评分和/或生物标记物水平。在一些情况下,健康护理专业人员可以向患者和/或患者家属提供关于MDD的信息,包括治疗选择、预后、专家(例如神经学专家和/或顾问)转诊。在一些情况下,健康护理专业人员可提供患者病历的复印件以向专家传达诊断评分和/或疾病状态。
研究专业人员可以应用关于对象的诊断评分和/或生物标记物水平的信息来推进MDD研究。例如,研究者可以用有关药物对治疗抑郁症状或其他神经精神疾病的症状的效力的信息处理诊断评分数据以鉴定有效的治疗。在一些情况下,研究人员可以获得对象的诊断评分和/或生物标记物水平对对象的招募或继续参与研究或临床试验进行评价。在一些情况下,研究人员可以向健康护理专业人员传达对象的诊断评分和/或生物标记物水平,和/或将对象委托健康护理专业人员进行临床评价和神经精神疾病治疗。
可使用任何合适的方法向其他人(例如专业人员)传达信息,且信息可以直接或间接传达。例如,实验室技术人员可以将诊断评分和/或个体分析物水平输入基于计算机的记录。在一些情况下,信息可以通过对病历或研究记录进行物理变更来传达。例如,医学专业人员可以进行永久注释或标记病历,用于向其他阅读该记录的健康护理专业人员传达诊断。可使用任何类型的沟通(如邮件、电子邮件、电话、传真和面对面交流)。安全的通信(如传真、信件、和面对面交流)可能尤其有用。信息也可通过使专业人员可电子获取(如以安全的方法)的方式将该信息传达给专业人员。例如,可将信息置于计算机数据库以使健康护理专业人员能够评价这些信息。此外,信息可以传达给医院、诊所、或者作为所述专业人员媒介的研究机构。健康保险流通与责任法案(Health Insurance Portability and Accountability Act(HIPAA))需要信息系统储存患者健康信息以防止入侵。因此,开放网络上的信息转移(如因特网或电子邮件)可加密。使用封闭系统或网络时,现有的访问控制已经足够。
下面的实施例提供了关于上述各种特征的额外信息。
实施例
实施例1-鉴定与MDD相关的药效生物标记物
图2显示了鉴定MDD药效生物标记物的过程。与MDD潜在相关的生物标记物的集合基于来自文献检索、生物途径的基因组或蛋白质组分析、或分子成像研究的早期研究结果来选择。MDD患者分组用基于面谈的临床评估“黄金标准”法确定。从各患者收集血浆或血清样品。然后患者进行迷走神经刺激或模拟刺激(安慰剂)。一段时间后(如治疗后数分钟、数小时、数天、和/或数周)从各患者收集治疗后的血浆和血清样品。测量各样品的所选生物标记物的表达水平进行额外设计的临床面谈和给予VNS后的诊断评分来确定患者对治疗的反应并记录。鉴定证明对VNS具有阳性临床反应的患者,其定义为治疗后诊断评分相对于所述治疗前基线评分有改善。表达与阳性临床结果相关的分析物鉴定为MDD的药效生物标记物。
用图1所描述的步骤生成MDD的诊断生物标记物并建立约20种分析物的图谱。这些分析物包括α-2-巨球蛋白、脑源神经营养因子(BDNF)、C-反应蛋白(CRP)、皮质醇、表皮生长因子(EGF)、白介素1(IL-1)、白介素6(IL-6)、白介素10(IL-10)、白介素18(IL-18)、瘦素、巨噬细胞炎症蛋白1-α(MIP-1I)、髓过氧化物酶、神经营养蛋白3(NT-3)、纤溶酶原激活物抑制剂-1(PAI-1)、促乳素(PRL)、RANTES、抵抗素、S100B蛋白、可溶性肿瘤坏死因子α受体2型(sTNF-IRII)、肿瘤坏死因子α(TNF-α)。这些生物标记物或其任何组合可用于MDD诊断、临床测试的患者分级、和/或患者监控。
实施例2-使用蛋白组学分析多重生物标记物
如图3所示,用串联质谱鉴定治疗相关的生物标记物。治疗前和后收集生物样品。所述样品用不同串联质量标签(TMT)标记并混合用于TMT-MSTM(蛋白质组科学公司(Proteome Sciences),英国)用合适的酶(如胰蛋白酶)破碎/消化后,通过液相色谱MS/MS选择TMT标记的片段用于分析。通过比较所述个体报道组信号的强度用MS/MS显示样品间的蛋白表达率。用生物信息学分析确定差异表达的蛋白。然后在治疗后的指定时间期间将鉴定的蛋白质确认为潜在的生物标记物(如使用特异抗体、和ELISA)以建立药效生物标记物子集。进行对象分析物表达水平变化的统计学分析以将分析物与治疗效果关联。若基于统计显著性定义为p<0.05的统计评价,选择p值大于0.05的生物标记物作为与治疗响应(therapy-responsive)的MDD关联的生物标记物。
实施例3-用MDDSCORE TM 和HAM-D评分监控治疗
MDDSCORETM和HAM-D评分如何用于监控治疗诱导的变化的示例示于图4。汉密尔顿抑郁分级(HAM-D)是临床医生常用于对患者重型抑郁严重程度分级的多项选择调查表。HAM-D评分高于18用作MDD患者的临界值,基于如下发现:与较低的均值基线HAM-D评分的实验相比,起始较高的均值基线HAM-D评分的实验与4-8周实验结束时的HAM-D评分中更大的降低相关联。在本实施例中,用仅基线或基线和LEXAPROTM治疗两周后(空心正方形)的HAM-D分别评估韩国正常对象(n=8,图4中空心圆圈)和未接受药物的MDD患者(n=8,实心圆圈)。从各所述八个MDD患者和八个正常对象的血清样品中获得临床结果。通过定量免疫试验测量构成MDDSCORETM的各标记的血清水平。计算MDDSCORETM且对所得数据作图,患MDD的可能性为x轴,HAM-D评分为y轴。用LEXAPROTM治疗两周的患者的MDDSCORETM和HAM-D评分用空心正方形表示,且各评分连接指向同一患者基线值的箭头。所述箭头表明MDD患者治疗前和LEXAPROTM治疗两周后的变化的方向性。对于所述8个MDD患者中6个,HAM-D评分和MDDSCORETM在治疗后下降。
实施例4-用生物标记物超图监控治疗
从50个MDD患者和20个正常对象的血清样品中获得临床结果。通过定量免疫试验测量构成所述各标记物(下面列出)的血清水平。用双向逻辑回归优化针对所述“黄金标准”临床评估的临床结果拟合各组中具有选定标记物的临床数据。所述拟合的结果为所述组中标记物列表的一组系数。例如,选择A1AT(I1)、A2M(I2)、载脂蛋白CIII(I3)、和TNFα(I4)作为代表炎症组的四种标记。用针对临床结果的双向逻辑回归计算这些标记物的四种系数和常数。如下所述构建所述炎症组的向量:
Vinfla=1/(1+exp-(CI0+CI1*I1+CI2*I2+CI3*I3+CI4*I4))    (6)
其中:CI0=-7.34
CI1=-0.929
CI2=1.10
CI3=5.13
CI4=6.48
Vinfla代表用所测炎症标记物计算给定的患者是否具有MDD的可能性
采用同一方法从MDD产生其他组标记物的向量。选择4种标记物代表所述代谢组:M1=ASP、M2=促乳素、M3=抵抗素、和M4=睾酮。对临床数据用前述同样的双向逻辑回归法,求出患者代谢反应的一组系数和向量和:
Vmeta=1/(1+exp-(Cm0+Cm1*M1+Cm2*M2+Cm3*M3+Cm4*M4))    (7)
式中:Cm0=-1.10
Cm1=0.313
Cm2=2.66
Cm3=0.82
Cm4=-1.87
Vmeta代表用所测代谢标记物计算给定的患者是否具有MDD的可能性。
选择2种标记物代表所述HPA组:H1=EGF和H2=G-CSF。同样对临床数据用前述同样的双向逻辑回归法,求出患者HPA反应的一组系数和向量和:
Vhpa=1/(1+exp-(Ch0+Ch1*H1+Ch2*H2))    (8)
式中:Ch0=-1.87
Ch1=7.33
Ch2=0.53
Vhpa代表用所测HPA标记物计算给定的患者是否具有MDD的可能性
使用这三组参数,构建诊断为MDD患者和正常对象对照组的超图并示于图5。
某些外界因素、疾病或治疗可影响作为超图中向量的组分的一种或多种生物标记物的表达。图6示出的超图说明一系列最初使用抗抑郁药物LEXAPROTM的MDD患者的反应模式。图6显示LEXAPROTM治疗后韩国MDD患者的子集中BHYPERMAPTM的变化。处于基线的MDD患者数据用实心圆圈代表。治疗2-3周后的数据点用实心三角形代表,治疗八周后的数据点用空心正方形代表。空心圆圈代表正常对象的数据。这证明所述技术可用于确定个体抗抑郁治疗反应的模式中的变化。
虽然本发明包含许多具体特征,但这些具体特征不应解释为限制本发明的范围或者所要求的权利的范围,而是对于本发明具体实施方式特定特征的描述。本发明各单独的实施方式的内容中描述的某些特征也可以组合起来在单个实施方式中实现。反之,在单一实施方式的内容中描述的各种特征也可以在多个实施方式中独立地或者以任何合适的次级组合的形式实现。而且,虽然上述特征被描述成以某些组合的形式起作用,而且甚至最初也是这样要求权利的,但所要求的组合中的一种或多种特征在一些情况下可以从组合中去除,所要求的组合可以指向次级组合或者次级组合的变体。
仅公开了一些实施方式。基于本发明所述和所示内容可以对所述实施方式和其他实施方式进行变换和改进。

Claims (32)

1.一种鉴定神经精神疾病的生物标记物的方法,所述方法包括:
(a)计算具有所述神经精神疾病对象的第一诊断疾病评分,其中所述第一诊断疾病评分在给予所述对象迷走神经刺激前计算;
(b)提供给予所述迷走神经刺激前获自所述对象的第一生物样品中一种或多种分析物水平的数值;
(c)在给予所述迷走神经刺激后计算所述对象的第二诊断疾病评分;
(d)提供给予所述迷走神经刺激后获自所述对象的第二生物样品中所述一种或多种分析物水平的数值;和
(e)鉴定一种或多种分析物为所述神经精神疾病的生物标记物,其中如果所述一种或多种分析物在所述第一和第二生物样品间差异表达则将其鉴定为生物标记物,其中所述一种或多种分析物的所述差异表达与所述对象诊断评分中阳性或阴性的变化相关。
2.如权利要求1所述的方法,其特征在于,所述神经精神疾病是重型抑郁障碍(MDD)。
3.如权利要求1所述的方法,其特征在于,所述诊断评分用临床评估测定。
4.如权利要求1所述的方法,其特征在于,所述迷走神经刺激的给予包括重复迷走神经刺激。
5.如权利要求1所述的方法,其特征在于,所述第一和第二生物样品选自下组:血液、血清、脑脊液、血浆、和淋巴细胞。
6.如权利要求1所述的方法,其特征在于,所述第二生物样品在给予所述对象迷走神经刺激数小时、数天、数周、或数月后从所述对象中收集。
7.如权利要求1所述的方法,其特征在于,在给予所述对象迷走神经刺激后的时间间隔内重复所述步骤(c)、(d)和(e)。
8.如权利要求1所述的方法,其特征在于,所述方法还包括:
(f)使用生物标记物超图技术鉴定在所述第一和第二生物样品间差异表达的特定组的分析物,其中分析物组的所述差异表达与所述对象的超空间模式中阳性或阴性变化相关。
9.如权利要求8所述的方法,其特征在于,在给予所述对象迷走神经刺激后的时间间隔内重复所述步骤(c)、(d)、(e)和(f)。
10.如权利要求1所述的方法,其特征在于,所述对象用分子成像技术监控。
11.如权利要求1所述的方法,其特征在于,所述对象接受对于所述对象的一种或多种其它形式的治疗性干预。
12.如权利要求11所述的方法,其特征在于,所述一种或多种其他形式的治疗干预选自下组:认知行为治疗、药物治疗、实际行动的治疗干预、群体治疗、个体间治疗、精神动力治疗、放松或冥想治疗、和传统精神治疗。
13.如权利要求1所述的方法,其特征在于,所述方法还包括提供来自所述对象的所述第一和第二生物样品。
14.如权利要求1所述的方法,其特征在于,所述方法还包括给予所述对象所述迷走神经刺激。
15.如权利要求1所述的方法,其特征在于,所述方法是计算机实现的方法。
16.一种鉴定神经精神疾病的生物标记物的方法,所述方法包括:
(a)提供来自对象的第一生物样品;
(b)测定所述对象的第一诊断疾病评分;
(c)给予所述对象迷走神经刺激;
(d)提供迷走神经刺激后获得的所述对象的第二生物样品,并测定所述第一生物样品和所述第二生物样品中一种或多种分析物的表达;
(e)所述迷走神经刺激后测定所述对象的第二诊断疾病评分;和
(f)鉴定一种或多种分析物为所述神经精神疾病的生物标记物,其中如果所述一种或多种分析物在所述第一和第二生物样品间差异表达则将其鉴定为生物标记物,其中所述一种或多种分析物的所述差异表达与所述对象诊断评分中阳性或阴性的变化相关。
17.如权利要求16所述的方法,其特征在于,所述神经精神疾病是MDD。
18.如权利要求16所述的方法,其特征在于,所述诊断评分用临床评估测定。
19.如权利要求16所述的方法,其特征在于,所述迷走神经刺激的给予包括重复迷走神经刺激。
20.如权利要求16所述的方法,其特征在于,所述第一和第二生物样品选自下组:血液、血清、脑脊液、血浆、和淋巴细胞。
21.如权利要求16所述的方法,其特征在于,所述第二生物样品在给予所述对象迷走神经刺激数小时、数天、数周、或数月后从所述对象中收集。
22.如权利要求16所述的方法,其特征在于,在给予所述对象迷走神经刺激后的时间间隔内重复所述步骤(d)、(e)和(f)。
23.如权利要求16所述的方法,其特征在于,所述方法还包括用分子成像技术监控所述对象。
24.如权利要求16所述的方法,其特征在于,所述方法还包括给予所述对象一种或多种其他形式的治疗干预。
25.如权利要求24所述的方法,其特征在于,所述一种或多种其他形式的治疗干预选自下组:认知行为治疗、药物治疗、实际行动的治疗干预、群体治疗、个体间治疗、精神动力治疗、放松或冥想治疗、和传统精神治疗。
26.如权利要求16所述的方法,其特征在于,所述方法是计算机实现的方法。
27.一种在患神经精神疾病的哺乳动物中评估治疗反应的方法,所述方法包括:
(a)测定所述哺乳动物的第一诊断疾病评分,其中用给予所述治疗前获自哺乳动物的第一生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、和至少两种代谢标记物水平的数值计算所述第一诊断疾病评分;
(b)测定所述哺乳动物的第二诊断疾病评分,其中用给予所述治疗后获自哺乳动物的第二生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、和至少两种代谢标记物水平的数值计算所述第二诊断疾病评分;和
(c)基于所述第一诊断疾病评分和所述第二诊断疾病评分的比较而维持、调整、或停止所述哺乳动物的治疗。
28.如权利要求27所述的方法,其特征在于,所述哺乳动物是人。
29.如权利要求27所述的方法,其特征在于,所述治疗是迷走神经刺激。
30.如权利要求27所述的方法,其特征在于,所述第一诊断疾病评分用所述第一生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、至少两种代谢标记物、和至少两种神经营养性标记物的水平数值计算。
31.如权利要求27所述的方法,其特征在于,所述第二诊断疾病评分用所述第二生物样品中存在的至少两种炎症标记物、至少两种HPA轴标记物、至少两种代谢标记物、和至少两种神经营养性标记物的水平数值计算。
32.如权利要求27所述的方法,其特征在于,所述方法包括使用超图以比较第一和第二诊断疾病评分,所述超图包括使用所述炎症标记物的所述水平的评分、所述至少两种HPA轴标记物的所述水平的评分、和所述至少两种代谢标记物的所述水平的评分。
CN2010800258668A 2009-04-06 2010-04-06 监控神经精神疾病治疗的生物标记 Pending CN102460153A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16698609P 2009-04-06 2009-04-06
US61/166,986 2009-04-06
PCT/US2010/030104 WO2010118035A2 (en) 2009-04-06 2010-04-06 Biomarkers for monitoring treatment of neuropsychiatric diseases

Publications (1)

Publication Number Publication Date
CN102460153A true CN102460153A (zh) 2012-05-16

Family

ID=42936849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800258668A Pending CN102460153A (zh) 2009-04-06 2010-04-06 监控神经精神疾病治疗的生物标记

Country Status (6)

Country Link
US (1) US20100280562A1 (zh)
EP (1) EP2417448A4 (zh)
JP (1) JP2012523009A (zh)
CN (1) CN102460153A (zh)
CA (1) CA2757659A1 (zh)
WO (1) WO2010118035A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524596A (zh) * 2020-04-07 2020-08-11 上海市精神卫生中心(上海市心理咨询培训中心) 一种判断青少年双相障碍发病风险的方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912712B2 (en) 2004-03-25 2021-02-09 The Feinstein Institutes For Medical Research Treatment of bleeding by non-invasive stimulation
US8868177B2 (en) * 2009-03-20 2014-10-21 ElectroCore, LLC Non-invasive treatment of neurodegenerative diseases
US8158374B1 (en) 2006-09-05 2012-04-17 Ridge Diagnostics, Inc. Quantitative diagnostic methods using multiple parameters
US20100100333A1 (en) * 2008-10-15 2010-04-22 Ridge Diagnostics, Inc. Human biomarker hypermapping for depressive disorders
US8440418B2 (en) 2008-11-18 2013-05-14 Ridge Diagnostics, Inc. Metabolic syndrome and HPA axis biomarkers for major depressive disorder
US9662490B2 (en) 2008-03-31 2017-05-30 The Feinstein Institute For Medical Research Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug
JP5675771B2 (ja) * 2009-04-01 2015-02-25 リッジ ダイアグノスティックス,インコーポレイテッド 精神神経疾患の治療をモニタリングするためのバイオマーカー
US20110213219A1 (en) * 2010-01-26 2011-09-01 Ridge Diagnostics, Inc. Multiple Biomarker Panels to Stratify Disease Severity and Monitor Treatment of Depression
US9211410B2 (en) 2009-05-01 2015-12-15 Setpoint Medical Corporation Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation
AU2010258792B2 (en) 2009-06-09 2015-07-02 Setpoint Medical Corporation Nerve cuff with pocket for leadless stimulator
US20150241447A1 (en) * 2009-11-17 2015-08-27 Ralph J. ZITNIK Vagus nerve stimulation screening test
US11051744B2 (en) 2009-11-17 2021-07-06 Setpoint Medical Corporation Closed-loop vagus nerve stimulation
AU2010336337B2 (en) 2009-12-23 2016-02-04 Setpoint Medical Corporation Neural stimulation devices and systems for treatment of chronic inflammation
JP6074846B2 (ja) 2010-12-16 2017-02-08 国立研究開発法人産業技術総合研究所 髄液型糖タンパク質の富化及び分離方法、並びにその方法を用いた中枢神経系疾患用マーカーの探索方法及び中枢神経系疾患用マーカー
US20120238837A1 (en) * 2011-03-16 2012-09-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods for real-time monitoring of cerebrospinal fluid for markers of progressive conditions
US9572983B2 (en) 2012-03-26 2017-02-21 Setpoint Medical Corporation Devices and methods for modulation of bone erosion
US8737709B2 (en) * 2012-04-30 2014-05-27 General Electric Company Systems and methods for performing correlation analysis on clinical outcome and characteristics of biological tissue
CA2920474C (en) 2013-07-11 2021-05-04 University Of North Texas Health Science Center At Fort Worth Blood-based screen for detecting neurological diseases in primary care settings
WO2015081166A1 (en) * 2013-11-26 2015-06-04 University Of North Texas Health Science Center At Fort Worth Personalized medicine approach for treating cognitive loss
US20170161441A1 (en) * 2014-07-02 2017-06-08 Ridge Diagnostics, Inc. Methods and materials for treating pain and depression
US11154712B2 (en) * 2014-08-28 2021-10-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
US11311725B2 (en) 2014-10-24 2022-04-26 Setpoint Medical Corporation Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation
WO2016126807A1 (en) 2015-02-03 2016-08-11 Setpoint Medical Corporation Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US10596367B2 (en) 2016-01-13 2020-03-24 Setpoint Medical Corporation Systems and methods for establishing a nerve block
EP3405107B1 (en) 2016-01-20 2023-04-12 Setpoint Medical Corporation Control of vagal stimulation
WO2017127758A1 (en) 2016-01-20 2017-07-27 Setpoint Medical Corporation Implantable microstimulators and inductive charging systems
US11471681B2 (en) 2016-01-20 2022-10-18 Setpoint Medical Corporation Batteryless implantable microstimulators
US10583304B2 (en) 2016-01-25 2020-03-10 Setpoint Medical Corporation Implantable neurostimulator having power control and thermal regulation and methods of use
WO2018077844A1 (en) 2016-10-28 2018-05-03 Telefonica Innovacion Alpha S.L. System and a method for enabling responsive cognitive behavioral therapy
US11872371B2 (en) 2017-04-20 2024-01-16 The Feinstein Institutes For Medical Research Systems and methods for real-time monitoring of physiological biomarkers through nerve signals and uses thereof
EP3668402B1 (en) * 2017-08-14 2024-07-31 Setpoint Medical Corporation Vagus nerve stimulation pre-screening test
AU2018324195A1 (en) 2017-09-01 2020-04-02 Venn Biosciences Corporation Identification and use of glycopeptides as biomarkers for diagnosis and treatment monitoring
EP3740761A4 (en) * 2018-01-18 2021-10-20 University of North Texas Health Science Center at Fort Worth ACCOMPANYING DIAGNOSTICS FOR NSAIDS AND DONEPEZIL FOR THE TREATMENT OF SPECIFIC SUBPOPULATIONS OF PATIENTS WITH ALZHEIMER'S MORBUS
US11260229B2 (en) 2018-09-25 2022-03-01 The Feinstein Institutes For Medical Research Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation
JP2023526080A (ja) 2020-05-21 2023-06-20 ザ・フェインステイン・インスティチュート・フォー・メディカル・リサーチ 迷走神経刺激のためのシステムおよび方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359681A (en) * 1993-01-11 1994-10-25 University Of Washington Fiber optic sensor and methods and apparatus relating thereto
US5882203A (en) * 1995-05-31 1999-03-16 Correa; Elsa I. Method of detecting depression
US5658802A (en) * 1995-09-07 1997-08-19 Microfab Technologies, Inc. Method and apparatus for making miniaturized diagnostic arrays
US5804453A (en) * 1996-02-09 1998-09-08 Duan-Jun Chen Fiber optic direct-sensing bioprobe using a phase-tracking approach
US20050123938A1 (en) * 1999-01-06 2005-06-09 Chondrogene Limited Method for the detection of osteoarthritis related gene transcripts in blood
US20040110938A1 (en) * 2000-02-24 2004-06-10 Parekh Rajesh Bhikhu Proteins, genes and their use for diagnosis and treatment of schizophrenia
US20030032773A1 (en) * 2000-02-24 2003-02-13 Herath Herath Mudiyanselage Athula Chandrasiri Proteins, genes and their use for diagnosis and treatment of bipolar affective disorder (BAD) and unipolar depression
JP2003526108A (ja) * 2000-03-09 2003-09-02 クリニカル アナリシス コーポレーション 医学的診断システム
US7118710B2 (en) * 2000-10-30 2006-10-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US6905816B2 (en) * 2000-11-27 2005-06-14 Intelligent Medical Devices, Inc. Clinically intelligent diagnostic devices and methods
WO2002089657A2 (en) * 2001-05-04 2002-11-14 Biosite, Inc. Diagnostic markers of acute coronary syndromes and methods of use thereof
US6710877B2 (en) * 2001-07-23 2004-03-23 Corning Incorporated Apparatus and methods for determining biomolecular interactions
CA2467456A1 (en) * 2001-11-19 2003-05-30 Protometrix, Inc. Method of using a non-antibody protein to detect and measure an analyte
US7136518B2 (en) * 2003-04-18 2006-11-14 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US20040152107A1 (en) * 2002-09-18 2004-08-05 C. Anthony Altar Gene signature of electroshock therapy and methods of use
KR20040032451A (ko) * 2002-10-09 2004-04-17 삼성전자주식회사 생체신호 기반의 건강 관리 기능을 갖는 모바일 기기 및이를 이용한 건강 관리 방법
US7490085B2 (en) * 2002-12-18 2009-02-10 Ge Medical Systems Global Technology Company, Llc Computer-assisted data processing system and method incorporating automated learning
BRPI0410296A (pt) * 2003-05-06 2006-05-16 Aspect Medical Systems Inc sistema e método para a determinação da eficácia de tratamento de distúrbios neurológicos utilizando o eletroencefalograma
US7706871B2 (en) * 2003-05-06 2010-04-27 Nellcor Puritan Bennett Llc System and method of prediction of response to neurological treatment using the electroencephalogram
US20040228766A1 (en) * 2003-05-14 2004-11-18 Witty Thomas R. Point of care diagnostic platform
US20040228765A1 (en) * 2003-05-14 2004-11-18 Witty Thomas R. Point of care diagnostic platform
US20050084880A1 (en) * 2003-07-11 2005-04-21 Ronald Duman Systems and methods for diagnosing & treating psychological and behavioral conditions
US20070092888A1 (en) * 2003-09-23 2007-04-26 Cornelius Diamond Diagnostic markers of hypertension and methods of use thereof
US20050069936A1 (en) * 2003-09-26 2005-03-31 Cornelius Diamond Diagnostic markers of depression treatment and methods of use thereof
US7394547B2 (en) * 2003-11-06 2008-07-01 Fortebio, Inc. Fiber-optic assay apparatus based on phase-shift interferometry
JP2005312435A (ja) * 2004-03-29 2005-11-10 Kazuhito Rokutan うつ病の評価方法
US20050254065A1 (en) * 2004-05-12 2005-11-17 Stokowski Stanley E Method and apparatus for detecting surface characteristics on a mask blank
AU2005257705A1 (en) * 2004-06-24 2006-01-05 Ge Healthcare Bio-Sciences Ab Method for detecting molecular surface interactions
US20060063199A1 (en) * 2004-09-21 2006-03-23 Elgebaly Salwa A Diagnostic marker
US7445887B2 (en) * 2005-01-07 2008-11-04 Fortebio, Inc. Enzyme activity measurements using bio-layer interferometry
JP2007024822A (ja) * 2005-07-21 2007-02-01 Aska Pharmaceutical Co Ltd 男性の更年期又はうつ病の鑑別方法
CA2626490A1 (en) * 2005-10-18 2007-04-26 Cambridge Enterprise Limited Methods and biomarkers for diagnosing and monitoring psychotic disorders such as schizophrenia
US20070161042A1 (en) * 2006-01-11 2007-07-12 Fortebio, Inc. Methods for characterizing molecular interactions
ES2474690T3 (es) * 2006-02-17 2014-07-09 Atsuo Sekiyama Indicador de carga biológica y método de medida de la carga biológica
US20080015465A1 (en) * 2006-06-15 2008-01-17 Scuderi Gaetano J Methods for diagnosing and treating pain in the spinal cord
US7651836B2 (en) * 2006-08-04 2010-01-26 Hospital Santiago Apóstol Methods for diagnosis and prognostic of psychiatric diseases
US8158374B1 (en) * 2006-09-05 2012-04-17 Ridge Diagnostics, Inc. Quantitative diagnostic methods using multiple parameters
US20080199866A1 (en) * 2006-10-10 2008-08-21 The Board Of Trustees Of The Leland Stanford Junior University Snp detection and other methods for characterizing and treating bipolar disorder and other ailments
JP5298858B2 (ja) * 2007-02-16 2013-09-25 株式会社島津製作所 上皮性卵巣癌の組織型識別マーカー、及びそれを用いた組織型に基づく上皮性卵巣癌の罹患の識別法
US20080281531A1 (en) * 2007-03-15 2008-11-13 Kazuhito Rokutan Method for Diagnosing Depression
US20100100333A1 (en) * 2008-10-15 2010-04-22 Ridge Diagnostics, Inc. Human biomarker hypermapping for depressive disorders
US8440418B2 (en) * 2008-11-18 2013-05-14 Ridge Diagnostics, Inc. Metabolic syndrome and HPA axis biomarkers for major depressive disorder
CN102037355A (zh) * 2008-03-04 2011-04-27 里奇诊断学股份有限公司 基于多重生物标记物板块诊断和监测抑郁症
EP2272044A4 (en) * 2008-03-12 2011-07-06 Ridge Diagnostics Inc INFLAMMATION BIOMARKERS FOR MONITORING DEPRESSION DISORDERS
JP5675771B2 (ja) * 2009-04-01 2015-02-25 リッジ ダイアグノスティックス,インコーポレイテッド 精神神経疾患の治療をモニタリングするためのバイオマーカー
US20110213219A1 (en) * 2010-01-26 2011-09-01 Ridge Diagnostics, Inc. Multiple Biomarker Panels to Stratify Disease Severity and Monitor Treatment of Depression
CN103370624A (zh) * 2010-12-06 2013-10-23 里奇诊断学股份有限公司 监控神经精神疾病治疗的生物标记

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524596A (zh) * 2020-04-07 2020-08-11 上海市精神卫生中心(上海市心理咨询培训中心) 一种判断青少年双相障碍发病风险的方法

Also Published As

Publication number Publication date
EP2417448A4 (en) 2012-10-24
WO2010118035A2 (en) 2010-10-14
WO2010118035A3 (en) 2011-01-13
JP2012523009A (ja) 2012-09-27
EP2417448A2 (en) 2012-02-15
CA2757659A1 (en) 2010-10-14
US20100280562A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
CN102460153A (zh) 监控神经精神疾病治疗的生物标记
JP5675771B2 (ja) 精神神経疾患の治療をモニタリングするためのバイオマーカー
JP5658571B2 (ja) うつ障害をモニタリングするための炎症バイオマーカー
JP5663314B2 (ja) 多数のバイオマーカーパネルに基づくうつ障害の診断およびモニタリング
CN103370624A (zh) 监控神经精神疾病治疗的生物标记
CN102301234B (zh) 针对重度抑郁疾病的代谢综合症状及hpa轴生物标志物
US20110213219A1 (en) Multiple Biomarker Panels to Stratify Disease Severity and Monitor Treatment of Depression
JP5540000B2 (ja) うつ病性障害のヒトバイオマーカーハイパーマッピング
US20160342757A1 (en) Diagnosing and monitoring depression disorders
US20170131295A1 (en) Multiple biomarker panels to stratify disease severity and monitor treatment of depression
Bowser et al. Biomarkers for amyotrophic lateral sclerosis
US20170161441A1 (en) Methods and materials for treating pain and depression

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1171081

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120516

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1171081

Country of ref document: HK