CN102459747B - 包含过氧化物的抗菌纺织物 - Google Patents

包含过氧化物的抗菌纺织物 Download PDF

Info

Publication number
CN102459747B
CN102459747B CN201080035258.5A CN201080035258A CN102459747B CN 102459747 B CN102459747 B CN 102459747B CN 201080035258 A CN201080035258 A CN 201080035258A CN 102459747 B CN102459747 B CN 102459747B
Authority
CN
China
Prior art keywords
antibacterial
hydrogen peroxide
treatment
agent
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080035258.5A
Other languages
English (en)
Other versions
CN102459747A (zh
Inventor
W·托基
A·米哈伊洛瓦
S·利安得
B·利森费尔德
G·奥尔德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quick Med Technologies Inc
Original Assignee
Quick Med Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quick Med Technologies Inc filed Critical Quick Med Technologies Inc
Publication of CN102459747A publication Critical patent/CN102459747A/zh
Application granted granted Critical
Publication of CN102459747B publication Critical patent/CN102459747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with hydrogen peroxide or peroxides of metals; with persulfuric, permanganic, pernitric, percarbonic acids or their salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/048Soap or detergent bars or cakes with an inner core consisting of insoluble material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/155Halides of elements of Groups 2 or 12 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/57Sulfates or thiosulfates of elements of Groups 3 or 13 of the Periodic Table, e.g. alums
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • D06M11/65Salts of oxyacids of nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/11Peroxy compounds, peroxides, e.g. hydrogen peroxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

本发明涉及赋予基质尤其是纺织物持久抗菌活性的方法。通过调整水性过氧化氢中金属盐混合物的pH值至约7.5制备无醋酸根的金属和过氧化物抗菌处理制剂。用该组合物处理基质并干燥从而使处理过的基质具有抗菌活性。优选锌盐、离子、或复合物。

Description

包含过氧化物的抗菌纺织物
技术领域
本发明涉及具有持久抗菌特性的抗菌纺织物。
背景技术
抗菌剂是用于预防产品、材料和系统发生微生物污染和变质的化学组合物。抗菌剂和组合物的特定应用领域是,例如,化妆品、消毒剂、卫生洗涤剂、木材防腐、食品、动物饲料、冷却水、金属加工液、医院和医疗用途、塑料和树脂、石油、纸浆和纸张、纺织物、乳胶、粘合剂、皮革和皮胶以及油漆浆。已知消毒剂的种类很多,例如在第四版《消毒、杀菌和防腐》中讨论的,其由Seymour S.Block教授编辑和部分撰写,1991年在宾夕法尼亚州由Lea&Febiger出版。已知某些过氧化物、氯化合物、酚类化合物、季铵化合物和表面活性剂均具有杀菌性质。在许多情况下,消毒的速度相对缓慢,并且一些化合物排放挥发性有机化合物或在环境中持久残留。
近年来,人们对潜在的日常接触所引起的细菌污染危害一直给予极大的关注。这种关注的显著例子包括在尚未煮熟的牛肉中(特别是在快餐店内)发现的某些大肠杆菌(E.coli)菌株引起食物中毒的致命后果;尚未煮熟的和不洁的家禽食品中的沙门氏菌污染引起的疾病;以及金黄色葡萄球菌、肺炎克雷伯菌、酵母、和其他单细胞生物引起的疾病和皮肤感染。由于消费者增加了对这一领域的关注,制造商已经开始在各种家用产品和物品中引入抗菌剂。例如,某些品牌的聚丙烯砧板和液体香皂含有抗菌化合物。这类物品中,最流行的抗菌剂是三氯生。虽然在液体或聚合物介质中掺入这样的化合物相对简单,然而已证实,在其他基质中掺入则不容易做到,包括在纺织物和纤维的表面。
对于纺织物表面,尤其是服装面料和薄膜表面,需要长期提供有效、持久和长效的抗菌特性。要用三氯生实现这样的计划应用是极其困难的,尤其当清洗持久性是必要的时候,因为在任何这样的表面上三氯生很容易被洗掉。此外,虽然已证明三氯生作为抗菌剂很有效,然而接触该化合物可能会导致皮肤发炎,这使得三氯生不适用于服装的纤维、薄膜、纺织面料。
现有技术中,处理纺织物以赋予其对与纺织物接触的微生物具有抗微生物性是已知的。这类物品包括由纸张、纤维、针织和非针织纺织物形成的物品及织物类似物,所述织物类似物设计用于医院、食品加工厂、实验室、和其他有必要维持无菌环境的区域。关于抗菌处理的纺织物的近期综述见于“Recent Advances in Antimicrobial Treatments of Textiles”,Y.Gao和R.Cranston,Textile Research Journal,Vol.78(1),p60-72(2008)。
由于公众对流行性疾病和病原体的关注,抗菌材料如布料、纤维、聚合物、甚至儿童玩具越来越受欢迎。就抗菌织物而言,由于公众对这些潜在威胁的警惕,国内和国际市场已经显著增长(参见,Center for Disease Control and Prevention,Infection Control and Biosafety,Medical Data International.Report#RP-701530,1992;和A.J.Rigby等,Fiber Horizons,1993年12月,第42-460页)。抗菌服装可用在医疗以及其他常用用途中,如应用在外科医生手术衣、帽子、口罩、病人的手术铺巾、绷带、毛巾、床单、擦拭器和各种尺寸的盖布。
虽然抗菌纤维的需求很高,然而这种纤维却很难得到,特别是能有效对抗广谱细菌的,并且多次机洗后仍有效的纤维。近年来,随着抗生素作为杀菌剂掺入聚合物的新方法的推进,对具有持久的功能性的纤维的研究和发展一直很活跃。
多种类型的抗菌剂已应用于纤维基质。然而,仅有极少数的试剂在经过反复洗涤后仍能保留其杀菌活性、不会造成环境问题、对基质或其用户不产生副作用、并且制造成本低廉。
例如,美国专利2,791,518公开了一种赋予物品如纺织物抗菌特性的方法,该方法通过将物品浸入到第一水溶液中,该水溶液含有一种水溶性的碱性氮化合物(氨)和溶于所述溶液的单价银盐,然后浸入到第二溶液中,该溶液含有可与银盐发生离子交换的第二种盐,从而使物品上形成单价银盐沉淀物。形成的银沉淀物难溶于水,并且在处理后赋予物品抗菌特性。
相似地,美国专利5,271,952公开了一种处理纤维以使纤维具有导电性和抗菌性的方法,该方法包括将纤维浸入槽中,该槽包括一种二价铜离子源的水溶液、还原剂、硫代硫酸钠和碘离子源,从而将碘化铜吸收到纤维中。美国专利4,410,593和5,458,906中公开了使纤维具有传导性和抗菌性的使用铜化合物的相似技术。
一些物质例如氯化妥因,出于赋予抗菌特性的目的,可被嫁接到纺织物上也已经公开了(Williams等,C&EN 1999年9月6日,第36页;及美国专利6576154)。然而,如此处理的纺织物仅仅洗涤5小时,抗菌特性就会急剧降低,并且在紫外线下长时间暴露后不稳定。
美国专利5,882,357公开了使用一种化学加工方法获得的持久和可再生的纤维素材料。用乙内酰脲衍生物处理棉和聚酯/棉织物,再用含氯洗衣漂白剂洗涤处理后的纤维从而赋予杀菌特性。乙内酰脲环中的胺和亚胺键的氯化产生杀菌N-卤胺位点。当位点暴露于微生物时,N-卤胺恢复到它们的前体形式。之后通过使用含氯漂白剂可使纤维再次具有杀菌性能。氯再生整理方法的主要优点是它的耐用性、便利性和经济性。然而,N-卤胺化学不适用于彩色织物。使用含氯漂白剂会使纤维褪色。因此,在某些应用中,非漂白的再生剂是理想 的,特别是对于有色材料。
众所周知,过氧化氢是一种安全有效的局部消毒剂和防腐剂,其稀溶液可用作清洗伤口。然而,它对纤维材料不具直接性,且一次清洗就很容易使其从织物或织物部件中脱落。
由于过氧化氢的分解产物,水和氧气是无害的,且往往具有广谱抗菌活性,使得过氧化氢在许多应用中受到青睐。过氧化氢对多种细菌、霉菌、真菌和病毒有效。在有害生物存在但其种类未知的情况下,广谱抗菌活性是很重要的。过氧化氢是众所周知的杀菌剂,其水溶液在人类和动物局部治疗中已被广泛用于处理感染。试剂可以在适当稀释后以原始形式使用,或可以从与过氧化氢形成盐或加成化合物的固体化合物中得到。其中包括过硼酸钠、过氧碳酸钠、过氧磷酸钠、过氧化脲、过硫酸钾、以及其他。加水时,这些化合物水解成过氧化氢和相应的载体盐。然而,常用过氧化氢水溶液的主要局限性是其储存稳定性差,这是由于其在常温下易分解成气态氧和水及活性氧化剂与受感染组织短暂接触所引起的。另外,当该组合物是由加成化合物和过氧化氢形成时,常常需要在将其掺入所需组合物之前制备加合组合物。
美国专利6,962,608公开了一种制备抗菌纤维的方法,所述方法包括:(a)将纺织物浸入含有机酸的水处理溶液中,其中所述有机酸具有至少两个羧基;且(b)用氧化剂处理所述纤维以产生过氧羧酸功能,从而制备一种包含平均重量百分比为6%的有机酸的抗菌纺织物,证实在未洗涤时大肠杆菌减少率可超过99%(2-log)。这一减少的百分比水平随样本的额外洗涤逐渐下降,最后在经四次洗涤后降至85%(<1-log)。
Danna等在美国专利4,199,322和4,172,841中公开了将包含醋酸锌(ZA)或醋酸锌二水合物和过氧化氢(HP)的溶液应用于纺织物,然后干燥处理后的纺织物以获得具有抗菌特性的产品。优选的,加入醋酸以保持溶液的均一性(澄清及无沉淀物或凝结物)。Danna参考文献中公开了用于处理纺织物的溶液(“水性反应混合物”)“可以包含1%-30%醋酸锌,且优选1.5至10摩尔的过氧化氢对每摩尔醋酸锌”。在所有情况下,Danna参考文献中公开的制剂均使用醋酸锌,Zn(OAc)2,或醋酸锌二水合物作为活性剂。换句话说,Danna参考文献教导必须使用摩尔比为2∶1的醋酸盐和锌。如果认为Danna参考文献也公开了将醋酸形式的醋酸盐加入到制剂中是有益的,那么醋酸盐和锌的摩尔比甚至更高。即使在干燥步骤中移除(蒸发)醋酸锌和过氧化氢反应产生的醋酸,Danna参考文献公开了反应产物“包含显著比例的乙酰基团”。任何有意添加到溶液中的额外醋酸同样在干燥步骤中被移除。多于的过氧化氢在该步骤中也被蒸发掉。
Danna等人在美国专利4,199,322(第二栏第63行到第3栏第15行)中(“Danna‘322”)公开描述了抗菌反应的产物。反应产物具有如通式1(如下)所示的通式,其中X范围为9到16,且Y的范围为1到7。简单计算揭示了Danna‘322的反应产物中醋酸盐和锌的摩尔比范围为2∶10(对于x=9且y=1的情况)至2∶23(对于x=16且y=7的情况)。因而, 相对于反应产物中的醋酸盐,锌一般有500%至超过1,000%的摩尔的过量。或换句话说,在最终的抗菌反应产物中,仅有1至2个醋酸盐部分对10个锌原子。
AcO-(ZnO2)X-(ZnO)Y-ZnOAc
通式1:(X=9至16且Y=1至7) 
因为在醋酸锌初始原料中,醋酸盐与锌的最初比例为2∶1,这意味着高达20倍的过量醋酸盐被采用了(不包括有意加入到制剂中的醋酸的任何贡献)。换句话说,相对于锌,反应物富含醋酸盐;而相对于醋酸盐,产物富含锌。过量醋酸盐在干燥过程中以醋酸形式被去除,实质上是被浪费了。从原料角度看,试剂的过度消耗是昂贵的,并且也带来了其他问题。酸雾对健康、安全和环境是一种危害。醋酸易燃,闪点约为40℃。此外,酸雾是一种刺激物,会损害呼吸系统,并能腐蚀设备。显然,Danna‘322中所描述的方法有明显的缺点。
醋酸锌易溶于水,并且在溶液中分离成锌离子和醋酸根离子。将醋酸钠和氯化锌(ZnCl2),而不是醋酸锌,以2∶1的摩尔组合,溶液中实质上将产生相同比例的锌离子和醋酸根离子,可假定能达到类似的抗菌作用。
此外,Danna‘322的方法所产生的纺织物要求有清洗的步骤,以移除过量的反应产物,该反应产物使纺织物产品具有难闻的醋酸味。残留醋酸对织物本身也可以是有害的,引起降解或褪色。残留的醋酸也可能给处理纺织物的用户带来健康风险,例如皮肤刺激。还已知有机酸如醋酸可以作为某些微生物的食物来源。根据Danna‘322的步骤和方法,要求冲洗步骤的也会显著增加纺织物处理的成本。Danna‘322的制剂在冲洗前必须干燥以安置(或固定、或固化)处理。随后冲洗处理过的纺织物材料以去除醋酸,这使第二次干燥步骤变的必要,这显著增加了能源成本。
Danna‘322公开使用了均一的溶液,其不含有沉淀物。这是通过将醋酸添加至反应混合物中以阻止醋酸锌-过氧化物复合物形成沉淀而获得的。与Danna‘322的教导相反的是,本发明使用水性载体中的锌和过氧化氢混合物,其包含沉淀物、或颗粒悬浮液、或胶体。
溶于水的醋酸锌产生pH值为5至6的溶液(默克索引,第10版 1983,第1455页,条目#9926)。因此,即使在添加醋酸前,Danna‘322公开的制剂也具有酸性的pH。添加醋酸到制剂中使得pH进一步降低。
过氧化锌可通过醋酸锌作为起始原料合成(参见“Synthesis of Stabilized Nanoparticles of Zinc Peroxide”,Rosenthal-Toib等,Chemical Engineering Journal 136(2008)p425-429);其中,用NaOH处理醋酸锌和HP的溶液以提高pH值,形成、收集、清洗、干燥沉淀以获得固体过氧化锌(ZP)。产物可在300℃加热处理以获得氧化锌(ZO)。如果将稳定剂如PEG200加入到ZA/HPP溶液中,最终的ZP或ZO颗粒的尺寸更小(纳米粒)。类似于Danna ‘322的工作,仅仅使用了化学计量的醋酸锌(2∶1Ac∶Zn)作为前驱体。据推测,干燥步骤将放出数量可观的醋酸,因为前驱体溶液与Danna‘322公开的溶液具有基本相同的组合物。
Danna‘322报道的醋酸锌制剂相比较早的Welch等公开的专利(美国专利4,115,422和4,174,418)取得一些进步,Welch等公开了类似的系统,其中使用醋酸锆而不是醋酸锌。在Vigo等公开的稍后专利(美国专利5,656,037)中,采用了醋酸镁代替醋酸锌或醋酸锆,使抗菌的反应产物的温度稳定性更好。然而,这些变化都是在处理制剂和纺织物成品中采用高浓度的醋酸盐,并且带有上述相同的缺点。
Corey在美国专利5,152,966中公开了一种用过氧化醋酸锌水溶液浸渍的非针织湿巾。
发明简介
本发明涉及制备抗菌处理制剂和粘合剂组合物的方法。本发明还涉及抗菌处理制剂,所述制剂包含金属衍生物和过氧化氢的无醋酸根复合物,处理制剂处理纺织物后,过氧化氢赋予纺织物持久的抗菌活性。典型地,即使洗涤50次,观察到细菌减少3-log至6-log。另外,用抗菌处理制剂处理的纺织物是环境友好的、洗涤持久的和抗菌的。此外,抗菌处理制剂可用于白色、彩色、天然和合成纤维及其组合物。
本发明还涉及制备抗菌处理制剂的方法和用抗菌处理制剂处理纺织物以赋予纺织物持久抗菌活性的方法。采用金属衍生物、过氧化氢和氢氧根离子源制备抗菌处理制剂。无醋酸根的处理制剂可以是水溶液或在水性载体中的分散液、悬浮液、凝聚体或乳状液。抗菌处理制剂是无醋酸根的,其中制剂中的醋酸(CH3COOH)或醋酸根(CH3COO-)基团的量足够低以避免由于醋酸或醋酸盐的存在产生不良影响,包括气味、烟雾、材料或设备的降解、染色、毒性、刺激性、环境危害、或安全危害。
金属衍生物可以是盐、离子或复合物的形式。优选是镁、锌、铝或锆的金属盐、离子或复合物。最优选是锌的金属盐、离子或复合物。金属衍生物一般是金属离子的可溶性盐,其中负电荷平衡离子不产生不良影响,如形成醋酸盐或醋酸。优选具有无机平衡离子的金属盐,如氯化物、溴化物、硝酸盐或硫酸盐。本发明一方面,金属衍生物是氯盐和硝酸盐的混合物。本发明的优选实施例中,金属衍生物是由氯化锌和硝酸锌的混合物组成的。
用于制备抗菌处理剂的过氧化氢通常是过氧化物的水溶液。处理制剂中过氧化氢的重量百分比范围为0.2%至50%,且优选为0.5%至10%。最优选的过氧化氢的重量百分比为约2%至6%。
可使用各种来源的氢氧根离子。氢氧根离子的优选来源包括氢氧化钠和氢氧化钾。氢氧根离子用于中和金属衍生物的酸性。为了显著升高混合物的pH值,可能需要添加显著量的氢氧化物,因为混合物普遍具有较高的酸性缓冲能力(如下所述)。通过金属氢氧化物类物质的形成,添加氢氧化物也降低金属离子的溶解性。处理后,溶解性的降低导致最 终抗菌材料具有更好的耐用性(清洗坚固度、或洗涤稳定性)。用组合物处理的纺织物具有显著持久的抗菌活性。
抗菌处理制剂或金属衍生物和过氧化氢的复合物可使用本领域已知的方法应用于基质如纺织物,包括但不限于,喷雾、浸渍、注入、刷、填充、或滚压。经本发明的抗菌处理制剂处理过的纺织物在充分干燥后不呈现任何显著的令人讨厌的气味(如“醋”味),也不包含残留挥发性酸。当适当使用本发明的抗菌处理制剂和方法时,处理的纺织物不因抗菌处理而出现显著的或令人讨厌的褪色、染色、或其他不良的审美影响,即使纺织物是有色的或染色的纺织物。根据本申请所述的方法处理的纺织物显示出显著持久的抗菌活性,当根据本申请所述的方法检测时,可使细菌减少高达6-log,包括金黄色葡萄球菌、大肠杆菌和克雷伯氏肺炎菌。
抗菌处理制剂是金属氢氧化物、氧化物、复合物、和/或过氧化物的胶体悬浮液。悬浮液普遍具有乳白外观,且可在悬浮液中视觉观察到固体白色颗粒。直接使用所制备的胶体悬浮液可能会在所述悬浮液处理的纤维表面留下不良白色残留物或沉着物。这在深色纤维上是最显著的。可在应用至纺织物前通过均质化降低颗粒尺寸来消除这些沉着物。已发现,通过约200微米标称孔径的筛网过滤器后的悬浮液不会在由棉花、涤纶、或其混合组成的常见的深色织物或编结织物上产生任何可见残留物。因此,本发明的一方面为均质化抗菌处理制剂,并且在使用前使其通过200微米孔径的过滤器。均质化可通过常用的匀浆设备如搅拌器、高剪切均质机、胶体磨、或超声波设备实现。
本发明的一方面是本发明的抗菌处理制剂可进一步包含EDTA、或EDTA的盐,用于螯合铁。溶解的铁的存在可分解过氧化氢,从而干扰过氧化氢、金属衍生物和氢氧根离子的复合物的形成。优选的EDTA盐是EDTA四钠盐。本领域普通技术人员可以认识到其他螯合剂也可用于螯合铁。
本发明的一方面是抗菌处理制剂可进一步包含持久力增强剂,其在水性介质中是易混合的、可溶的、或可分散的,并且可以是本发明的无醋酸根的复合物的组分,所述复合物包含金属衍生物和过氧化氢。所述持久力增强剂可以是聚合物,并且可作为混悬液、乳状液、分散液、或溶液添加到所述的处理制剂中。所述的持久力增强剂还可以是长链脂肪酸、或其盐。通常,将小于约1%重量百分比的长链脂肪酸被掺入到抗菌处理制剂中。优选的持久增强剂是硬脂酸钠。
本发明的一方面为添加剂可以掺入到抗菌处理制剂中,所述添加剂如紫外线防护剂、加工助剂、柔软剂、抗静电剂、着色剂、染料、指示剂、药物、油、润滑油、微球、临时视觉指示剂、营养物、生长因子、维生素、润肤剂、保湿剂、香料、香水和类似物。抗菌处理制剂也可以掺入到粘合剂组合物中用于处理基质并且赋予基质持久的抗菌活性。
本发明的制剂和方法适用于各种纺织物材料,包括天然的和合成的材料,及其混合物。本发明的制剂和方法也适用于各种基质,包括梭织、针织、非针织纺织品、聚合物、薄膜、纤维、或磁带。用本发明的材料和方法处理的基质可包括伤口敷料、烧伤敷料、卫生巾、失禁垫、卫生棉条、固有抗菌吸收性的敷料、尿布、卫生纸、卫生湿巾、海绵、棉签、手术服、隔离服、实验服、手套、手术擦洗液、头罩、发套、口罩、缝合线、地板垫、灯罩、检查台桌布、石膏衬垫、夹板衬垫、填充物、纱布、包装材料、床垫套、床上用品、床单、毛巾、服装、内衣、袜子、鞋罩、汽车空气过滤器、飞机空气过滤器、HVAC系统空气过滤器、军事防护服、预防生物危害或生物战试剂的装置、食品包装材料、肉类包装材料、鱼类包装材料、食品加工服、准备食物的台面、地毯、木料、木材、纸张和纸币中的全部或一部分。
本申请所述的实施例的测试结果显示,用本发明的抗菌处理制剂处理后的纺织物可以抵御褪色。
本发明的抗菌处理制剂和方法可用于制造具有抗菌特性的胶粘剂、压敏胶、涂料、乳胶漆、丙烯酸乳胶漆、漆、清漆、密封剂、涂料、虫胶、填缝、或防水涂层。本发明的无醋酸根的处理制剂可用于制造加压处理的木材、石膏墙板、或其他建筑材料,以增加对微生物攻击和材料降解的抵抗力。本发明的无醋酸根的抗菌处理制剂也可用于制造抗菌伤口敷料。
本发明的抗菌处理制剂可用于中和、灭活、或摧毁某些化学物质,例如用于防护装置的化学武器制剂。抗菌处理制剂可应用于防护装置如服装、手套、面罩、或窗帘,以提供保护避免接触有毒或有害的化学制剂。
本发明的一方面是提供无醋酸根和基本无过氧化物的水性粘合剂组合物,包含金属衍生物和氢氧根离子源,该氢氧根离子源之后可与过氧化氢结合,随后用于处理基质并赋予所述基质持久的抗菌活性。所述粘合剂组合物与本申请所述的其他抗菌处理制剂的组分相似;然而,粘合剂组合物中的过氧化氢成份被去除或大幅减少。这样的组成有助于提高稳定性。由于不存在氧化剂(过氧化氢),安全性和贮存性或运输问题降到了最低。
定义
“微生物”或“微生物体”是指任何有机体或有机体的组合,如病菌、病毒、原生动物、酵母、真菌、霉菌、或由它们中的任何一种形成的孢子。
“抗菌的”是指化合物、组合物、制剂、物品或材料杀死微生物的或抑制微生物生长的特性,其能够杀灭、摧毁、灭活或中和微生物;或防止或减缓微生物的生长、存活能力、或繁殖。
“基质”是指一种表面或介质,如纺织物材料。在其上应用、注入或连接了一种抗菌 剂,如本发明的无醋酸根的抗菌处理制剂。
“表面”是指基质的普通外表面,也指基质内部的纤维、空隙、孔隙、细孔的内表面。
“持久的”是指材料或处理的基质经一次或多次清洗或洗涤后,材料或处理的基质仍保持抗菌活性,或在正常使用条件下,抗菌活性在处理基质的预期使用寿命的主要时段内维持有效。
“金属衍生物”是指离子、盐、复合物、水合离子、离子复合物、离子与过氧化氢的复合物、金属氢氧化物类、金属氧化物类、或金属过氧化物类、或上述混合,其来源于本发明使用的一个或多个金属元素。优选用于本发明的为锌、镁、或锆的金属衍生物。基于本发明的目的,碱金属(锂、钠、钾、铷、铯和钫)不包括在“金属”的定义中;然而,这些元素也可出现在本申请所述的制剂中。
“无醋酸根”是指在“无醋酸根的复合物”或“无醋酸根的处理制剂”中醋酸或醋酸根基团的摩尔浓度普遍小于金属衍生物的摩尔浓度的约10%,且在使用前,没有包含醋酸根或其他易挥发羧酸化合物的酸或盐以大于金属衍生物的摩尔浓度约10%的水平添加到或存在于制剂或复合物中。无醋酸根也指醋酸根含量低于阀值。处于所述阀值时,处理和干燥中无法检测到醋酸根或醋酸的气味。
附图简要说明
图1显示了包含氯化锌(1克)和过氧化氢(35%,5.7克)的100克溶液与4M氢氧化钠的中和曲线。附图显示滴加4mL氢氧化钠溶液后,溶液的pH值急剧上升。起初,滴加显著量的氢氧化物对组合物的pH值影响不大;然而,氢氧化物的滴加可通过降低金属复合物的溶解度影响处理制剂的功效。该曲线显示处理制剂的中和度不能仅通过测定pH值而精确显示,因为有一个重要的区域,在该区域中pH值不随中和而剧烈变化。
详细说明
我们已证明用Danna‘322公开的方法制备的制剂处理的纺织物在洗涤50次后具有非常持久的抗菌功效。所述方法使用了醋酸锌。然而,我们发现对基于过氧化氢(HP)金属复合物的抗菌纺织物处理,醋酸盐不是必要的成份。本领域的普通技术人员可预测,对Danna‘322的方法进行简单改良利用氯化锌(例如)代替醋酸锌可完全减轻纺织物成品的醋酸雾释放和醋酸盐残留的问题。事实上,我们发现仅仅洗涤两次后,氯化锌制剂处理的纺织物就无任何抗菌功效了。在相似的试验中,用5%氯化镁六水合物和8.8%HP(样本#012009A)组成的溶液处理的纺织物显示出抗菌功效;然而,仅仅洗涤两次后抗菌功效就基本消失了。这些出乎意料的结果似乎表明对经过锌或镁离子和过氧化氢溶液处理的纺织物来说,醋酸离子对于形成洗涤稳定的抗菌纺织物是必需的。然而,根据本发明,我们随后发现的完全不同。
氯化锌水溶液是强酸性的,pH值约为4(默克索引,第10版-c1983,第1456页,条目#9932)。我们的试验显示1%氯化锌和2%过氧化氢的水溶液的pH测定值大约为4.5。商业来源(金鹰)的硝酸锌浓溶液(17%的锌含量)的pH值约为1.0。
我们做了实验测试较低的醋酸盐对锌的比率是如何影响处理过的纺织物的抗菌特性。Danna公开了当不添加醋酸以进一步溶解复合物时,处理溶液中Ac与Zn比例为2比1的“基线”。我们发现,当使用醋酸钠和氯化锌的混合物(与2%HP)时,在没有醋酸盐存在的情况下,洗涤后的抗菌功效基本为零。我们发现,当醋酸盐的摩尔浓度大于或等于氯化物的约1/4摩尔浓度(即2摩尔氯化物和0.5摩尔醋酸盐)时,大量洗涤后仍有抗菌功效。当醋酸的摩尔浓度是氯化物的摩尔浓度的1/10时,只观察到轻微的洗涤后的抗菌功效。
我们发现含有锌、醋酸盐和HP(如Danna教导的)的酸性水溶液干燥时形成的大量固体产物实际上是可溶于水的;然而,只有该反应产物的不溶组分可固定在纺织物基质上以赋予其持久的(耐洗涤的)抗菌活性。这种预测是合理的。
请注意,以上所述的结果、观察和结论涉及氯化锌、醋酸盐和过氧化氢的水性混合物,及制备后的酸性pH值。没有故意中和或调整pH值,即没有添加氢氧化物或碱性试剂,且所有的溶液的pH值一般为4至5.5。换句话说,当醋酸锌与过氧化氢的混合物用于处理纺织物时,即使不进行中和或调整pH值,也能观察到持久的抗菌功效;然而,单纯用醋酸锌代替氯化锌,虽然消除了不良醋酸雾产生的可能性,但也不会形成持久的抗菌功效。
如上所述,醋酸作为试剂和反应副产品,其挥发性是个问题。我们曾试图用挥发性较低的羧酸类,如柠檬酸盐、酒石酸盐、葡萄糖酸盐、苯甲酸盐、或琥珀酸盐代替现有制剂和Danna方法中使用的醋酸。然而,我们发现用这些羧酸类代替醋酸盐处理的基质不显示持久的抗菌活性。另一方面,几种挥发性的羧酸类如甲酸盐、和丙酸盐使得材料具有持久的抗菌活性;然而,用这种方法,酸雾的生成仍然是一个相当大的问题。
我们坚信,如果通过添加氢氧化物源以完全或部分中和此类溶液的酸度,其中的所述种类可溶性将下降。添加氢氧化物源通常会导致沉淀的形成;然而,即使添加大量氢氧化物,pH值也不会发生明显的变化(参见图1)。不溶性种类的形成使处理后的基质保持较高的抗菌活性,并且只有较少的抗菌剂沉淀在随后的洗涤中溶解,这意味着抗菌效果更持久。该方法的效率提高了,因为虽然使用低浓度的试剂也能获得相同持久水平的抗菌活性。
此外,我们发现如果通过添加氢氧化物源完全中和或部分中和处理溶液的酸度,制备的纺织物也可能具有显著持久的抗菌活性,即使当所有的醋酸盐都从溶液中除去也是如此。例如,用4M NaOH将1重量百分比的氯化锌和2%过氧化氢组成的水溶液pH调节至7.5。添加NaOH(氢氧根离子源)导致大量精细分散的白色沉淀形成。该沉淀不易凝聚或沉降,并且易于通过轻微搅动、搅拌、或混合再分散。用这种悬浮液彻底润湿绿色染纺织 材料,然后通过辊压机排出多余的液体,获得增重约100%的潮湿纺织物。然后干燥该潮湿纺织物。当然,由于处理溶液中不包含醋酸盐,因此在此过程中没有醋酸气味或烟雾释放。处理过的纺织物不释放任何不良气味,也不包含任何酸性残留物。纺织物没有出现染色、褪色或其他不利的审美效果。结果发现,即使洗涤50次,处理过的纺织物仍具有显著持久的抗菌活性(的细菌减少~6-log)。相对于Danna方法,这是显著且有益的进步。添加氢氧化物也将可溶性的金属种类(如氯化锌或硝酸锌)转换为不溶性的种类(如氢氧化锌),这提高了抗菌产品的耐久性,因为不溶性的种类更难洗掉。
在本发明所述的实验和实施例中,通过添加NaOH提高初为酸性的包含锌离子的水溶液的pH值至特定水平(即pH=7.5)。虽然结果发现,通过提高锌和过氧化氢处理溶液的pH值可提高处理过的纺织物的持久抗菌功效,然而是否是pH值导致了这种效果并不明确。在我们不希望受任何特定理论约束的同时,我们相信是水合锌离子与氢氧根离子反应形成的氢氧化锌或氢氧化物样复合物增强了抗菌效果。观察到的pH值的变化仅仅是一个人为现象,它使得人们能够辨别是否已经加入足够量的氢氧化物。如上所述,水合氯化锌转化为水合羟基氯化锌(和与HP相关的复合物)导致形成可见沉淀。据推测,这些沉淀经干燥反应生成的抗菌活性残留物的溶解度比没有通过添加氢氧化物源改良处理溶液时形成的相应残留物更低。
如果用NaOH滴定氯化锌和HP的混合水溶液,pH与NaOH加入量形成S形曲线,最初的平坦区域表示pH值不随碱(氢氧化物)的添加而有较大改变(见图1)。大约在pH=6.0的位置,pH急剧上升,pH=7.5附近为中心,pH=9以上水平降低。最初的低pH值的平坦线明显表明,加入的氢氧化物正在与水合锌离子、氯化锌复合物、和/或氢氧化锌种类—或它们的过氧化氢等价物—反应生成具有更多氢氧化锌样特征的复合物。虽然溶液的pH值最初不受添加的过氧化物源的影响,但是酸度仍然在被中和。混合物的酸性缓冲能力正在减弱,因为水合锌离子在转化为氢氧化物种类。图1显示的pH值急剧上升最有可能表示该转化已基本完成。氢氧化锌种类本身不如简单的水合锌离子易溶,而且当沉淀的材料不易溶解时,处理过的基质会有更好的耐久性,因此我们相信随着中和反应的进行,抗菌的金属-过氧化氢复合物保留性会更好,持久抗菌的效果会更好。
由于在该反应的早期过程中pH值不会显著改变,因此在中和的最初阶段pH值不是检测反应进程的有用工具;但是观察到pH值突然跳至7.0以上是一个非常有用的指标,证明溶液已获得了正确的性质,用于在处理纺织物基质时产生持久的抗菌功效。图1所示的滴定中点(pH=7.5)粗略表示了添加0.0140摩尔的氢氧根离子到0.0074摩尔的锌离子中。实质上,氢氧化物与锌的比例为2∶1。需要注意的是,准确的比例可能会有所不同,其取决于混合物中是否存在其他酸性种类。虽然pH值为7.5或更高的处理溶液产生的持久抗菌功效可能比PH值更小的中和溶液好,但是在实践中发现,更高的中和也产生了更多的沉淀物,也就更难以均一的方式用于基质。另外,据发现,在碱性pH值下,过氧化氢的反应活性(即不稳定性)提高了。这缩短了组合物的有效贮存时间,并会导致不良影响,如彩色基质的漂白。另外,增加中和度需要添加固体物到处理制剂中,并且可能会降低干燥材料的溶解度,因为中和副产品(氯化钠)是高度溶水的。因此,本发明实践中的最佳中和度一般介于50%和100%之间(其中100%等于提高pH值至约7.5所需的氢氧化物的量)。
本发明的一方面是包含金属衍生物和过氧化氢的无醋酸根的处理制剂用于赋予基质持久的抗菌功效。所述处理制剂可包括溶液、悬浮液、分散液或胶体。优选的金属衍生物是锌衍生物。锌衍生物的形式可以是水合锌离子、锌离子的离子复合物、锌离子与过氧化氢的复合物、或氢氧化锌种类,或其组合物。
用于抗菌处理制剂的金属衍生物的来源通常是可溶的金属盐,其中盐的带负电荷的平衡离子部分不会产生不良影响,如释放酸雾。优选带有无机平衡离子如氯、溴、硝酸根、或硫酸根的金属盐。本发明一方面,用于抗菌处理制剂的金属衍生物是氯离子盐和硝酸盐的混合物,借此,混合物降低了含氯溶液的潜在腐蚀性。在本发明的一个优选实施例中,用于抗菌处理制剂的金属离子源是氯化锌和硝酸锌的混合物。氯化锌与硝酸锌的优选摩尔比是1:2至2:1。氯化锌与硝酸锌的更优选摩尔比是1:1。降低混合物中氯化锌的含量至氯化锌与硝酸锌的摩尔比小于约1:2可导致形成厚胶质沉淀,其很难用于处理纺织物。
处理制剂也可包含氢氧根离子源。一般而言,可取的是,为了获得能够赋予基质持久的抗菌活性的处理制剂,至少需要添加含量为25%的氢氧根离子以使得含金属衍生物和过氧化氢的无醋酸根混合物的pH值从最初的pH值升至7.5。更为可取的是,为了获得能够赋予基质持久的抗菌活性的处理制剂,需要添加含量为50%至100%的氢氧根离子以使得含金属衍生物和过氧化氢的无醋酸根混合物的pH值从最初的pH值升至7.5。更为可取的是,为了获得能够赋予基质持久的抗菌活性的处理制剂,需要添加含量为75%的氢氧根离子以使得含金属衍生物和过氧化氢的无醋酸根混合物的pH值从最初的pH值升至7.5。
在本发明的优选实施例中,无醋酸根的处理制剂中的金属的重量浓度至少为0.05%。在本发明的更优选实施例中,基本上无醋酸根的处理制剂中的金属衍生物的重量浓度至少为0.250%。在本发明的进一步优选实施例中,金属衍生物的重量浓度至少为0.75%。在本发明的更进一步优选实施例中,基本上无醋酸根的处理制剂中的金属衍生物的重量浓度至少为1.5%。在本发明的最优选实施例中,无醋酸根的处理制剂中的金属衍生物的重量浓度至少为3.00%。引用的浓度仅是指元素的金属部分,不包括任何相关的平衡离子、配体、或复合物种类的重量。在本段中特定的优选范围仅是为了抗菌功效的优化。本领域的技术人员会意识到浓度越高成本越高,或其他因素可能要求使用更低的水平。
在本发明的优选实施例中,无醋酸根的处理制剂中的过氧化氢与锌的摩尔比为1:1。在本发明的更优选实施例中,无醋酸根的处理制剂中的过氧化氢与锌的摩尔比为2:1。在本发明的进一步优选实施例中,无醋酸根的处理制剂中的过氧化氢与锌的摩尔比为3∶1。在本发明的最优选实施例中,无醋酸根的处理制剂中的过氧化氢与锌的摩尔比为4∶1。本段中特定的优选范围仅为了抗菌功效的优化。本领域的技术人员会意识到浓度越高成本越高,或其他因素可能要求使用更低的水平。
本发明的一方面是,将通过结合金属衍生物、水、过氧化氢、和(任选的)过氧化物离子源而制备的无醋酸根的处理制剂用于赋予基质持久的抗菌功效。所述的处理制剂可包含溶液、悬浮液、分散液、或胶体。在本发明的优选实施例中,对于处理制剂中的每摩尔锌离子,氢氧根离子源能够提供0.50摩尔的氢氧化物。在本发明的更优选实施例中,对于处理制剂中的每摩尔锌离子,氢氧根离子源能够提供1.0至2.0摩尔的氢氧化物。在本发明的最优选实施例中,对于处理制剂中的每摩尔锌离子,氢氧根离子源能够提供至少1.5摩尔的氢氧化物。
在本发明的实践中,氢氧根离子源将是本领域的技术人员所熟悉的试剂。在本发明的实践中,优选的氢氧根离子源包括氢氧化钠和氢氧化钾。
本发明的一方面是,包含金属衍生物和过氧化氢的无醋酸根的处理制剂也包含持久增强剂,其在含水性介质中是易混合的、可溶的、或可分散的。所述的持久增强剂可以是聚合物(如聚乙烯醇、或其共聚物),并且可以悬浮液、乳状液、分散液、或溶液的形式添加到所述的处理制剂中。所述的持久增强剂也可以是长链脂肪酸、或其盐。优选的持久增强剂是C12-C20脂肪酸的钠盐或钾盐。最优选的持久增强剂是硬脂酸钠。当硬脂酸钠用作持久增强剂时,其在处理制剂中的浓度优选为重量的至少0.1%。在更优选实施例中,硬脂酸钠持久增强剂的浓度为至少0.25%,并且在最优选实施例中,硬脂酸钠持久增强剂的浓度为至少0.50%。在优选的实施例中,将硬脂酸钠以水溶液的形式添加到处理溶液中,其中硬脂酸钠的浓度为1%至10%,所述溶液熔点约为60℃。在进一步匀一化之前,为了混合均匀,优选添加液态的硬脂酸钠溶液。
众所周知,过氧化氢自发地与溶解的铁发生反应(Fenton反应)。该反应分解过氧化氢,因此溶解铁的存在将干扰抗菌组合物的形成。可以用螯合剂例如,EDTA(乙二胺四乙酸)螯合铁的活性,。因此,本发明的一方面是,为了稳定过氧化氢防止其被铁分解,在处理溶液中添加EDTA、或EDTA的钠盐。在与处理设备接触过程中,处理溶液可接触到铁,或者铁甚至存在于用于制备处理溶液的处理水中。在使用和储存过程中,添加螯合剂如EDTA稳定了处理溶液。本领域的技术人员认为其他螯合剂也可以用于螯合铁。在本发明的优选实施例中,处理制剂包含的EDTA为重量的至少0.01%。在本发明的最优选实施例中,处理制剂包含的EDTA为重量的至少0.05%。
令人意想不到的是,含有大量不溶性固体或可见沉淀的水悬浮液能均一地应用于纺织物基质而不会造成一定程度的染色、褪色、或其他不利的审美效果。现有技术中Danna指 示处理溶液必须保持酸性以防止形成不溶性沉淀。不幸的是,如上所述,Danna的方法会导致许多问题,如产生酸雾、化学品的浪费性消耗、且在特定处理水平(金属含量)上功效低(持久的抗菌活性)。所有这些问题都是成本问题,使得该技术在商业上缺乏吸引力。本发明通过排除使用醋酸盐克服了这些问题。
用于制备本发明的抗菌处理产品的处理制剂是金属氢氧化物、氧化物和/或过氧化物的胶体悬浮液或分散液。这些悬浮液普遍具有乳白外观,且在悬浮液中可看到固体白色颗粒。直接使用制备的胶体悬浮液可能会在所述悬浮液处理的纺织物表面留下不良的白色残留物或沉着物。这在深色纺织物上最明显。在纺织物上应用前,可通过匀一化消除这些沉着物以降低颗粒尺寸。已发现,经过具有约200微米孔径的筛网过滤器后的悬浮液在由棉花、涤纶、或其混合组成的常见的深色织物或编结织物上不产生任何可见残留物。因此,本发明的一方面是均质化处理制剂,并且在使用前让其经过具有200微米孔径的过滤器。均质化可通过常用的均质设备如搅拌器、高剪切均质机、胶体磨、或超声波设备完成。
当前用于制备具有良好洗涤持久性的抗菌纺织物的改良方法和制剂的优点已在实验室的实验中被证实,并且也已在商业纺织制造工厂进行的中试生产运行中证实了。下面的例子给出了实验室实验和中试生产运行的详情。中试生产运行的结果证实了实验室的发现,即通过添加氢氧化物中和处理溶液和去除处理制剂中的醋酸盐和醋酸,均可提高抗菌纺织物的洗涤持久性,即使在低浓度的处理溶液中也是如此。同时证实,作为这些变化的结果,处理过的纺织物的物理和美学特性也得到提高。这也实现了经济成本效益,因为方法和制剂改进了,也部分因为所需化学品的整体数量较低、氯化锌比醋酸锌便宜的事实、且不需要昂贵的冲洗和额外的干燥步骤。此外,改进的方法明显有益于控制、环保、健康和安全问题。
本发明的一方面是通过本发明的处理制剂处理基质生产抗菌的纺织物。
本发明的一方面是,当含有约1,000,000个存活的细菌有机体的约0.5mL的水溶液接触3平方英寸的用本发明的材料和方法制备的抗菌纺织物时,所述抗菌纺织物能够有效减少存活细菌。在本发明的优选实施例中,本发明的材料和方法可减少存活的细菌,从而使残余量降低至少于1000个存活有机体(减少3-log)。在本发明的更优选实施例中,所述存活细菌减少为残余存活有机体少于100个(减少4-log)。在本发明的更优选实施例中,所述存活细菌减少为残余存活有机体少于10个(减少5-log)。在本发明的最优选实施例中,所述存活细菌减少为残余存活有机体为零个(减少6-log、或全部杀死)。在本发明的优选实施例中,所述存活细菌的减少发生在24小时内。在本发明的更优选实施例中,所述存活细菌的减少发生在少于10小时内。在本发明的进一步优选实施例中,所述存活细菌的减少发生在小于4小时内。在本发明的进一步优选实施例中,所述存活细菌的减少发生在小于2小时内。在本发明的更进一步优选实施例中,所述存活细菌的减少发生在小于1小 时内。在本发明的最优选实施例中,所述存活细菌的减少发生在小于30分钟内。
在本发明的实施例中,在冲洗、清洗或洗涤之前,在本发明所制备的处理基质或抗菌纺织物上可观察到所述存活细菌的减少。
在优选实施例中,在冲洗处理基质或抗菌纺织物之后观察到所述存活细菌的减少。在更优选实施例中,在洗涤处理基质或抗菌纺织物之后观察到所述存活细菌的减少。在更优选实施例中,在洗涤处理基质或抗菌纺织物5次之后观察到所述存活细菌的减少。在更优选实施例中,在洗涤处理基质或抗菌纺织物10次之后观察到所述存活细菌的减少。在更优选实施例中,在洗涤处理基质或抗菌纺织物25次之后观察到所述存活细菌的减少。在最优选实施例中,在洗涤处理基质或抗菌纺织物50次或更多次之后观察到所述的存活细菌的减少。在本发明的优选实施例中,在用冷水(<80℉)洗涤时发生所述存活细菌的减少。在本发明的更优选实施例中,在用温水(80至119℉)洗涤时发生所述的存活细菌的减少。在本发明的最优选实施例中,在用热水(>119℉)洗涤时发生所述的存活细菌的减少。
在本发明的实践中需要使用干燥步骤。用抗菌处理制剂处理后,干燥纺织物基质。本发明方法的一方面是采用任何温度和时间的组合均可使得所述基质完全干燥。
例如,本申请所用的“干燥的”是指将暴露于处理制剂的基质干燥至恒重。此处所用的“干燥至恒重”是指干燥至继续应用选定的干燥程序不会再导致因水分或其他溶剂的挥发而引起明显可测的重量减少。
达到恒重是衡量干燥程度的有用的工具;然而,实现恒重不是赋予基质抗菌性的真正因素。达到彻底干燥所需的特定温度和干燥时间还取决于特定的基质材料、基质的初始湿度、基质的重量和尺寸、干燥过程中用于基质的气体流量、以及和基质接触的空气或其他介质的湿度及其它。任何能使处理基质彻底干燥的干燥设备、干燥方法、温度和干燥时间的组合都是可以的。作为示例,根据特定应用的具体特点,干燥步骤可以在烤箱(例如2小时80℃)、高通量烤炉(例如30秒140℃)、干衣机、干燥器、真空室、抽湿机、脱水机、或冻干机(冷冻干燥机)中进行。红外热、辐射热、微波和热风对于已暴露于处理制剂的基质来说都是合适的干燥方法。针对特定应用的干燥温度上限一般取决于特定的基质或过氧化物的降解温度。其他干燥方法如超临界流体干燥也可以成功地用于本发明的实践中。也可以使用冷冻干燥。通常优选的是,处理过的物品不暴露于过量的热度下。在合理时间内完成干燥效果所需的热度为合理热度。
本发明的一方面是,采用本领域已知的方法包括但不限于喷雾、浸渍、注入、刷、填充、或滚压将基本上无醋酸根的处理制剂应用于基质。
可以用适当的、本领域已知的方法如辊、夹、压、离心、绞、或吸等类似方法去除过 量的基本无醋酸根的处理制剂,以控制最终处理后的材料中的组合物的含量。可采用任何机械作用或机械力;然而,当处理制剂已去除时,为了使剩余组分在加载的基质中均匀分布,该机械作用或机械力最好能均匀作用。应该注意的是,在干燥前施加机械力以去除多余的处理制剂,这与干燥程序不同,不同之处在于机械力既去除了抗菌剂也去除了载体溶液,而干燥程序只通过蒸发去除了载体溶液,抗菌剂仍然留在处理过的基质上。
实验室实验已证实,本发明的制剂和方法适用于各种纺织物材料,包括天然的和合成的材料及其混合物。用本发明的材料和方法处理后,含有棉花、聚酯、丙烯酸物、尼龙、和莱卡的纺织物基质均已被证明具有持久的抗菌活性。本发明的制剂和方法适用于各种基质,包括织物、编织物、和非编织纺织物。
发现使用本发明含有金属衍生物和过氧化氢的无醋酸根的处理制剂制备的抗菌纺织物可抗变色。已知在使用或洗涤过程中,一些如用银、季铵化合物(quats)、或聚六亚甲基双胍(PHMB)处理的抗菌纺织物产品比未经处理的纺织品更容易褪色(例如,见美国专利5700742)。对于季铵化合物或双胍类如PHMB,活性剂的正电荷易于与洗涤剂结合,进而又结合污垢或油脂。相似地,阴离子种类如染料与正电荷位点的静电引力可导致褪色。对于基于银的技术,活性剂本身可引起褪色,特别是老化、或暴露在光线下后。使用本发明的无醋酸根的处理制剂制备的抗菌纺织物不通过这些机制变色,本申请所述的标准方法的测试结果已经证明了这一点。
本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂可与水性聚合物乳化液组合,所述水性聚合物乳化液可作为压感粘合剂使用或用于制备压感粘合剂。根据本发明的方法,所述组合可应用于基质以制备具有粘性和抗菌性的材料。所述粘合剂可用作为自粘合物品的组分,如磁带、标签、绷带、伤口敷料、或其他用于快速和易于粘到表面的物品。
本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂可与水性聚合物乳化液或溶液组合,所述水性聚合物乳化液或溶液用作或用于制备涂料、乳胶漆、丙烯酸乳胶漆、清漆、油漆、密封剂、涂料、紫胶、填缝胶、或防水涂层的。
本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂可用于制备抗微生物攻击和降解的加压处理的木材。采用本领域技术人员所熟悉的方法,将本发明所述的处理溶液浸润、注入、或渗透到木材(wood)、木料(timber)、或木材(lumber)材料中。这通常包括使用负压或真空以协助抗菌组合物渗透到木材中。
通过将组合物应用于合适的基质,如针织或非针织纺织物、纱布、绷带、海绵、或其他吸收性物质,本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂可用于制备抗菌的伤口敷料。由于伤口敷料材料在使用后一般被丢弃而不是清洗,因此需要的抗菌组分的量可能比在此所述的用于服装纺织物的更低。在使用前,可冲洗制备好的伤口敷料以除 去可溶的或可滤去的成份,其可能从服装转移到身体并可能具有不良影响,如细胞毒性或延迟伤口愈合。
本申请的创造性方法的一方面是,使用本发明的材料和方法处理的基质包括伤口敷料、烧伤敷料、卫生巾、失禁垫、卫生棉条、固有的抗菌吸收性敷料、尿布、卫生纸、卫生湿巾、海绵、棉签、手术服、隔离服、实验服、手套、手术擦洗液、头罩、发套、口罩、缝合线、地板垫、灯罩、检查台布、石膏衬垫、夹板衬垫、填充物、纱布、包装材料、床垫套、床上用品、床单、毛巾、服装、内衣、袜子、鞋罩、汽车空气过滤器、飞机空气过滤器、HVAC系统空气过滤器、军事防护服、粘合剂、胶带、标签、预防生物危害或生物战剂的装置、食品包装材料、肉类包装材料、鱼类包装材料、食品加工服、准备食物的台面、地毯、木料、木材,石膏墙板,油漆,清漆,填缝胶,压敏胶,保护或装饰涂料,镶板,砖石建筑,水泥浆,瓷砖,防水处理的加压处理的木材,猫或其他动物窝或床上用品,纸张,或纸币。
在本发明的一方面,添加剂可掺入无醋酸根的处理制剂,所述添加剂如紫外线防护剂、加工助剂、柔软剂、抗静电剂、着色剂、染料、指示剂、药物、油、润滑油、微球、临时视觉指示剂、营养物、生长因子、维生素、润肤剂、保湿剂、香料、香水及类似物。
本发明一方面为过氧化氢提供了一种无醋酸根和基本无过氧化物的水性粘合剂组合物,其包含金属衍生物和氢氧根离子源;其中,所述粘合剂可与过氧化氢组合,并随后用于处理基质并赋予所述基质持久的抗菌活性。所述粘合剂组合物组分与本申请所述的其他无醋酸根的处理制剂类似;然而,组合物中的过氧化氢组分被去除或大量减少了。由于不存在氧化剂(过氧化氢),这样的组合物具有以下的优点:稳定性增加、安全和储存或运输问题降至最低。所述粘合剂组分可以浓缩的形式生产。作为制备工艺的一部分,对所述粘合剂进行匀质化。所述粘合剂组合物可以与过氧化氢混合或用过氧化氢稀释,并且根据本发明所述的方法处理基质以赋予基质持久的抗菌活性。本发明描述的其他方面的相同的优选实施例也适用于所述粘合剂组合物,包括使用氯化锌和硝酸锌、氢氧化物源的量、组分的添加,如EDTA和/或脂肪酸盐、软化剂、和其他添加剂。换言之,粘合剂组合物可包含本发明各方面所述的任何组分,但过氧化氢的去除或与本申请所述的无醋酸根的处理制剂相比,其浓度大大降低除外。粘合剂可以以浓缩的形式制备,优选包含两倍浓度的本申请所述优选抗菌处理溶液中所述的金属衍生物和其他添加剂;更优选地,包含四倍浓度的本申请所述优选抗菌处理溶液中所述的金属衍生物和其他添加剂;最优选地,包含至少四倍浓度的本申请所述优选抗菌处理溶液中所述的金属衍生物和其他添加剂。在稀释粘合剂或粘合剂-HP混合物至目标使用浓度前,如果能在浓缩的粘合剂中加入需要量的HP并充分的混合,将获得最佳的性能和持久的抗菌功效。因此,优选以浓缩形式(优选35%的HP溶液,并且更优选50%或更高的HP溶液)添加HP。优选地,在稀释或使用前,允许 HP与浓缩的粘合剂反应至少20分钟。更优选地,在稀释或使用前,允许HP与浓缩的粘合剂反应至少60分钟。优选地,在稀释或使用前,当进行反应时,持续且充分地搅拌、混合、或搅动浓缩粘合剂和HP的混合物。优选地,在稀释或使用前,浓缩粘合剂和HP的混合物也进行匀质化。
在本发明的一方面,所述无醋酸根和基本无过氧化物的水性粘合剂组合物可在不添加任何额外过氧化氢的情况下应用于基质,之后可以在干燥前或干燥后用过氧化氢处理已处理过的基质,从而制备具有抗菌特性的经处理的基质。
随着时间的推移,经过长时间的正常使用,用本发明组合物处理基质制备的本发明的抗菌物品可能会因过度洗涤或其他因素而丧失部分抗菌功效。在本发明的一方面,至少部分所述失去的抗菌功效可以通过将物品暴露于过氧化氢而恢复,或至少恢复物品的部分初始抗菌功效,所述过氧化氢与物品发生反应并与物品结合。因此,本发明的一方面提供了制备具有再生抗菌功效的抗菌物品的方法。
在本发明的一方面,本发明的抗菌组分、制剂和组合物、以及处理后的基质、材料、或物品可用于中和、灭活或摧毁某些化学物质。本发明的抗菌组分、制剂和组合物、以及处理后的基质、材料、或物品包含过氧化物,且众所周知,过氧化物作为氧化剂或氧化试剂可以摧毁、中和或灭活多种不同的化学种类,包括将有毒化学品转换为低毒或无毒的形式。例如,已知过氧化氢可与硫化氢(有毒气体)快速反应,将其转换为无毒的硫和硫酸盐(参见例如,美国专利4,574,076)。相似地,过氧化物可用于灭活化学战剂(美国专利7,442,677)。因此,在本发明的一方面,使用本发明的制剂或组合物处理的纺织物或其他基质包含保护装置(例如:服装、手套、面罩、或窗帘),所述保护装置设计用于保护人或物体以防止其暴露于有毒或有害的化学制剂。
硫化氢释放进入建筑物导致的腐蚀和其他不良影响问题近来备受媒体关注,其中所述建筑物是使用中国进口的受污染的石膏板(墙板)制造的(Tim Padgett,“Is Drywall the Next Chinese Import Scandal?”Time,March 23,2009)。本发明的组合物和方法可用于中和受污染的石膏板中释放的挥发性硫化物。例如,受污染的石膏板可以用本申请所述的包含过氧化氢的无醋酸根组合物处理。可选择地,本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂可与水性聚合物乳液或溶液组合,所述水性聚合物乳液或溶液用作或用于制造油漆、乳胶漆、丙烯酸乳胶漆、漆、清漆、密封剂、涂层、虫漆、填缝、或防水涂层及组合,其用于受污染的石膏板以预防或中和有毒或腐蚀性的挥发化学物质的释放。可选择地,在制备过程中,本发明的无醋酸根的处理制剂可掺入到石膏墙板中。
鉴于本申请以上提供的总体公开内容,对本创造性方法的实施方式,本领域的技术人员能够理解这些公开内容使本申请所述各方面中定义的创造性方法能够施行。然而,提供所包括的实验细节是为了保证书面上充分描述本发明,包括其最佳实施方式。然而,应当 理解的是本发明的范围不应该根据所提供的特定实施例来解释,而是应当参考本申请所述方面和该申请整体公开内容构成的创造性方法的完整的描述来理解本发明的范围。
可以理解的是,本发明还可以有其他各种实施例。此外,虽然本申请显示和描述的本发明的形式构成了本发明的优选实施例,但其并非意图表示本发明的所有可能的形式。还可以理解的是,所用词语是描述性用词,而非限制性的,在不背离所公开的本发明的主旨和范围的情况下,可以对其做出各种改动。本发明的范围不应仅局限于给定的实施例。
浓度、尺寸、数量、和其他的数字数据在此可以以范围的形式呈现。要理解的是该范围形式的使用仅仅是为了方便和简洁,且应灵活地理解为不仅包括作为范围的界限而明确引用的数值,还包括该范围内的所有单个的数值或子范围,就如同每个数值和子范围被明确引用一样。例如,约1wt%至约20wt%的重量比范围应解释为不仅包括1wt%和约20wt%明确限定的界限,而且还包括单个的重量,如2wt%、11wt%、14wt%、以及子范围,如10wt%至20wt%、5wt%至15wt%等。
实施例
实施例1-用锌、醋酸盐、氯化物、醋酸、和过氧化氢的溶液在低pH下生产中试规模的抗菌纺织物(对比例)
此为对比例,本质上遵循Danna等的方法(美国专利4,199,322)。这些实验是在位于南卡罗来纳州的商业纺织加工实验室进行的。纺织物基质为染成橄榄绿色的100%棉(~5oz/yd2)的针织运动衫材料,用于制造军用内衣。所有批次都包括添加正常使用水平(约2%)的织物柔软剂(Acralube CP)。过氧化氢(50%水溶液)和醋酸(56%)由纺织加工实验室就地提供。氯化锌和醋酸钠由SNF公司(Riceboro,GA)提供。分别进行两个批次试验(高浓度和低浓度的处理液)。处理组合物如表1.1所述。百分比值表示每个成分的原料添加量。例如,“6.32%的过氧化氢”是指过氧化氢溶液的实际浓度是3.16%,如表中指出,因为原料纯度是50.00%。
表1.1
按顺序向水中(从右至左)加入每种成分以制备处理溶液。在槽中制备好混合物,且直接灌入垫槽。在操作1中所使用的溶液的pH值经测定为4.7,在操作2中所使用的溶液 的pH值经测定为5.7。使用水平垫机,运行单链结构处理织物。为了使干燥的衬垫湿润(放入的织物是干燥的),调整设置以使织物获得95%重量的溶液。填充后,让填充材料在~300℉下以~20ypm的速度通过2道次的干燥机完成干燥,这是根据针对没有抗菌整理的相同织物的说明进行的。干织物留在压实前留在漏斗中过夜。
观察数据如下:实验室人员指出,虽然不如未抗菌整理的相同织物一样好,但两个批次中经处理的纺织物的柔软性都是可接受的。注意到不愉快的酸性气味(描述为“有酸味的”)。生产人员认为该气味令人十分不愉快从而排除了这些制剂的商业可行性。也注意到最初的织物上有微小的色彩明暗变化,这在干布料置于漏斗中存储过夜后更加明显了。织物外观也是斑点状的,带有类似漂白点的明显褪色的离散区域-这可能是由于干燥后,在炎热的存储条件下,未充分溶解的醋酸钠与堆积在漏斗中过夜的织物进行了反应。,存储几个星期的织物未经洗涤或冲洗,其颜色进一步褪色,继续散发出醋酸气味。纺织加工实验室的工作人员说,变色和气味问题每一个都严重的足以将这些制剂和方法商业化生产的可行性排除。
根据本申请所述的方法多次循环洗涤(冷水洗涤、循环洗涤五次后干燥,汰渍洗涤剂)操作1的材料,然后测试抗菌功效。本申请所述的如此生产的材料、已冲洗1次的材料、以及已洗涤4次的材料在使用本申请所述的测试方法中显示(全部杀灭)金黄色葡萄球菌。已洗涤10次或25次的操作1中的材料显示了金黄色葡萄球菌减少4.7-log。已洗涤50次操作1中的材料显示了金黄色葡萄球菌减少2.4-log。
根据本申请所述的方法多次循环洗涤操作1的材料,然后测试抗菌功效。本申请所述的如此生产的材料、已冲洗1次的材料、以及已洗涤4次、10次或25次的材料显示(全部杀灭)肺炎克雷伯菌。已洗涤50次操作1中的材料显示了肺炎克雷伯菌减少0.8-log。
根据本申请所述的方法多次循环洗涤操作1的材料,然后测试抗菌功效。本申请所述的如此生产的材料、已冲洗1次的材料、以及已洗涤4次、10次、或25次的材料显示(全部杀灭)大肠杆菌。已洗涤50次的操作1中的材料显示了大肠杆菌的零减少。
根据本申请所述的方法多次循环洗涤操作2中的材料,然后测试抗菌功效。本申请所述的如此生产的材料、已冲洗1次的材料、以及已洗涤4次的材料显示全部杀灭金黄色葡萄球菌。已洗涤10次的操作2中的材料显示了金黄色葡萄球菌减少2.0-log。已洗涤20次或50次的操作2中的材料显示了金黄色葡萄球菌减少0.5-log。
根据本申请所述的方法多次循环洗涤操作2中的材料,然后测试抗菌功效。本申请所述的生产的材料、已冲洗1次的材料、以及已洗涤4次或10次的材料显示(全部杀灭)肺炎克雷伯菌。已洗涤25次或50次的操作2中的材料显示了金黄色葡萄球菌的零减少。
根据本申请所述的方法多次循环洗涤操作2中的材料,然后测试抗菌功效。本申请所 述的生产的材料、已冲洗1次的材料显示(全部杀灭)大肠杆菌。操作2中的材料以及已洗涤4次、10次或25次的材料显示了大肠杆菌的零减少。
实施例2-用氯化锌和过氧化氢的溶液并添加氢氧化物(无醋酸根)生产中试规模的抗菌纺织物
材料、设备和方法遵照实施例1。但处理溶液的组分是改良过的,且下述的其他细节除外。处理制剂含有醋酸盐或醋酸,且用氢氧化钠调整pH至7.5。实际使用的处理组合物如表2.1所示。
表2.1
(1)包括用于调整pH的NaOH溶液中包含的水
通过将氯化锌加入到水中(观察到放热曲线),及将过氧化氢加入到氯化锌水溶液中制备处理制剂。在HP添加后,柔软剂添加前,调整pH值。为了使干燥的衬垫湿润(放入的织物是干燥的),调整设置以使织物获得95%重量的溶液。。
本实施例的操作3和4及实施例1的操作1和2采用湿罩干(WOD)过程,其中进入处理溶液的材料是干的。大多数纺织物工厂采用的生产工艺是湿罩湿(WOW)。这是为了经济性及工厂的利用效率:湿罩干工艺在制备中增加了额外的干燥步骤(漂白或染色步骤湿润后的产生的织物-WOD在填充最后的试剂前需要额外的干燥步骤)。额外干燥步骤的处理成本估计至少为$0.10/lb织物。该成本未考虑使用干燥设备的机会成本,而其他材料可以用该设备处理。
使用表2.2中的组合物进行WOW操作(操作5)。
表2.2
(1)包括用于调整pH的NaOH溶液中包含的水
再次用NaOH调整pH值至7.5。注意,进来的湿织物含有大量的水(即40-70%)。水稀释了用于垫浴的处理制剂。因此,有必要制备更高浓度的处理制剂以进行湿湿填充,同时仍然使应用于织物的化学物的总量相同。湿罩湿过程中垫浴组合物的收集量为15%。对于湿罩湿处理,利用预稀释过程,其中制备了高浓度的垫混合物,并且在开始时与垫槽中的水混合,且之后加入相同较高浓度的进料混合物,以补偿湿织物带进系统的水。这个过程补偿了垫浴的稀释,这在湿罩湿系统中常常发生。对于操作5,溶液被制备成10%的收集量的规格而不是15%,这是由于在垫槽中加入了两桶混合物和一桶水。
观察数据如下:操作3-5的产品与对照织物视觉观察没有区别,所述对照织物是通过加入软化剂(没有抗菌剂)制备的。处理过程或成品织物均没有出现异味。操作5的湿罩湿(WOW)方法制备的织物上注意到有淡淡的光泽且在样本的折叠处有小的阴暗变化线。生产人员本来指出,如此干燥的样本的“手感”(纺织工业中使用的测量柔软度的行话)不足。然而,压实后,据报道样本的手感是有可接受。填充和干燥后,样品被压缩。许多情况下,在压实前,新近干燥的样本被允许放置1-3天的时间以允许在空气步骤中再次受潮,并防止今后发生维度扭曲。所述的空气步骤使织物“松弛”。压实由织物通过蒸汽,之后通过滚筒压平织物,然后把它折叠组成:折叠的织物可以方便的装盒,并可在堆叠的折叠的结构下将其切割成需要的形状。这个过程是普通纺织生产程序的一部分。
相对于操作1和2(实施例1),操作4的化学利用性,ZnCl2降低了4倍,醋酸成分降低了100%,HP降低了50%。需要少量的NaOH作为附加的成分。使用实施例2(相对于实施例1的现有技术的方法)的改进的方法和制剂,化学试剂的预估成本减少了二分之一至三分之二。此外,发现这个过程具有商业可行性,因为实施例1中观察到的所有缺点均排除了。
根据本申请所述的方法多次循环洗涤(在冷水中)本实施例的操作3、4和5的材料,然后测试抗菌功效。对于所有三个操作,如本申请所述的如此生产的样本以及冲洗的样本或洗涤10或25次的样本显示了肺炎克雷伯菌和金黄色葡萄球菌(分别测试)减少大于5.50log(全杀)。这些结果清楚地表明,当前发明的制剂和方法产生持久的抗菌功效,其相对于现有技术有显著提高。例如,本实施例的操作4的材料比操作2(对比实施例1)的材料表现出更卓越的抗菌功效,尽管事实上操作4中的氯化锌和过氧化氢的浓度是操作2中的一半。此外,操作4不使用醋酸盐和醋酸。
实施例3-用氯化锌、硝酸锌、过氧化氢、氢氧化钠、EDTA和硬脂酸钠的混合物生产中试规模的抗菌纺织物
材料、设备和方法遵照实施例1,但处理溶液的组分是改良的,且下述的其他细节除 外。处理制剂不含有醋酸盐或醋酸。为制备处理制剂而实际添加的每种试剂的量如表3.1所示。用蒸馏水进行组分平衡。组合各试剂(除了柔软剂),然后在大的商业搅拌器中匀质化约5-10分钟。将每批次约3.5加仑的混合物通过带有200微米孔径的尼龙筛网,然后将几批次混合,以获得最终工作体积约20加仑的处理制剂。然后添加所需量的柔软剂。测得湿收集率为90%重量。这些实验是在位于南卡罗来纳州的商业纺织加工实验室进行的。操作6、7和8的纺织物基质为染成橄榄绿色的、100%棉(~5oz/yd2)的针织运动衫材料,用于制造军用内衣。对于操作9,使用黑色的棉/聚酯混合材料。所有批次都包括添加正常使用水平的织物柔软剂(Acralube CP)。过氧化氢(50%水溶液)由纺织加工实验室原地提供。氯化锌(“ZC”,固体)和硝酸锌(“ZN”,溶液,锌含量17%)由SNF公司(Riceboro,佐治亚州)提供。氢氧化钠(99%)购自AAA Chemicals(Pasadena,TX)。硬脂酸钠(“NaSt”,cat#269880010)购自Acros Organics(New Jersey,USA)。EDTA四钠盐,二水合物(cat#03695)购自Fluka。随后稀释操作6的处理制剂以用于操作7、8和9,如表3.1所述。并且添加额外的柔软剂以维持柔软剂浓度恒定。所有四个处理制剂的pH值均介于4.8和5.0之间。观察到一些泡沫,但匀质化对溶液是有益的,因为溶液很容易通过200微米的过滤器。在处理过的材料上没有明显的斑点或变色。干燥后,对操作6、7和8中经处理的材料以及未经处理的织物进行“球爆”试验。所有值均介于80-85磅之间,表示物料没有损耗。
表3.1:处理溶液的组成(按重量%计)
注:1-ZnCl2;2-Zn(NO3)2;3-EDTA·4Na·2H2O
利用本申请所述的方法,在实验室室内反复洗涤操作6-9中经处理的抗菌纺织物,然后进行微生物学测试以评估抗菌处理的持久性。在热水中使用ATCC洗涤剂洗涤样本,在每个洗涤周期后进行干燥。在15、20或25次洗涤周期后,根据本申请所述的方法使用大肠杆菌对样本进行微生物学测试。结果如表3.2所示。
表3.2:在指定次数的洗涤周期后,对大肠杆菌的抗菌功效平均降低Log( * =“全杀”)
此外,操作6的处理材料样本被送往独立认证实验室(田纳西州纳什维尔的精密测试实验室(PTL)和佐治亚州玛丽埃塔的药明康德实验室)通过AATCC标准方法评估洗涤后的可持久抗菌功效并测试一系列纺织行业常用的物理性质。获得结果如下:
●织物的纱线支数(ASTM D 3887):32(横向),38(纵向)
●洗涤中颜色牢度(AATCC-61,3A,3个周期):4.5级
●摩擦中颜色牢度(AATCC 8):5级(干),4.5级(湿)
●光照颜色牢度(AATCC 16,opt.A,40小时):4.5级
●破裂强度(ASTM D 3787):69lbs
●不稳定硫(Fed Std.191-2020):通过
●pH(AATCC 81):6.3
●尺寸稳定性,%,AATCC 135,表1(1,IV,Aii)5个周期:-11.1(横向),-6.3(纵向)
●纺织物材料的抗菌整理评价(AATCC 100),洗涤25次后:>99.95%(SA#6538),>99.94%(KP#4352),>99.93%(EC#8739)
根据本申请所述方法多次循环洗涤本实施例的经处理的纺织物,然后使用本申请所述的方法测试洗涤后其对各种细菌成分的抗菌功效。结果如表3.3所示:
表3.3:多次洗涤后的抗菌效果
存活细菌的平均降低Log(*=全杀)
实施例4.抗菌粘合性物品的制备
制备包含金属衍生物和过氧化氢的无醋酸根的处理制剂。例如,可以使用实施例2(见上)的表2.1和2.2中所描述的任何处理制剂。处理制剂与聚合物的水性乳液组合,所述聚合物的水性乳液适用于制备压敏粘合剂,如美国专利4,892,905或5,276,084中描述的乳液。利用本领域已知的方法将混合物应用于基质,如纸、或聚合物膜或磁带,然后在烤箱中干燥固化。产生的压敏粘合剂预计具有抗菌特性。
实施例5.抗菌油漆和涂料的制备
制备与实施例3操作6中的处理制剂组分基本类似的(除溶液不含柔软剂以外)包含金属衍生物和过氧化氢的无醋酸根的处理制剂。处理制剂与几个不同的可商业获得的涂料材料混合。所有的混合物均包含10%重量的无醋酸根的处理制剂和90%重量的商业涂料材料。使用3种商业涂料材料:科罗纳多“Aqua-Plastic”水基聚氨酯涂料;科罗纳多“Seal&Finish”的无色的丙烯酸涂料;和奥林匹克白色半光泽“kitchen&bath”的100%丙烯酸乳胶漆。用BYK涂布棒将混合物应用于薄的聚酯薄膜片(涂层厚度5mil),干燥,然后储存大约一个星期。发现涂布的样品附着到基质上,并出现正常的固化。使用ASTM方法E2180-07(“确定掺入到聚合物或疏水材料中的抗菌剂活性的标准测试方法”,又称“琼脂浆”测试)测试抗菌功效。在暴露于金黄色葡萄球菌一夜后,相比无涂层的聚酯薄膜胶片,所有三种涂料均“全部杀灭”对细菌(减少>4log)。
实施例6:包括金属衍生物和过氧化氢的无醋酸根的处理制剂的耐腐蚀性能的比较
制备处理制剂,其由约4%氯化锌,7%过氧化氢,和约75%总量的氢氧化钠组成,所述氢氧化钠是用于提高处理制剂的pH值至7.5(即约1.8%)。然后将其划分成两部分。一部分,添加足够的EDTA四钠盐以产生约0.025%EDTA四钠盐的溶液浓度。在每个独立的玻璃皮氏培养皿中倒入约10mL处理制剂。每个溶液中放置一个钢钉。几分钟后,观察到在没有添加EDTA的培养皿中,钢钉发生了腐蚀,迹象是显著发泡,释放气体和溶液中 以及钢钉上的特征性的生锈颜色的发展演变。相比之下,在含有EDTA的培养皿中,腐蚀的迹象很少。这表明EDTA对稳定包含金属衍生物和过氧化氢的无醋酸根的处理制剂以防止与铁接触引起分解具有积极效果。稳定的溶液预计比不稳定的溶液具有明显更长的使用存储期,并且对设备腐蚀性更小。
实施例7:包含金属衍生物和过氧化氢的无醋酸根的处理制剂的耐腐蚀性能作为硝酸根和氯离子的相对浓度的函数比较
制备几种包含不同比例的硝酸锌和氯化锌的水性处理制剂。所有情况下,锌盐的总浓度等于约4%。每个溶液也含有约5%过氧化氢、0.33%硬脂酸钠和1.8%氢氧化钠。使用磁驱动搅拌器将成分混合到水中制备制剂。使用的氯化锌和硝酸锌的比例如表6.1所示。将约10mL每种溶液置于皮氏培养皿中,并每种溶液中放置一个钢螺丝钉。大约10分钟后,目测溶液与钢螺丝钉的反应性,如表6.1所示。结果清楚地表明,添加硝酸盐降低了包含金属衍生物和过氧化氢的无醋酸根的处理制剂与钢的反应性,并且稳定了处理制剂防止分解。稳定的溶液预计将比不稳定的溶液具有明显更长的使用存储期。
表7.1:硝酸锌与氯化锌的比例对钢腐蚀的影响
实施例8:匀质化对包含金属衍生物和过氧化氢的无醋酸根的处理制剂处理的纺织物的外观的影响
使用磁驱动搅拌器在水中混合成分制备水性处理制剂,其基本上包含4%氯化锌、5%过氧化氢、0.33%硬脂酸钠、和1.8%的氢氧化钠。将其用于处理染成橄榄绿的100%棉(~5oz/yd2)的针织运动衫材料,将织物浸入该制剂中,然后让织物通过一系列驱动辊来排出多余的液体从而使处理制剂的湿收集率(相对于干织物)为约115%质量百分比。在80℃下的烤箱中干燥织物30分钟。明显观察到嵌入或附着在处理织物表面的白色残留物的沉积引起的变色。使用相同制剂重复实验,所述制剂已通过具有约200微米的开孔尺寸的塑料筛网。通过用橡胶铲按压和刮筛网协助制剂通过筛网,其中制剂含有悬浮的白色凝胶状物质。干织物的白色变色明显减少,并且外观明显改善。使用相同处理制剂再次进行试验,其中所述处理制剂已在普通的厨房搅拌器中匀质化一分钟。在没有铲的协助下,该处理制剂轻易的通过了筛网。用这种匀质化的制剂处理后的织物在干燥后没有出现可见的白色沉着物或变色。匀质化的制剂储存几天后有一些白色沉淀物沉降在储存容器的底部; 但是,轻轻摇动很容易再分散。再分散的悬浮液容易的通过了筛网并用于处理织物。生成的材料在干燥后没有出现可见的白色沉着物或变色。
实施例9:硝酸盐离子取代氯离子对包含金属衍生物和过氧化氢的无醋酸根的处理制剂的可加工性的影响
使用磁驱动搅拌器在水中混合以下成分制备水性处理制剂,其中处理制剂基本上包含4%氯化锌、5%过氧化氢、0.33%硬脂酸钠、和1.8%的氢氧化钠(约等于提高溶液的pH值至7.5所需量的75%)的水性处理制剂。在普通的厨房搅拌器中匀质化该制剂以至于其可通过约200微米孔径的网。使用磁驱动搅拌器在水中混合以下成分制备第二水性处理制剂,其中所述处理制剂基本上包含4%硝酸锌、5%过氧化氢、0.33%硬脂酸钠、和1.8%氢氧化钠的另一个水性处理制剂。使用普通的厨房搅拌器匀质化该制剂生成厚凝胶样的乳液,其是不可能通过约200微米孔径的网的。因此,它证明了在本发明的实践中在使用硝酸锌时,优选存在一些氯离子。换言之,氯化物和硝酸盐的组合优于任何单独一个。
实施例10:添加长链脂肪酸对持久的抗菌活性的影响
根据本申请所述的方法和制剂,使用本发明的包含金属衍生物和过氧化氢的无醋酸根的处理制剂制备抗菌纺织物。采用本申请所述的方法进行不同次数的洗涤周期后,测试抗菌纺织物的抗菌功效的保留性。结果发现,添加约0.25至0.50%的脂肪酸或脂肪酸盐至无醋酸根的处理制剂提高了处理纺织物洗涤后的抗菌特性的保留性;且较长链的脂肪酸的效果最佳。例如,硬脂酸钠(C18)比月桂酸钠(C12)或辛酸钠(C8)更有效。
实施例11:包含金属衍生物和过氧化氢的无醋酸根的处理制剂在制备抗菌的伤口敷料中的应用
在搅拌器中匀质化处理制剂,并通过200微米滤网过滤,其中所述处理制剂包含约2%氯化锌、3%过氧化氢、和约1%氢氧化钠。该制剂用于浸透吸收性基质,如针织棉纱布或非针织粘胶质感材料。按压湿润的吸收性基质以去除多余的液体。然后干燥该潮湿的基质。干燥后的基质可直接用作抗菌的伤口敷料,或任选地用蒸馏水冲洗直到蒸馏水的电导率下降到预定的表示不再存在可滤去材料的水平,然后再重新干燥。重新干燥的材料可直接用作伤口敷料,或任选地接受抗菌活性和生物相容性的测试。这些测试的结果可用于在随后的处理制剂中选择修改组分的浓度以优化随后的样品的抗菌功效和生物相容性,直到特性达到有益的和理想的平衡。处理制剂也可任选地包含硝酸锌、EDTA或结合剂。
实施例12:包含金属衍生物和过氧化氢的无醋酸根的处理制剂在制备抗菌的动物垫料或垫底材料中的应用
制备与实施例3操作6中使用的处理制剂基本类似的处理制剂。添加50克普通的粘土猫砂到约250克处理制剂中。简单摇动混合物,静置约两分钟,然后倒出液体。空气干 燥该潮湿的垫料。使用经两体积水稀释(至原浓度的33%)的处理制剂重复该过程。通过将1克垫料放入培养管及随后添加1.5mL细菌悬浮液(~105cfu/mL)到每个垫料样本中对样本和干燥后的垫料进行抗菌活性测试。在用20mL Letheen液体培养基提取前,导管在37℃下储存过夜并使用标准的微生物技术进行计数。大肠杆菌(EC)和金黄色葡萄球菌(SA)的减少Log是基于未处理的猫砂计算的。结果如表12.1所示,其表明对材料具有非常好的抗菌功效。预计抗菌的动物垫料或衬底将减少气味,并减少病菌的传播。这种材料也可用于吸收溢出,尤其是用于含有生物材料如血、尿、食物等的溢出。
表12.1:抗菌猫砂的功效
*表示全杀
实施例13:抗菌纺织物抗变色的证明
制备与实施例3操作6中使用的处理制剂基本类似的处理制剂。将制剂衬垫到两种不同的白色纺织物基质材料中:约5oz/yd2的针织100%聚酯织物和约4oz/yd2的针织100%棉织物。通过适应性调整的AATCC方法151测试变色情况,该方法旨在测量纺织物在洗涤过程中对土壤再沉积的敏感性(表面上旨在模拟100次“正常”周期)。结果发现,用这种方法测试的样本与用作参考的对照品(未处理的)实质上没有区别。这个测试是很重要的,因为基于阳离子杀菌剂(最常用的类型)的许多抗菌纺织物的主要缺点之一是这种方法中它们极易变色-尤其是因为该方法使用含有大量粘土的污垢来模拟洗涤土壤且带负电荷的粘土胶体容易结合阳离子表面位点。为了证实这种效果,用同样的方法评估Aegis杀菌剂处理的本地购买的抗菌T恤(JC Penney Stafford Ease(60%棉,40%聚酯)和Stafford Heavyweight(100%棉)),其表现出的变色比本发明的材料更高。
实施例14:抗菌纺织物生物相容性的证明
绿色棉针织基质(如实施例3中所述)是根据本发明的组合物和方法处理的基质,使用条件和组分与实施例3操作8中所描述的基本相似。根据本申请所述的步骤,用水冲洗或洗涤经处理的基质的样本,然后根据ISO10993-5和ASTM F895-84指南“琼脂扩散细胞细胞毒性的培养筛选标准测试方法”进行测试。测试要求将受试物品置于琼脂覆层以保护细胞单层免受机械损伤并且在24小时和48小时后评估细胞环境的变化。测试意图通过检测和描述超出材料样本边缘的细胞变化区域来定性评估基质潜在的细胞毒性。通过关键的中性红色染料使这些区域显像。结果发现,被测样本得分为2或更低,表明样本是生物相容性的且没有细胞毒性。
实施例15:适用于过氧化氢的包含金属衍生物和氢氧根离子源的无醋酸根和无过氧化 物的水性粘合剂组合物,其可用于处理基质并赋予所述基质持久的抗菌活性
根据本发明的教导制备水性处理溶液。例如,溶液基本组成如下:3.0%氯化锌,4.2%硝酸锌,0.5%硬脂酸钠,2.7%氢氧化钠,0.05%EDTA和89.55%水。在已知体积的水中分散所需量的每种成分以制备该处理制剂,然后在搅拌机中(例如)搅拌和匀质化处理溶液直到其很容易的且完全的通过具有200微米孔径的网状过滤器,以制备包含金属衍生物和氢氧根离子源的无醋酸根和基本无过氧化物的粘合剂组合物,其可用于处理基质并在添加过氧化氢后赋予所述基质持久的抗菌活性。粘合剂组合物能够储存直至与足够的过氧化氢混合使处理溶液中含的过氧化氢浓度为约2%至7%(或在优选实施例中另有详细说明)。粘合剂组合物与过氧化氢的混合物可用于处理基质从而赋予基质抗菌特性。粘合剂组合物或粘合剂溶液与过氧化氢的混合物在使用前可用水或其他水溶液稀释。可通过重复所述步骤,同时适当减少上述“已知体积的水”以理想的浓度因子(如2x、3x、4,或更高)提高所有成分的浓度来制备所述粘合剂组合物的浓缩形式。在使用前,所述浓缩形式的粘合剂组合物与所需(或期望的)量的过氧化氢混合,然后用水或其他水溶液稀释以作为赋予基质抗菌特性的处理制剂使用。对于含过氧化物的组合物的应用而言,所述粘合剂组合物也可以不需要进一步加入过氧化氢而使用本申请所述的方法直接应用于基质。经处理的基质(干燥的或未经干燥的)可随后暴露于足量的过氧化氢以赋予该处理过的基质持久的抗菌特性。
实施例16:经处理的基质的再生抗菌功效的证明
用实施例3中描述的无醋酸根的处理制剂处理基质,如棉纺织物,并根据本申请所述方法测量抗菌功效。然后在预定的正常应用中使用经处理的基质和/或洗涤、冲洗、老化、或储存,直到后续的抗菌功效测量表明功效已全部或部分丧失。然后通过经处理的基质暴露于水性过氧化氢源使其“再生”,水性过氧化氢源可能是实际过氧化氢溶液,或与过氧化氢形成盐或加成化合物的化合物;其中包括过硼酸钠、过碳酸钠、过氧磷酸钠、过氧化脲、过硫酸钾以及其他;当加入水时,其水解成过氧化氢。然后干燥处理基质,测试抗菌功效。如果抗菌效果已经恢复,之后经处理的基质可以用作具有持久的抗菌功效的抗菌物品,直到发现进一步再生不再提高抗菌功效。
实施例17:用氯化锌、硝酸锌、过氧化氢、氢氧化钠、EDTA和硬脂酸钠的混合物生产实验室规模的抗菌纺织物:总溶液浓度对抗菌效果持久性的影响
根据实施例3描述的方法制备抗菌棉纺织物材料。处理制剂与操作6(表3.1)中的处理制剂大致相似。该样本被指定为“100%”。其它样本通过用水稀释制备100%样本的处理制剂制备,且浓度稀释至制备100%样本所用处理制剂浓度的75%、50%、30%、20%和10%。所有样本被送到一个商业实验室,根据AATCC标准方法在热水(120℉)中进行重复洗涤。使用本申请所述的方法测试洗涤后的样本的抗菌功效。结果发现,所有样本 (除10%样本以外)在热水中洗涤25次后均保留全部功效(减少>6log,“全部杀灭”肺炎克雷伯菌)。10%的样本在洗涤25次后失去功效,只减少0.7log。
实施例18:用稀释的无醋酸根处理制剂处理弹性绷带及抗菌功效的证明
通过将弹性绷带浸入处理制剂中处理弹性绷带(压缩型绷带,通常被称为“布织”绷带),所述处理制剂的组分基本如表18.1所述。弹性绷带具有以下近似组分(10%聚酯,20%氨纶、和70%棉)。
在所有情况下,添加足量的氢氧化钠中和溶液,中和度为使溶液的pH值至7.5所需中和的80%。使样本通过压送辊以去除过量的处理制剂,并在80℃下的烘箱中干燥潮湿的绷带。使用本申请所述的方法测试干燥后的样本的抗菌功效。在所有情况下,发现抗菌绷带使肺炎克雷伯菌减少>8-log(全部杀灭)。
表18.1:处理制剂的组成(剩余部分=水)
实施例19:经压力处理的木材的制备
制备与实施例3(操作#6)中处理溶液的组分基本类似的处理溶液。用两部分水混合一部分溶液稀释该溶液(即33%的浓度)。将20个木(松树)桩,大小约0.5”×1.25”×18”(总干重2,283克)放入金属箱,然后密封,使用真空泵抽真空。将十三升(13L)33%的溶液引入真空室,然后用氩气加压至50psi,放置一小时。打开箱子,移除木桩,擦掉木材表面的多余液体,称量该潮湿的木桩(4,140g),然后风干几天。用更稀的处理溶液(16.5%)在第二组松木桩上重复该过程。干燥后,将来自每组木桩的十个样本,连同十个未处理的(对照)木桩埋入位于佛罗里达基因斯维尔的阴凉林地的地面以至于约一半长度的木桩被埋并直接与土壤接触。约7.5个月后,检查木桩因真菌和昆虫造成的损害。暴露于上述处理溶液的木桩的表现出的损害大大低于未经处理的木桩。将木桩放回地面以便在未来某一日作进一步评估。因此证明了本发明的经压力处理的木材可以用于防止真菌和昆虫的腐蚀以达到保存的目的。
实施例20:经处理的纺织物的抗病毒功效的证明
测试实施例3(操作#6)生产的抗菌材料的抗病毒效果如下:
使用马丁达比犬肾上皮细胞I型(MDCK)单层膜(ATCC CCL-34)作为宿主繁殖甲型流感(H1N1;ATCC VR-1469)病毒并计算最近似数(MPN)。细胞生长于6孔细胞培养皿中。
为了计数,含有病毒的样本等份接种于新鲜配制的MDCK单层膜的单层中。然后在35℃,5%CO2下,在含有胰蛋白酶的DMEM(MediaTech,美国)介质中培养细胞5-7天。通过常规显微镜监测细胞衰退的迹象。在孔中表现出感染迹象的细胞(细胞病变效应;CPE)记录为正(+),没有表现出任何CPE的那些记录为负(-)。然后使用MPNCALC软件(版本0.0.0.23)计算样本中感染病毒的最可能的数量。对于激发实验,将冻存病毒原液(通常为2×106iu/ml)在实验那天通过35℃水浴迅速复苏。然后用补充有2%的牛血清白蛋白(BSA)的磷酸盐缓冲液(PBS)将原液稀释1/100。
使用的实验方案与ASTM E 1053-97(用于无生命表面的杀病毒剂疗效的标准测试方法)具有可比性。材料被切成1”方形片。每片放入无菌的皮氏培养皿中。每种材料一式三份样本并进行分析。将一百微升上述病毒稀释液均匀应用于每个测试样本的表面。然后在25℃下孵育接种物120分钟,然后将每个材料转移至50ml无菌圆锥形底部离心管(费希尔科学,宾夕法尼亚州)。每管添加25ml无菌Difco Letheen液体培养基(Becton Dickinson#263010,马里兰州)。上述含有25ml Letheen液体培养基和0.1ml稀释的病毒接种物的离心管作为阳性对照(初始)。然后将离心管置于轨道摇床,并以低转速摇动15分钟。摇动后,从每个管中移除5ml液体,并添加到15ml无菌圆锥形底部离心管(费希尔科学,宾夕法尼亚州)中。用PBS将病毒悬液稀释10倍。每个管中存活的(有传染性的)甲型流感的数量通过上述MPN步骤,使用马丁达比犬肾上皮细胞I型(MDCK)细胞单层膜(ATCC CCL-34)计数。所有的分析都进行三次。使用阳性对照管的病毒MPN获取最初的激发浓度并计算产生的减少百分比。计算的整体减少百分比为78%。
实施例21:抗菌织物对霉菌生长的抵抗力的证明
根据本发明的材料和方法制备几种抗菌纺织物,包括那些使用处理溶液在实验室处理白色棉针织材料制备的以及通过实施例3(操作#6)描述的那些基本类似的方法制备的。根据AATCC方法30“抗真菌活性,纺织材料的评估:纺织材料的抗霉变和防腐烂”测试抗菌纺织物。该方法由以下组成:将织物样品放置生长板上,所述板已用霉菌或真菌接种。试验菌是黑曲霉(Aspergillus niger)和枝孢霉(Cladosporium)。七(7)天后,目测评估纺织物表面霉菌的生长。根据本发明的方法制备的经处理的纺织物所表现出的生长远远低于未处理(对照)的纺织物。
用于评价本申请所述的经处理的物品的特性的标准测试和分析方法:
A:实验室洗涤方法:
洗涤方法是基于AATCC标准方法。在标准尺寸的家用洗衣机(例如,西尔斯 肯莫尔 重型洗涤机)中,使用以下设置洗涤样本:水位=低;水温=冷(约20℃);周期设置=正常(洗涤6分钟)。每次洗涤周期均需要四十(40)mL汰渍 液体洗涤剂用于前端加料口。每次洗涤添加十张陪洗布(100%的白色棉嘉宝 尿布,每张重约35克)。启动洗衣机,并允许装满,然后添加洗涤剂,紧接着添加纺织物和陪洗布。每5次洗涤周期后移去样本,并与两张陪洗布一同置于标准的家用干衣机(惠而浦 重型干燥机)中,在高热量设置下干燥二十分钟。在特定洗涤周期次数后,从纺织物样本上剪下样本用于抗菌功效测试,如果需要的话,进一步循环洗涤纺织物样本的其余部分。
上述的标准实验室洗涤方法在某些情况中可变化,包括:任选在开始洗涤周期前冲洗样本;使用AATCC标准洗涤剂代替汰渍;使用热温设置(120℉);以及每次洗涤周期后干燥,而不是每五次洗涤周期后干燥。
B:验证经处理的纺织物材料的抗菌特性的微生物测定法
使用美国纺织染化学工作者协会(AATCC)测试方法100(“Antibacterial Finishes on Textiles:Assessment of”)的改良版本分析本发明的不同方法和实施例制备的材料的抗菌活性,所述的测试方法是设计用于测试纺织品材料的抗菌整理的。使用标准方法在适当的培养基中生成受试微生物过夜培养物(ONC)。使用ONC制备接种物溶液,所少溶液包含受试微生物的磷酸盐缓冲液(PBS),受试微生物被稀释至约106CFU/ml。将经处理的基质材料(样本)和未经处理的基质对照材料(对照)分别切成2.5cm的方块,并在121℃高压灭菌30分钟以消除之前存在的微生物污染。高压灭菌后,允许样本和对照物(没有经过抗菌处理的相同基底的纺织物基质)在室温下冷却15分钟。将样品和对照物分成许多一平方英寸的三层纺织材料进行分析。分别用500μL接种物接种样本和对照物。接种的样本在37℃无菌含盖的培养皿中培养。接种18至24小时后,用无菌镊子采集样本,置于含有15毫升PBS的15mL分离的试管中,振荡30秒以悬浮所有的进入溶液的残余活体微生物。用PBS溶液将这些悬浮液适当稀释十倍,并展开到细菌培养皿上,所述培养皿含有适于所需有机体生长的介质,然后在37℃培养过夜。培养过夜后,计算生长在每个培养皿上的菌落以确定抗菌功效。报道的数据为与用相同细菌接种量培养的未经处理的对照物相比的%杀死或log减少。用“log杀灭”、“log减少”、或简单的“LR”来表示特定制剂对特定细菌种属的抗菌功效是方便的。在以下讨论中,将通过在LR数字后使用星号(例如,6.0*)标注或表明全部杀灭(即活菌的减少100%)。计算给定样本每次重复相对于未经处理的(阴性的)对照样本的平均菌落数目的独立的LR值。之后平均化该样本的独立的LR值,将平均的LR作为结果记录。如果接种后立即测定对照样本的细菌数量,结果记录为“t=0”。如果在与被测样本孵育相同时间后测定对照数量时,结果记录为“t=x”,其中x等于用于测试样本的培养时间(通常是过夜,即18-24小时)。除非另作说明,否则本申请报道的所 有LR值是指t=过夜的测定结果。注意,t=0的LR值一般小于t=过夜的值,因为未经处理的对照物上的细菌数量随着时间的推移有增加的趋势。t=0的值可认为是反映杀菌值;而T=过夜的值可认为是反映杀菌和抑菌作用的组合。使用标准的微生物技术进行稀释、扩散、平皿培养和计数。在该测试中使用以下细菌的种类和菌种:
  金黄色葡萄球菌(SA)   ATCC 6538
  大肠杆菌(EC)   ATCC 15597
  肺炎克雷伯菌(KP)   ATCC 13883

Claims (25)

1.一种制备抗菌物品的方法,所述方法包括步骤:
(a)  提供水性混合物,所述混合物基本由(1)过氧化氢和(2)金属盐组成,所述金属盐由镁、锌、或锆的一种或多种氯化物、溴化物、硝酸盐、或硫酸盐组成,
(b) 将氢氧根离子源加入到水性混合物中以生成抗菌处理制剂,所述抗菌处理制剂包含金属衍生物,过氧化氢和氢氧根离子的无醋酸根复合物,其中所述抗菌处理制剂中和度为50至100%,
(c)  将所述抗菌处理制剂应用于物品,且之后
(d) 干燥所述处理过的物品,
其中水性混合物中过氧化氢与金属盐的摩尔比等于或大于1:1,其中所述金属衍生物,过氧化氢和氢氧根离子的无醋酸根复合物赋予所述处理过的物品持久的抗菌活性。
2.权利要求1所述的方法,其在步骤(c)将所述抗菌处理制剂应用于所述物品之前,进一步包括匀质化抗菌处理制剂的步骤。
3.如权利要求1所述的方法,其中步骤(a)所述金属盐为锌的一种或多种氯化物、溴化物、硝酸盐、或硫酸盐。
4.如权利要求1所述的方法,其中步骤(b)所述处理制剂进一步包括选自下组的添加剂:紫外线防护剂、加工助剂、柔软剂、抗静电剂、着色剂、指示剂、药物、油、微球、营养物、生长因子、润肤剂、保湿剂、香料。
5.如权利要求1所述的方法,其中步骤(b)所述处理制剂进一步包括选自下组的添加剂:染料、临时视觉指示剂、润滑油、维生素和香水。
6.如权利要求1所述的方法,其中所述处理制剂进一步包括至少0.1 wt%的持久力增强剂,所述持久力增强剂选自下组:聚合物、长链脂肪酸、和长链脂肪酸盐。
7.一种制备抗菌物品的方法,所述方法包括步骤:
(a)  提供水性氢氧化物和金属盐的水溶液的匀质化的混合物,所述金属盐由锌的一种或多种氯化物、溴化物、硝酸盐、或硫酸盐组成,由此生成水性粘合剂组合物,
(b)  将足够的水性过氧化氢加入到水性粘合剂组合物中以制备处理制剂,所述处理制剂包含金属衍生物,过氧化氢和氢氧根离子的无醋酸根复合物,其中过氧化氢与所述金属盐的摩尔比等于或大于1:1,之后
(c)  将所述处理制剂应用于所述物品,并
(d)  干燥所述处理过的物品,所述物品已用所述处理制剂处理,其中所述金属衍生物,过氧化氢和氢氧根离子的无醋酸根复合物赋予所述处理过的物品持久的抗菌活性。
8.如权利要求7所述的方法,在步骤(c)之后和步骤(d)之前,进一步包括通过辊、夹、压、离心、绞、或吸将过量的所述处理制剂从所述物品中除去的步骤。
9.如权利要求7所述的方法,其在步骤(c)将所述处理制剂应用于所述物品之前,进一步包括匀质化处理制剂的步骤。
10.如权利要求7所述的方法,其中步骤(a)所述水性粘合剂组合物进一步包括选自下组的添加剂:紫外线防护剂、加工助剂、柔软剂、抗静电剂、着色剂、指示剂、药物、油、微球、营养物、生长因子、润肤剂、保湿剂、香料。
11.如权利要求7所述的方法,其中步骤(a)所述水性粘合剂组合物进一步包括选自下组的添加剂:染料、临时视觉指示剂、润滑油、维生素和香水。
12.如权利要求7所述的方法,其中所述水性粘合剂组合物进一步包括至少0.1 wt%的持久力增强剂,所述持久力增强剂选自下组:聚合物、长链脂肪酸、和长链脂肪酸盐。
13.一种制备抗菌纺织物材料的方法,所述方法包括步骤:
(a)  提供水性氢氧化物和镁、锌、或锆的一种或多种氯化物、溴化物、硝酸盐、或硫酸盐水溶液的匀质化的混合物,由此生成水性粘合剂组合物,
(b)  将所述水性粘合剂组合物应用于纺织物材料,之后
(c)  将所述纺织物材料暴露于水性过氧化氢,且
(d)  干燥所述处理过的纺织物材料,所述纺织物材料已用所述粘合剂组合物和水性过氧化氢处理,
其中金属衍生物,过氧化氢和氢氧根离子源的无醋酸根复合物被生成并赋予所述处理过的纺织物材料持久的抗菌活性,所述活性对至少10个洗涤周期有效。
14.如权利要求13所述的方法,在步骤(c)之后和步骤(d)之前,进一步包括将过量的水性粘合剂组合物和水性过氧化氢从所述纺织物材料中除去的步骤。
15.如权利要求13所述的方法,在步骤(b)之后和步骤(c)之前,进一步包括干燥步骤。
16.如权利要求13所述的方法,其中步骤(a)为提供水性氢氧化物和锌的一种或多种氯化物、溴化物、硝酸盐、或硫酸盐水溶液的匀质化的混合物,由此生成水性粘合剂组合物。
17.如权利要求13所述的方法,其中步骤(a)所述水性粘合剂组合物进一步包括选自下组的添加剂:紫外线防护剂、加工助剂、柔软剂、抗静电剂、着色剂、指示剂、药物、油、微球、营养物、生长因子、润肤剂、保湿剂、香料。
18.如权利要求13所述的方法,其中步骤(a)所述水性粘合剂组合物进一步包括选自下组的添加剂:染料、临时视觉指示剂、润滑油、维生素和香水。
19.如权利要求13所述的方法,其中所述水性粘合剂组合物进一步包括至少0.1 wt%的持久力增强剂,所述持久力增强剂选自下组:聚合物、长链脂肪酸、和长链脂肪酸盐。
20.如权利要求1至12中任一项所述的方法,其中所述处理制剂中所述金属盐的金属重量浓度为在0.05%和3.0%之间。
21.如权利要求13至19中任一项所述的方法,其中水性混合物中过氧化氢与金属盐的摩尔比等于或大于1:1。
22.根据权利要求1至21中任一项所述的方法制备的抗菌物品。
23.如权利要求22所述的抗菌物品,其中所述物品是纺织物材料,且其中生产了抗菌纺织物材料。
24.如权利要求22所述的抗菌物品,其中所述抗菌物品是伤口敷料、卫生巾、失禁垫、卫生棉条、固有抗菌吸收性的敷料、尿布、卫生纸、卫生湿巾、棉签、手术服、隔离服、实验服、手套、手术擦洗液、头罩、发套、口罩、缝合线、地板垫、灯罩、检查台桌布、石膏衬垫、夹板衬垫、填充物、纱布、包装材料、床上用品、毛巾、内衣、袜子、鞋罩、汽车空气过滤器、飞机空气过滤器、空调系统空气过滤器、军事防护服、食品加工服、地毯或窗帘的组分。
25.如权利要求23所述的抗菌物品,其中所述处理的抗菌纺织物材料不因抗菌处理而出现显著的或令人讨厌的褪色、染色、或其他不良的审美影响,即使纺织物材料是有色的或染色的纺织物。
CN201080035258.5A 2009-06-08 2010-06-08 包含过氧化物的抗菌纺织物 Active CN102459747B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US18493109P 2009-06-08 2009-06-08
US61/184,931 2009-06-08
US26701309P 2009-12-05 2009-12-05
US61/267,013 2009-12-05
PCT/US2010/037850 WO2010144503A2 (en) 2009-06-08 2010-06-08 Antimicrobial textiles comprising peroxide

Publications (2)

Publication Number Publication Date
CN102459747A CN102459747A (zh) 2012-05-16
CN102459747B true CN102459747B (zh) 2015-09-30

Family

ID=43309447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080035258.5A Active CN102459747B (zh) 2009-06-08 2010-06-08 包含过氧化物的抗菌纺织物

Country Status (10)

Country Link
US (2) US8277827B2 (zh)
EP (1) EP2440702B1 (zh)
JP (1) JP2013527327A (zh)
CN (1) CN102459747B (zh)
AU (1) AU2010258893A1 (zh)
BR (1) BRPI1009652B1 (zh)
CA (1) CA2763073C (zh)
HK (1) HK1170549A1 (zh)
MY (1) MY188812A (zh)
WO (1) WO2010144503A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746372C1 (ru) * 2021-01-21 2021-04-12 Общество с ограниченной ответственностью "Чайковская текстильная компания" (ООО "Чайковская текстильная компания") Способ изготовления антибактериальной ткани

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328910B2 (en) * 2010-01-29 2012-12-11 Spiderman Mulholland Method for building remediation caused by defective drywall
BR112014012707B1 (pt) 2011-11-28 2019-05-14 Hyprotek, Inc. Método de proporcionar uma barreira contra a contaminação e método de dar uma indicação visual de um ou mais contaminantes sobre uma superfície
CA2897115A1 (en) * 2012-01-04 2013-07-11 Ideexaction Inc. Glove with moisture absorbent applicator layer
US20130183495A1 (en) * 2012-01-17 2013-07-18 Mmi-Ipco, Llc Antimicrobial Fabrics
KR20150008162A (ko) 2012-05-07 2015-01-21 더 프록터 앤드 갬블 캄파니 장식 패널을 갖는 가요성 용기
US10918103B2 (en) 2012-06-01 2021-02-16 I3 Biomedical Inc. Antitoxic fibers
US9986742B2 (en) * 2012-12-20 2018-06-05 Quick-Med Technologies, Inc. Durable antimicrobial treatments for textiles and other substrates
PL2945653T3 (pl) * 2012-12-20 2017-11-30 Quick-Med Technologies, Inc. Regeneracja powłok przeciwdrobnoustrojowych zawierających pochodne metalu przy ekspozycji na wodny nadtlenek wodoru
US9353269B2 (en) 2013-03-15 2016-05-31 American Sterilizer Company Reactive surface coating having chemical decontamination and biocidal properties
ES2412608B2 (es) * 2013-06-07 2014-01-14 Sutran I Mas D, S.L. Tejido antiolor y antibacteriano en prendas textiles
CN103774428B (zh) * 2014-02-18 2015-09-09 江南大学 N,n’-亚甲基双丙烯酰胺耐紫外抗菌棉织物的制备方法
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
RU2622780C2 (ru) * 2014-07-04 2017-06-20 Людмила Ивановна Золина Способ получения антисептических текстильных материалов и изделий, состав и устройство для его осуществления
EP3190883A1 (en) 2014-09-09 2017-07-19 Lonza Inc. Disinfectant composition containing quaternary ammonium compounds
US10485893B2 (en) 2014-11-13 2019-11-26 Sarasota Medical Products, Inc. Antimicrobial hydrocolloid dressing containing sequestered peroxide and preparation thereof
US11033023B2 (en) 2014-11-26 2021-06-15 Microban Products Company Surface disinfectant with residual biocidal property
US10842147B2 (en) 2014-11-26 2020-11-24 Microban Products Company Surface disinfectant with residual biocidal property
US10925281B2 (en) 2014-11-26 2021-02-23 Microban Products Company Surface disinfectant with residual biocidal property
US11026418B2 (en) 2014-11-26 2021-06-08 Microban Products Company Surface disinfectant with residual biocidal property
US11503824B2 (en) 2016-05-23 2022-11-22 Microban Products Company Touch screen cleaning and protectant composition
US10316161B2 (en) * 2017-03-16 2019-06-11 International Business Machines Corporation Method of making highly porous polyhexahydrotriazines containing antimicrobial agents
WO2020054570A1 (ja) * 2018-09-12 2020-03-19 株式会社 資生堂 ウエットシート
US20210401675A1 (en) * 2020-06-29 2021-12-30 Carmen Agustina Cunningham Rivera Intimate Wipes
WO2022221057A1 (en) * 2021-04-15 2022-10-20 Terasaki Institute For Biomedical Innovation Antimicrobial articles, methods of making and using same
US20230172154A1 (en) * 2021-12-05 2023-06-08 Microban Products Company Chemical composition and method of using an antimicrobial odor control additive for pet litters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178232A (zh) * 1996-09-30 1998-04-08 巴斯福股份公司 聚合物/过氧化氢配合物

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791518A (en) 1955-03-21 1957-05-07 Permachem Corp Process for making a microbicidal article
US4574076A (en) 1976-11-04 1986-03-04 Fmc Corporation Removal of hydrogen sulfide from geothermal steam
US4115422A (en) 1977-04-12 1978-09-19 The United States Of America As Represented By The Secretary Of Agriculture Antibacterial textile finishes utilizing zirconyl acetate complexes of inorganic peroxides
US4174418A (en) 1977-04-12 1979-11-13 The United States Of America As Represented By The Secretary Of Agriculture Antibacterial textile finishes utilizing zironyl acetate complexes of inorganic peroxides
US4172841A (en) 1978-08-17 1979-10-30 The United States Of America As Represented By The Secretary Of Agriculture Antibacterial textile finishes utilizing zinc acetate and hydrogen peroxide
US4199322A (en) 1978-08-17 1980-04-22 The United States Of America As Represented By The Secretary Of Agriculture Antibacterial textile finishes utilizing zinc acetate and hydrogen peroxide
JPS56128311A (en) 1980-03-05 1981-10-07 Nippon Sanmou Senshoku Kk Electrically conductive fiber and its preparation
GB8407984D0 (en) 1984-03-28 1984-05-10 Exxon Research Engineering Co Pressure sensitive adhesives
US5276084A (en) 1988-04-27 1994-01-04 Air Products And Chemicals, Inc. High performance pressure sensitive adhesive emulsion
EP0379581B1 (en) 1988-06-23 1994-08-10 Kohjin Co., Ltd. Deodorant material and process for its production
US5152966A (en) 1989-06-22 1992-10-06 Nicap, Inc. Apparatus for producing a controlled atmosphere
US5271952A (en) 1990-08-16 1993-12-21 Rcs Technology Corporation Anti-static anti-bacterial fibers
US5458906A (en) 1993-09-13 1995-10-17 Liang; Paul M. S. Method of producing antibacterial fibers
CA2221138A1 (en) * 1995-06-06 1996-12-12 Kimberly-Clark Worldwide, Inc. Microporous fabric containing a microbial adsorbent
US5656037A (en) 1995-12-28 1997-08-12 The United States Of America As Represented By The Secretary Of Agriculture Reaction products of magnesium acetate and hydrogen peroxide for imparting antibacterial activity to fibrous substrates
US5882357A (en) 1996-09-13 1999-03-16 The Regents Of The University Of California Durable and regenerable microbiocidal textiles
US5919507A (en) * 1997-10-02 1999-07-06 The Penn State Research Foundation Preservation compositions and methods for mushrooms
US6482756B2 (en) 1999-07-27 2002-11-19 Milliken & Company Method of retaining antimicrobial properties on a halamine-treated textile substrate while simultaneously reducing deleterious odor and skin irritation effects
US20030162685A1 (en) * 2001-06-05 2003-08-28 Man Victor Fuk-Pong Solid cleaning composition including stabilized active oxygen component
JP2003026422A (ja) 2001-07-11 2003-01-29 Fm Giken Kk 金属酸化物及び/又は金属過酸化物の微粒子分散ゾルとその製造方法並びに微粒子粉体
DE10159499A1 (de) * 2001-12-04 2003-10-02 Henkel Kgaa Wasch- und/oder Reinigungsartikel
US20030159200A1 (en) * 2002-02-28 2003-08-28 Don Elrod Antimicrobial fabrics through surface modification
US6962608B1 (en) * 2002-10-01 2005-11-08 The Regents Of The University Of California Regenerable antimicrobial polymers and fibers with oxygen bleaches
US7442679B2 (en) * 2004-04-15 2008-10-28 Ecolab Inc. Binding agent for solidification matrix comprising MGDA
US20060045899A1 (en) * 2004-08-25 2006-03-02 Shantha Sarangapani Antimicrobial composition for medical articles
US7442677B1 (en) 2004-08-25 2008-10-28 The United States Of America As Represented By The Secretary Of The Army Activated peroxide solution with improved stability useful for the decontamination of chemical warfare agents
US20120064138A1 (en) * 2009-04-28 2012-03-15 Harman Technology Limited Biocidal composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178232A (zh) * 1996-09-30 1998-04-08 巴斯福股份公司 聚合物/过氧化氢配合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746372C1 (ru) * 2021-01-21 2021-04-12 Общество с ограниченной ответственностью "Чайковская текстильная компания" (ООО "Чайковская текстильная компания") Способ изготовления антибактериальной ткани

Also Published As

Publication number Publication date
AU2010258893A1 (en) 2011-12-08
US8277827B2 (en) 2012-10-02
CA2763073C (en) 2017-10-03
EP2440702A2 (en) 2012-04-18
HK1170549A1 (zh) 2013-03-01
CN102459747A (zh) 2012-05-16
MY188812A (en) 2022-01-05
JP2013527327A (ja) 2013-06-27
US20130011491A1 (en) 2013-01-10
BRPI1009652A2 (pt) 2019-04-30
WO2010144503A4 (en) 2011-05-26
US8926999B2 (en) 2015-01-06
EP2440702A4 (en) 2015-01-07
WO2010144503A3 (en) 2011-03-31
CA2763073A1 (en) 2010-12-16
EP2440702B1 (en) 2018-11-07
WO2010144503A2 (en) 2010-12-16
BRPI1009652B1 (pt) 2020-07-28
US20110171280A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
CN102459747B (zh) 包含过氧化物的抗菌纺织物
US6015816A (en) Antimicrobial compositions
JP4807821B2 (ja) 抗菌組成物ならびにその製造および使用方法
US11598047B2 (en) Process for producing fibrous material with antimicrobial properties
Nayak et al. Antimicrobial finishes for textiles
Laga et al. Use of nano silver as an antimicrobial agent for cotton
WO2016033340A2 (en) Antimicrobial compositions and methods with novel polymeric binding system
EP2694721A1 (en) Process for the treatment of synthetic textiles with cationic biocides
CN102933762A (zh) 合成无纺织物的抗微生物处理
CN105209049A (zh) 抗微生物组合物及其制造方法
WO2001097617A1 (en) Biocidal cellulosic material
Ibrahim et al. Antimicrobial agents for textiles: types, mechanisms and analysis standards
Goldade et al. Antimicrobial fibers for textile clothing and medicine: current state
JP2015507613A (ja) 少なくとも1種の銅塩及び少なくとも1種の亜鉛塩を含む活性パウダー体殺菌剤及びその製造方法
JPS61502058A (ja) 殺微生物混合物およびその製造方法
Kozłowski et al. Prevention of fungi and bacteria growth in natural fibres
JP2005112791A (ja) 抗菌・殺菌剤
EP3287009A1 (en) Non-leaching surface sanitizer and wipe with improved washability and/or absorbency
EP1246530B1 (en) High performance silver (i, iii) oxide and cobalt (ii, iii) oxide antimicrobial textile articles
JPH06247809A (ja) 畳および畳表の防カビ処理方法
MXPA99002367A (en) Durable and regenerable microbiocidal textiles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1170549

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1170549

Country of ref document: HK