CN102458112A - 纳米颗粒制剂及其用途 - Google Patents

纳米颗粒制剂及其用途 Download PDF

Info

Publication number
CN102458112A
CN102458112A CN2010800259726A CN201080025972A CN102458112A CN 102458112 A CN102458112 A CN 102458112A CN 2010800259726 A CN2010800259726 A CN 2010800259726A CN 201080025972 A CN201080025972 A CN 201080025972A CN 102458112 A CN102458112 A CN 102458112A
Authority
CN
China
Prior art keywords
composition
described composition
derivative
unsubstituted
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800259726A
Other languages
English (en)
Inventor
N·P·德赛
C·陶
T·德
S·X·西
V·德留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abraxis Bioscience LLC
Original Assignee
Abraxis Bioscience LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abraxis Bioscience LLC filed Critical Abraxis Bioscience LLC
Publication of CN102458112A publication Critical patent/CN102458112A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Abstract

本发明提供包括纳米颗粒的组合物,该纳米颗粒包括:1)药物,诸如疏水的药物衍生物;和2)载体蛋白。还提供使用该组合物治疗疾病(诸如癌症)的方法,以及试剂盒和单位剂量。

Description

纳米颗粒制剂及其用途
相关申请的交叉引用
本申请要求于2009年4月10日提交且名称为“纳米颗粒制剂及其用途(Nanoparticle Formulations and Uses Thereof)”的美国临时专利申请61/168,540的优先权权益,该申请的内容在此以其全部通过引用并入,如同它在下面被完整阐述。
发明背景
紫杉烷,特别地是两个目前可用的紫杉烷药物:紫杉醇(paclitaxel)和多西紫杉醇(docetaxel),是有效的抗肿瘤剂。紫杉醇水溶性非常差(小于10μg/mL),因此,实践上不能与水介质配制用于静脉内给药。目前,在聚氧乙基化蓖麻油(Polyoxyl 35或Cremophor)作为主要的溶剂/表面活性剂和高浓度乙醇作为共溶剂的溶液中,配制紫杉醇用于静脉内给予患有癌症的患者。在紫杉醇的给药中,主要的困难之一是超敏反应的出现。包括严重的皮疹、荨麻疹、潮红、呼吸困难、心动过速和其它问题的这些反应可至少部分归因于制剂中作为溶剂使用的高浓度的乙醇和Cremophor
Figure BPA00001480457000012
。紫杉醇的衍生物多西紫杉醇是从10脱乙酰基浆果赤霉素III半合成产生的,10脱乙酰基浆果赤霉素III是从红豆杉(Taxus)浆果的针叶中提取并用化学合成的侧链将其酯化的非细胞毒性前体。象紫杉醇一样,多西紫杉醇在水中溶解性非常差。目前,用于溶解多西紫杉醇的最优选的溶剂/表面活性剂是多乙氧基醚80(吐温(Tween)80)。象Cremophor
Figure BPA00001480457000013
一样,Tween在患者中经常引起超敏反应。此外,因为Tween 80具有沥滤高毒性邻苯二甲酸二乙基己酯的趋向,它不能与PVC递送装置一起使用。
在水溶性前体药物和新的具有亲水性较高的基团(诸如水溶性聚合物)的紫杉烷衍生物的发展上已经投入了很多努力以提高水溶性。例如,美国2003/0203961描述了紫杉烷-聚乙二醇(PEG)结合物,其作为前体药物起作用并在正常的生理条件下水解以提供治疗上有活性的紫杉烷。虽然具有高分子量PEG聚合物的紫杉醇结合物具有增加的溶解性,由于获得足够的溶解性所必需的高分子量PEG,它们还导致药物载荷相应的降低。相似地,WO94/13324公开了磷脂前体药物以提高水溶性。
解决与紫杉烷水溶性差的相关的问题的另一个方法是发展紫杉烷的各种制剂诸如纳米颗粒、水包油乳状液和脂质体。例如,Abraxane
Figure BPA00001480457000014
是紫杉醇和白蛋白的纳米颗粒组合物。实质上差的水溶性药物的纳米颗粒组合物及其用途已被公开,例如,在美国专利5,916,596、6,096,331、6,749,868和6,537,579中,和PCT申请公开号WO98/14174、WO99/00113、WO07/027941和WO07/027819中。
各种紫杉烷衍生物已在例如Kingston,J.Nat.Prod.2000,63,726-734、Deutschet al、J.Med.Chem.1989,32,788-792、Mathew et al、J.Med.Chem.1992,35,145-151、欧洲专利1 063 234;和美国专利5,059,699、4,942,184、6,482,850和6,602,902中公开。
本申请涉及于2008年4月10号提交的、题目为“疏水紫杉烷衍生物的组合物及其用途(Compositions of Hydrophobic Taxane Derivative and Uses Thereof)”的美国临时申请61/044,006和于2008年9月12号提交的、题目为“疏水紫杉烷衍生物的组合物及其用途(Compositions of Hydrophobic Taxane Derivative and UsesThereof)”的美国临时申请61/096,664,它们的内容在此通过引用全文并入,正如它们在以下完整阐述。
本文参考的所有出版物、专利、专利申请和公开的专利申请的公开内容在此以其全部通过引用被并入本文。
发明概述
本发明一方面提供包括纳米颗粒的组合物,其中纳米颗粒包括药物和载体蛋白。在一些实施方式中,纳米颗粒包括疏水药物衍生物和载体蛋白。在一些实施方式中,纳米颗粒包括疏水紫杉烷衍生物和载体蛋白。在一些实施方式中,纳米颗粒包括药物和载体蛋白,该药物不是疏水药物衍生物(例如,不是疏水紫杉烷衍生物)。在一些实施方式中,纳米颗粒包括疏水药物衍生物和载体蛋白,该疏水的药物衍生物不是疏水紫杉烷衍生物。在一些实施方式中,载体蛋白是白蛋白(诸如人血清白蛋白)。
在一些实施方式中,本文描述的组合物中的纳米颗粒具有不大于约150nm的平均直径,包括例如不大于约100、90、80、70或60nm中的任何一个。在一些实施方式中,组合物中的所有纳米颗粒中的至少约50%(例如至少约60%、70%、80%、90%、95%或99%中的任何一个)具有不大于约150nm的直径,包括例如不大于约100、90、80、70或60nm中的任何一个。在一些实施方式中,组合物中的所有纳米颗粒中的至少约50%(例如至少60%、70%、80%、90%、95%或99%中的任何一个)落入约20至约150nm的范围内,包括例如约30至约140nm中的任何一个、约40至约130、约50至约120和约60至约100nm中的任何一个。
在一些实施方式中,载体蛋白具有能形成二硫键的巯基。在一些实施方式中,组合物的纳米颗粒部分中的载体蛋白的至少约5%(包括例如至少约10%、15%或20%中的任何一个)是交联的(例如通过一个或多个二硫键交联的)。
在一些实施方式中,纳米颗粒包括药物,例如疏水药物衍生物(例如,疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一个和式I、II、III、IV、V或VI中的任何化合物),包被有载体蛋白,诸如白蛋白(例如人血清白蛋白)。在一些实施方式中,组合物包括药物,诸如以非纳米颗粒的形式的疏水紫杉烷衍生物,其中组合物中的疏水紫杉烷衍生物的至少约50%、60%、70%、80%、90%、95%或99%中的任何一个是纳米颗粒的形式。在一些实施方式中,纳米颗粒中的药物(例如疏水紫杉烷衍生物)在重量上构成纳米颗粒的大于约50%、60%、70%、80%、90%、95%或99%中的任何一个。在一些实施方式中,纳米颗粒具有非聚合基质。在一些实施方式中,纳米颗粒包括基本上没有聚合物质(诸如聚合基质)的药物(例如,疏水紫杉烷衍生物)的芯。
在一些实施方式中,组合物基本上没有(诸如没有)表面活性剂(诸如Cremophor
Figure BPA00001480457000031
、Tween 80或用于紫杉烷给药的其它有机溶剂)。在一些实施方式中,组合物含有小于约20%、15%、10%、7.5%、5%、2.5%或1%中的任何一个的有机溶剂。在一些实施方式中,组合物中载体蛋白(诸如白蛋白)和药物或疏水药物衍生物(例如疏水紫杉烷衍生物诸如化合物1、2、3-23中的任何一个和式I、II、III、IV、V或VI中的任何化合物)的重量比是约18∶1或更小,诸如约15∶1或更小,例如,约10∶1或更小。在一些实施方式中,组合物中载体蛋白(诸如白蛋白)和疏水紫杉烷衍生物的重量比落在约1∶1至约18∶1、约2∶1至约15∶1、约3∶1至约13∶1、约4∶1至约12∶1、约5∶1至约10∶1中的任何一个的范围内。在一些实施方式中,组合物中的纳米颗粒部分的载体蛋白和疏水紫杉烷衍生物的重量比是约1∶2、1∶3、1∶4、1∶5、1∶10、1∶15中的任何一个或更小。
在一些实施方式中,颗粒组合物包括一个或多个上面的特性。
在一些实施方式中,疏水紫杉烷衍生物具有连接到紫杉烷的2′-羟基位置的疏水基团。在一些实施方式中,疏水基团是酰基,诸如-C(O)-C4-C10烷基,例如-C(O)-C6烷基。在一些实施方式中,疏水基团是连接到紫杉烷的2′-羟基的酰基。在一些实施方式中,疏水紫杉烷衍生物是紫杉烷的前体药物。
在一些实施方式中,疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一个和式I、II、III、IV、V或VI中的任何化合物)较相应的未改性紫杉烷对白蛋白具有改进的结合(例如较紫杉醇和/或多西紫杉醇改进的)。在一些实施方式中,蛋白纳米颗粒组合物中疏水药物衍生物(例如疏水紫杉烷衍生物)在相等的毒性剂量下较相应的未改性药物(例如紫杉烷,诸如紫杉醇和/或多西紫杉醇)的纳米颗粒组合物显示改进的治疗效率。
在一些实施方式中,疏水紫杉烷衍生物是本文描述的式I的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的式II的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的式III的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的式IV的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的式V的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的式VI的化合物。在一些实施方式中,疏水紫杉烷衍生物是本文描述的化合物1-23中的任何一种。在一些实施方式中,疏水紫杉烷衍生物是本文描述的化合物2。
本文还提供使用本文描述的组合物用于治疗疾病(诸如癌症)的方法,以及用于本文描述的用途的试剂盒和单位剂量。
附图简述
图1显示产生的多西紫杉醇的量相对于疏水紫杉烷衍生物的温育时间。
图2A显示与Taxotere
Figure BPA00001480457000041
相比,增加含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的浓度对乳腺癌异种移植模型中肿瘤生长的影响。
图2B显示与Taxotere
Figure BPA00001480457000042
相比,增加含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的浓度对乳腺癌异种移植模型中体重变化的影响。
图3A显示与Taxotere相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对H358肺癌异种移植模型中肿瘤体积变化的影响。
图3B显示与Taxotere
Figure BPA00001480457000044
相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对H358肺癌异种移植模型中体重变化的影响。
图4A显示与Nab多西紫杉醇相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对HT29结肠癌异种移植模型(研究编号CA-AB-6)中肿瘤生长的影响。
图4B显示与Nab多西紫杉醇相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对HT29结肠癌异种移植模型(研究编号CA-AB-6)中体重变化的影响。
图5A显示与Taxotere
Figure BPA00001480457000045
相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对HT29结肠癌异种移植模型(研究编号CA-AB-6)中肿瘤生长的影响。
图5B显示与Taxotere相比,含有疏水紫杉烷衍生物和白蛋白的纳米颗粒对HT29结肠癌异种移植模型(研究编号CA-AB-6)中体重变化的影响。
图6A显示与Taxotere
Figure BPA00001480457000047
相比,增加含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的浓度对HT29结肠癌异种移植模型(研究编号ABS-18)中肿瘤生长的影响。
图6B显示与Taxotere相比,增加含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的浓度对HT29结肠癌异种移植模型(研究编号ABS-18)中体重变化的影响。
图7显示含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的重复剂量毒性。
图8显示含有疏水紫杉烷衍生物和白蛋白的纳米颗粒的颗粒分布和平均颗粒大小。
图9显示纳米颗粒组合物Nab-2的颗粒溶解特性。
图10显示纳米颗粒组合物Nab-多西紫杉醇的颗粒溶解特性。
图11显示纳米颗粒组合物Nab-2和Nab-多西紫杉醇的标准化的溶解特性。
图12显示Nab-紫杉醇纳米颗粒的平均颗粒大小和ζ电位。
图13显示Nab-紫杉醇纳米颗粒的Cryo和标准TEM。
图14显示紫杉醇和Nab-紫杉醇的x-线表征。
图15显示在模拟的血浆(5%HSA)中各种浓度的Nab-紫杉醇的颗粒大小。
图16显示在猪血浆中各种浓度的Nab-紫杉醇的颗粒大小。
图17显示在猪全血中各种浓度的Nab-紫杉醇的颗粒大小。
图18显示给Yucatan小型猪服用Nab-紫杉醇纳米颗粒超过30min后,血浆紫杉醇浓度(通过HPLC)和颗粒大小(通过DLS)对时间的图。
图19显示Nab-2的组织分布。
发明详述
本发明提供药物,例如在基于蛋白的纳米颗粒中配制的紫杉烷衍生物。一些药物衍生物,诸如紫杉烷衍生物,具有连接到相应药物的疏水基团和与未改性的药物相比增加的疏水性。
我们已经发现,当将含有疏水基团(诸如酰基,例如-C(O)-C4-C10烷基,特别是连结到紫杉烷的2′-羟基的-C(O)-C6烷基)的紫杉烷衍生物配制到蛋白纳米颗粒组合物中时,其产生较未改性紫杉烷的蛋白纳米颗具有显著改善的性质的纳米颗粒。这些性质可包括,但并不限于下面的一个或多个:小的颗粒大小(例如小于约100nm的平均直径)、狭窄的颗粒大小分布、化合物到其预期作用位点(或多个)的增强的递送、延迟的或持续释放、延迟清除和增加的抗癌效力。这里描述的组合物因此特别适用于治疗疾病诸如癌症。
相应地,本发明一方面提供包括纳米颗粒的组合物,纳米颗粒包括:1)疏水药物衍生物;和2)载体蛋白。在一些实施方式中,疏水药物衍生物是前体药物。
本发明另一方面提供包括纳米颗粒的组合物,纳米颗粒包括:1)疏水紫杉烷衍生物;和2)载体蛋白。在一些实施方式中,疏水紫杉烷药物衍生物是前体药物。
另一方面,本发明提供使用本文描述的组合物治疗疾病(诸如癌症)的方法。
还提供了试剂盒和和单位剂型。
缩写和定义
本文所用的缩写具有化学和生物学领域内的常规意义。
如本文所用,“疏水药物衍生物”指用疏水基团取代的药物。例如,“疏水紫杉烷衍生物”指用疏水基团取代的紫杉烷。“疏水基团”指当在紫杉烷上取代时,导致与未取代的紫杉烷相比具有增加的疏水特性的紫杉烷衍生物的部分。增加的疏水特性可被测定,例如,通过降低的水溶性、降低的极性、降低的氢键合的电势、和/或增加的油/水分配系数。“紫杉烷”如本文所用包括紫杉醇和多西紫杉醇。术语“疏水紫杉烷衍生物”因此不包括紫杉醇或多西紫杉醇。
术语“卤(halo)”或“卤素(halogen)”,它们自身或作为另一个取代基的部分,除非另有说明,指氟原子、氯原子、溴原子或碘原子。
术语“烷基”,自身或作为另一个取代基的部分,除非另外说明,指具有指定的碳原子数目的——如果指定的话(即C1-C10指一至十个碳原子)——完全饱和的直链(线性的、无支链的)或支链或其组合。例子包括但并不限于基团,诸如甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、同系物和异构体,例如,正戊基、正己基、正庚基、正辛基的同系物和异构体,和类似物。如果没指定大小,本文提到的烷基含有1-20个碳原子,典型地1-10个碳原子或1-8个碳原子或1-6个碳原子或1-4个碳原子。
术语“链烯基”指具有指定的碳原子数目的——如果指定的话——包括直链(线性的、无支链的)、支链基团和其组合的不饱和脂族基团,该不饱和脂族基团含有至少一个双键(-C=C-)。所有的双键可以独立地是(E)或(Z)几何形状,以及其混合物。链烯基的例子包括但并不限于-CH2-CH=CH-CH3、-CH=CH-CH=CH2和-CH2-CH=CH-CH(CH3)-CH2-CH3。如果没指定大小,本文提到的链烯基含有2-20个碳原子,典型地2-10个碳原子或2-8个碳原子或2-6个碳原子或2-4个碳原子。
术语“炔基”指具有指定的碳原子数目的——如果指定的话——包括直链(线性的、无支链的)、支链基团和其组合的不饱和脂族基团,该不饱和脂族基团含有至少一个碳-碳三键(-C≡C-)。炔基的例子包括但并不限于-CH2-C≡C-CH3、-C≡C-C≡CH和-CH2-C≡C-CH(CH3)-CH2-CH3。如果没指定大小,本文提到的炔基含有2-20个碳原子,典型地2-10个碳原子或2-8个碳原子或2-6个碳原子或2-4个碳原子。
术语“环烷基”本身或与其它的术语结合,除非另外说明,代表烷基、链烯基或炔基的环状形式,或其混合物。此外,环烷基可含有稠环,但排除稠合的芳基和杂芳基。环烷基的例子包括但并不限于环丙基、环丁基、环戊基、环己基、1-环己烯基、3-环己烯基、环庚基、降冰片基(norbornyl)和类似物。如果没指定大小,本文提到的炔基含有3-9个碳原子,典型地3-7个碳原子。
术语“杂环烷基”本身或与其它的术语结合代表含有至少一个环碳原子和至少一个选自O、N、P、Si和S的环杂原子的环烷基,其中氮原子和硫原子可任选地被氧化,氮杂原子可任选地被季铵化。这些环杂原子常常选自N、O和S。杂环烷基能在环碳或环杂原子处被连接到分子的残余部分。此外,杂环烷基可含有稠环,但排除稠合的芳基和杂芳基。杂环烷基的例子包括但并不限于1-(1,2,5,6-四氢吡啶基)、1-哌啶基(piperidinyl)、2-哌啶基、3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃-3-基、四氢噻吩-2-基、四氢噻吩-3-四氢噻吩、1-哌嗪基(piperazinyl)、2-哌嗪基和类似物。
术语“环烷基-烷基”和“杂环烷基-烷基”分别指烷基取代的环烷基和烷基取代的杂环烷基,其中烷基部分被连接到母体结构。非限制性例子包括环丙基-乙基、环丁基-丙基、环戊基-己基、环己基-异丙基、1-环己烯基-丙基、3-环己烯基-叔-丁基、环庚基-庚基、降冰片基-甲基、1-哌啶基-乙基、4-吗啉基-丙基、3-吗啉基-叔-丁基、四氢呋喃-2-基-己基、四氢呋喃-3-基-异丙基和类似物。环烷基-烷基和杂环烷基-烷基还包括至少一个碳原子存在于烷基中的取代基,其中烷基的另一个碳原子已被例如氧原子、氮原子或硫原子替换(例如环丙氧基甲基、2-哌啶基氧(piperidinyloxy)-叔-丁基和类似物)。
除非另外说明,术语“芳基”指多不饱和的、芳族的烃取代基,其可以是单环或多环(例如1至3个环),这些环被稠合在一起或共价地连接。此外,芳基可含有稠环,其中这些环中的一个或多个任选地是环烷基或杂环烷基。芳基的例子包括但并不限于苯基、1-萘基、2-萘基、4-联苯。
术语“杂芳基”指含有一至四个选自N、O和S的环杂原子的芳基(或环),其中氮原子和硫原子任选地被氧化,氮原子(或多个)任选地被季铵化。杂芳基能在环碳或环杂原子处被连接到分子的残余部分。此外,杂芳基可含有稠环,其中这些环中的一个或多个任选地是环烷基或杂环烷基。杂芳基的非限制性例子是1-吡咯基、2-吡咯基、3-吡咯基、3-吡唑基、2-咪唑基、4-咪唑基、吡嗪基、2-噁唑基、4-噁唑基、2-苯基-4-噁唑基、5-噁唑基、3-异噁唑基、4-异噁唑基、5-异噁唑基、2-噻唑基、4-噻唑基、5-噻唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、2-吡啶基、3-吡啶基、4-吡啶基、2-嘧啶基、4-嘧啶基、5-苯并噻唑基、嘌呤基、2-苯并咪唑基、5-吲哚基、1-异喹啉基、5-异喹啉基、2-喹喔啉基、5-喹喔啉基、3-喹啉基和6-喹啉基。用于上面提到的芳基和杂芳基环系统的每个的取代基可选自下面描述的可接受的取代基。
术语“芳烷基”指烷基取代的芳基,其中烷基部分被连接到母体结构。例子是苯甲基、苯乙基和类似物。“杂芳烷基”指通过烷基残基连接到母体结构的杂芳基部分。例子包括呋喃甲基、吡啶基甲基、嘧啶基乙基和类似物。芳烷基和杂芳烷基还包括烷基的至少一个碳原子存在于烷基中的取代基,其中烷基的另一个碳已被例如氧原子替换(例如苯氧甲基、2-吡啶基甲氧基、3-(1-萘氧基)丙基和类似物)。
上面的术语的每一个(例如,“烷基”、“链烯基”、“炔基”、“环烷基”、“杂环烷基”、“环烷基-烷基”、“杂环烷基-烷基”、“芳基”、“杂芳基”、“芳烷基”和“杂芳烷基”)是要包括指明的基团的取代的和未取代的形式。
“任选取代的”或“取代的”指用单价的或二价的基团替换一个或多个氢原子。合适的取代基包括,例如,羟基、硝基、氨基、亚氨基、氰基、卤(诸如F、Cl、Br、I)、卤烷基(诸如-CCl3或-CF3)、硫代、磺酰基、硫代酰氨基、脒基、imidino、氧代、oxamidino、methoxamidino、imidino、胍基、亚磺酰氨基、羧基、甲酰基、烷基、烷氧基、烷氧基-烷基、烷基羰基、烷基羰氧基(-OCOR)、氨基羰基、芳基羰基、芳烷基羰基、羰基氨基、杂芳基羰基、杂芳烷基-羰基、硫代烷基、氨基烷基、氰基烷基、氨基甲酰基(-NHCOOR-或-OCONHR-)、尿素(-NHCONHR-)、芳基和类似取代基。在本发明的一些实施方式中,上面的基团(例如烷基)用例如氨基、杂环烷基诸如吗啉、哌嗪、哌啶、氮杂环丁烷、羟基、甲氧基或杂芳基诸如吡咯烷取代。
取代基能自身被取代。被取代到取代基团上的基团可以是羧基、卤、硝基、氨基、氰基、羟基、烷基、链烯基、炔基、烷氧基、氨基羰基、-SR、硫代酰氨基、-SO3H、-SO2R或环烷基,其中R典型地是氢或烷基。
当取代的取代基包括直链基团时,取代基能发生在链内(例如2-羟基丙基、2-氨基丁基和类似物)或链末端(例如2-羟基乙基、3-氰基丙基和类似物)。取代的取代基可以是共价结合的碳或杂原子(N、O或S)的直链、分枝的或环状的排列。
如本文所使用的,“异构体”包括本文的式中提到的化合物的所有立体异构体,包括对映异构体、非对映异构体,以及所有的构象异构体、旋转异构体和互变异构体,除非另外说明。本发明包括公开的任何手性化合物的所有对映异构体,这些对映异构体是基本上纯的左旋或右旋的形式,或是外消旋混合物,或为对映异构体的任何比。对于公开的作为(R)-对映异构体的化合物,本发明还包括(S)-对映异构体;对于公开的作为(S)-对映异构体的化合物,本发明还包括(R)-对映异构体。本发明包括上面的式中提到的化合物的任何非对映异构体,这些非对映异构体为非对映异构体上纯的形式和所有比的混合物的形式。
除非立体化学明确地指明化学结构或化学名称,化学结构或化学名称意图是包括描述的化合物的所有可能的立体异构体、构象异构体、旋转异构体和互变异构体。例如,含有手性碳原子的化合物意图是包括(R)对映异构体和(S)对映异构体,以及包括外消旋混合物在内的对映异构体的混合物;含有两个手性碳原子的化合物意图包括所有的对映异构体和非对映异构体(包括(R,R)、(S,S)、(R,S)和(R,S)异构体)。
在本文公开的式的化合物的所有用途中,本发明还包括上面描述的化合物的立体化学形式、对映形式、非对映形式、构象形式、旋转异构形式、互变异构形式、溶剂合物、水合物、多晶型形式、结晶形式、非结晶形式、盐、药学上可接受的盐、代谢物和前体药物变型中的任何一种或所有的用途。
本发明的某些化合物能以未溶剂化以及溶剂化的形式存在(即溶剂合物)。本发明化合物还可包括水合的形式(即水合物)。一般而言,对于生物学实用的目的,溶剂化的和水合的形式与未溶剂化的形式相等,并被包括在本发明的范围内。本发明还包括所有的多晶型物,包括结晶的和非晶性的形式。一般而言,对于本发明考虑的用途来说,所有的物理形式是等同的,并意图是处于本发明的范围内。
本发明包括本文描述的化合物的所有的盐,以及使用这样的化合物的盐的方法。本发明还包括本文描述的化合物的任何盐的所有非盐形式,以及本文命名的化合物的任何盐的其它盐。在一个实施方式中,化合物的盐包括药学上可接受的盐。“药学上可接受的盐”是保留游离的化合物的生物学活性的那些盐和能作为药物或药品给予个体(例如人)的那些盐。通过本领域技术人员已知的方法通过用酸处理化合物可制备化合物的碱性官能团的期望的盐。无机酸的例子包括但并不限于,盐酸、氢溴酸、硫酸、硝酸和磷酸。有机酸的例子包括但并不限于甲酸、乙酸、丙酸、乙醇酸、马尿酸、丙酮酸、草酸、马来酸、丙二酸、琥珀酸、富马酸、酒石酸、柠檬酸、苯甲酸、肉桂酸、扁桃酸、磺酸和水杨酸。通过本领域技术人员已知的方法通过用碱处理化合物可制备化合物的酸性官能团的期望的盐。酸性化合物的无机盐的例子包括但并不限于,碱金属和碱土金属盐,诸如钠盐、钾盐、镁盐和钙盐;铵盐;和铝盐。酸性化合物的有机盐的例子包括但并不限于,普鲁卡因、二苄胺、N-乙基哌啶、N,N′-二苄乙二胺和三乙胺盐。
术语“前体药物”指自身是相对无活性的,但给予使用其的个体之后通过体内化学或生物学处理(例如通过水解和/或酶转化)转变成更有活性的化合物的化合物。前体药物包括,例如,这样的化合物,其中羟基、氨基或巯基被结合到任何基团上,当将其给予个体时,该基团被分裂,分别形成自由的羟基、氨基或巯基。前体药物的例子包括但并不限于,乙醇和胺官能团的醋酸盐、甲酸盐和苯甲酸盐衍生物。本发明化合物的药学上可接受的前体药物包括但并不限于,酯、碳酸盐、硫代碳酸盐、N-酰基衍生物、N-酰氧基烷基衍生物、叔胺的四元衍生物、N-曼尼希碱、席夫碱、氨基酸偶联物、磷酸酯、金属盐和磺酸酯。T.Higuchi and V.Stella,PRO-DRMGS AS NOVEL DELIVERY SYSTEMS,Vol.14,A.C.S.SymposiumSeries和Edward B.Roche编辑,BIOREVERSIBLE CARRIERS IN DRMG DESIGN,American Pharmaceutical Association and Pergamon Press,1987提供了全面的论述,它们都作为参考被并入本文。在一些实施方式中,本发明中使用的紫杉烷衍生物自身是前体药物。在一些实施方式中,本发明中使用的紫杉烷衍生物不是前体药物。
基本上纯的化合物指作为杂质和/或不同形式的化合物以不超过总量的约15%或不超过总量的约10%或不超过总量的约5%或不超过总量的约3%或不超过总量的约1%存在的化合物。例如,基本上纯的S,S化合物指存在不超过全部的R,R、S,R和R,S形式的约15%或不超过约10%或不超过约5%或不超过约3%或不超过约1%。
“保护基团”指显示下面特性的化学基团:1)对期望保护的计划反应是稳定的;2)可从受保护的底物中去除以产生期望的官能性;和3)通过与在这样的计划反应中存在的或产生的其它官能团(或多个)相容的试剂可去除。本文描述的方法中使用的合适的保护基团的选择在本领域普通技术人员水平内。在Greene et al.(1991)PROTECTIVE GROUPS IN ORGANIC SYNTHESIS,第三版.(John Wiley & Sons,Inc.,New York)中能发现合适的保护基团的例子,其内容作为参考被并入本文。在本发明的一些实施方式中,保护基团不被从疏水紫杉烷衍生物中去除。本文所使用的“羟基保护基团”指能保护自由羟基以产生“受保护的羟基”的基团,在利用该保护进行的反应后,该受保护的羟基可被去除而不干扰化合物的残余部分。示例性的羟基保护基团包括但并不限于,醚(例如烯丙基、三苯甲基(trityl或Tr)、苯甲基、对-甲氧苯甲基(PMB)、对-甲氧基苯基(PMP)、缩醛(例如甲氧基甲基(MOM)、3-甲氧基乙氧基甲基(MEM)、四氢吡喃(THP)、乙氧基乙基(EE)、甲硫基甲基(MTM)、2-甲氧基-2-丙基(MOP)、2-三甲基甲硅烷基乙氧基甲基(SEM))、酯(例如苯甲酸酯(Bz)、烯丙基碳酸酯、2,2,2-三氯乙基碳酸酯(Troc)、2-三甲基甲硅烷基乙基碳酸酯)、甲硅烷基酯(例如三甲基甲硅烷基(TMS)、三乙基甲硅烷基(TES)、三异丙基甲硅烷基(TI PS)、三苯基甲硅烷基(TPS)、叔-丁基二甲基甲硅烷基(TBDMS)、叔-丁基二苯基甲硅烷基(TBDPS)和类似物。
如本文所使用的,“治疗(treatment)”或“治疗(treating)”是用于获得包括临床结果在内的有益的或期望的结果的方法。对于本发明的目的,有益的或期望的临床结果包括但并不限于下面的一个或多个:减少引起疾病的又一个症状、缩小疾病的范围、稳定疾病(例如阻止或延缓疾病的恶化)、延缓或减慢疾病的进展、改善疾病状态、减少治疗疾病需要的一个或多个其它药物的剂量、增加生活质量、和/或延长生存(包括全部生存者和无进展的生存者)。“治疗”还包括癌症病理结果的减少。本发明的方法考虑治疗的这些方面的任何一个或多个。
如本文所使用的,“延缓”癌症的发展指延迟、阻碍、减慢、推迟、稳定、和/或推迟疾病的发展。根据病史和/或正被治疗的个体,这种延缓可以是不同长度的时间。对本领域的技术人员来说明显的是,足够的或显著的延缓能实际上包括预防,因为个体不发展疾病。“延缓”癌症发展的方法是当与不使用该方法相比时,在给定的期限里减小疾病发展的概率和/或在给定的期限里减小疾病的范围的方法。这样的比较典型地基于使用统计学上显著量的受试者的临床研究。使用标准的方法能检测到癌症的发展,诸如常规的体格检查或x线。发展还可指可能最初不能检测到和包括复发和开始的疾病进展。
如本文所使用的,“濒临危险”的个体是濒临发展病状(例如癌症)危险的个体。个体“濒临危险”可具有或可不具有可检测到的疾病,和在本文描述的治疗方法之前可能或可能不显示可检测到的疾病。“濒临危险”指个体具有一个或多个所谓的危险因素,这些危险因素是与病状的发展相关的可测量的参数,本文描述了这些危险因素。具有一个或多个这些危险因素的个体具有比没有这些危险因素(或多个)的个体更高的发展该病状的概率。
如本文所使用的,“药学上有活性的化合物”、“治疗制剂”、“药物”和这些术语的同源词指引起期望的效果例如治疗、稳定、预防和/或延缓癌症的化学化合物。
如本文所使用的,术语“附加的药物试剂”和其同源词意图指除了紫杉烷衍生物的活性剂,例如,经给药以引出治疗作用的药物。药物试剂(或多个)可被指向与紫杉烷衍生物(或多个)意图治疗或预防的病状(例如癌症)相关的治疗作用,或药物试剂可意图治疗或预防潜在的病状(例如肿瘤生长、出血、溃疡形成、疼痛、肿大的淋巴结、咳嗽、黄疸、肿胀、体重减轻、恶病质、出汗、贫血、癌旁现象、血栓形成等)或进一步减小给予紫杉烷衍生物的副反应的出现或严重性。
如本文所使用的,“药学上可接受的”或“药理学上相容的”指不是生物学上或另外不希望的物质,例如该物质可被掺入到给予患者的药物组合物中而不引起任何显著的不希望的生物学作用或以有害的方式与含有其的药物组合物其它成分的任何一个相互作用。如本文所使用的,术语“药学上可接受的载体”和其同源词指熟练的技术人员已知的佐剂、粘合剂、稀释剂等,其适于给予个体(例如哺乳动物或非哺乳动物)。本发明还考虑了两个或多个载体的组合。本文所描述的药学上可接受的载体(或多个)和任何附加的成分应适合在特定的剂型的预期的给药途径(例如口的、肠胃外的)中使用。熟练的技术人员将容易地识别这样的适合性,尤其由本文提供的教导看来。药学上可接受的载体或赋形剂已优选地满足毒理学和制造试验的必需标准和/或包括在美国食品和药物管理局(U.S.Food and Drugadministration)制定的无活性成分指南(Inactive Ingredient Guide)上。
术语“药学有效量”、“治疗有效量”、“有效量”和这些术语的同源词,如本文所使用的,指对特定的状况(例如疾病、机能紊乱等)或其症状的一个或多个引起期望的药理学和/或生理学作用和/或为了完全地或部分地阻止状况或其症状的发生和/或在部分或全部治愈状况和/或归因于该状况(例如癌症)的副作用的方面可以是治疗性的量。参考本文描述的状况(例如癌症),药学上或治疗上的有效量可包括足以减少癌细胞数目、减小肿瘤大小、抑制(即在某种程度上减慢并优选地停止)癌细胞浸润到周围器官、抑制(即在某种程度上减慢并优选地停止)肿瘤转移、在某种程度上抑制肿瘤生长、阻止生长和/或杀死存在的癌细胞、是细胞生长抑制的和/或细胞毒的、恢复或维持血管阻塞或阻止血管阻塞的损害或丧失、减少肿瘤负荷、降低发病率和/或死亡率、和/或在某种程度上减轻与癌症相关的症状的一个或多个的量。有效量可延长无进展生存者(例如通过实体肿瘤的反应评价标准(Response Evaluation Criteria for Solid Tumors)RECIST或CA-125变化测量的)、引起目的反应(包括部分反应或完全反应)、增加总存活时间、和/或改善癌症(例如FOSI评价的)症状的一个或多个。在某些实施方式中,当在预防上给予个体时,药学上有效量足以预防状况。
“药学上有效量”或“治疗有效量”可根据被给予的组合物、被治疗/预防的状况(例如癌症的类型)、被治疗或预防的状况的严重性、个体的年龄和相对的健康状态、给药途径和形式、护理医学或兽医医师的判断、和依据本文提供的教导由熟练的技术人员理解的其它因素而变化。
本领域理解的是,“有效量”可处于一个或多个剂量中,即可需要单剂量或多剂量来获得期望的治疗终点。在给予一种或多种治疗剂的背景中可考虑有效量,如果与一种或多种其它治疗剂结合,可考虑以有效量给予纳米颗粒组合物(例如包括紫杉烷衍生物和载体蛋白的组合物),可获得期望或有益的结果。
除非另外清楚地指明,如本文所使用的“个体”意思是哺乳动物,包括但并不限于灵长类动物、人类、牛、马、猫、犬和/或啮齿类动物。
当关于本文描述的治疗/预防的方法和化合物和其纳米颗粒组合物的用途使用时,“需要其”的个体可以是已被诊断患有病状的或就将被治疗的病状先前已被治疗的个体。关于预防,需要其的个体还可以是濒临病状(例如病状的家族史、提示病状的危险的生活方式因素等)危险的个体。
如本文所使用的,“联合治疗”指包括纳米颗粒的第一治疗与有益于治疗、稳定、预防和/或延缓癌症的第二治疗(例如手术或另外的治疗剂)连起来,该纳米颗粒包括疏水紫杉烷衍生物和载体蛋白。与另一个化合物“结合”给药包括以相同或不同的组合物(或多种),或依次地、同时地或连续地给药。在一些实施方式中,联合治疗任选地包括一种或多种药学上可接受的载体或赋形剂、非药学上有活性的化合物和/或惰性物质。
本文使用的术语“抗微生物剂”指能抑制(例如延缓、降低、减慢和/或阻止)一种或多种微生物的生长的药剂。通过本领域已知的许多方法能测量或表明显著的微生物生长,诸如下面的一个或多个方法:(i)当将组合物给予个体时,足够引起个体一个或多个副作用的组合物中微生物的生长;(ii)当外部污染(例如在20℃至25℃范围内的温度下暴露于10-103个集落形成单位)时超过某段时期(例如超过24小时的时期)中微生物生长超过约10倍的增加。美国2007/0117744中描述了显著微生物生长的其它标记,其在此以其全部通过参考被并入。
如本文所使用的“糖”包括但并不限于,单糖、二糖、多糖和其衍生物或改性物。用于本文描述的组合物的合适的糖包括,例如甘露醇、蔗糖、果糖、乳糖、麦芽糖和海藻糖。
术语“蛋白质”指多肽或任何长度(包括全长或片段)的氨基酸聚合物,它们可以是线性的或分枝的,包括改性的氨基酸,和/或被非氨基酸中断。该术语还包括已被自然地或通过干预改性的氨基酸聚合物,例如,二硫键形成、糖基化、脂化、乙酰化、磷酸化或任何其它的操作或改性。还包括在该术语内的是,例如,含有一个或多个氨基酸衍生物(包括,例如,非天然氨基酸等)的多肽,以及本领域已知的其它改性。
“生存者”指保持活着的患者,并包括全部生存者以及无进展生存者。“全部生存者”指保持活着达持续确定时间的患者,诸如从诊断或治疗的时间开始1年、5年等。“无进展生存者”指保持活着、无癌症进展或恶化的患者。“延长存活”指相对于未治疗的患者(例如相对于未用紫杉烷纳米颗粒组合物治疗的患者),增加治疗的患者中全部生存者或无进展生存者。
如本文所使用的,提到“不是”一个值或参数通常指和描述“除外”一个值或参数。例如,如果不给予紫杉烷,它指给予除紫杉烷外的药剂。
提到“约”一个值或参数本文包括(和描述)有关该值或参数本身的变化。例如,涉及“约X”的描述包括“X”的描述。
如本文和所附权利要求所使用的,单数形式“一(a)”、“或”和“所述(the)”包括复数的指示物,除非上下文另外清楚地指示。应理解为本文描述的本发明的方面和变化包括由方面和变化“组成”和/或“基本上组成”。
除非另外定义或上下文清楚地指明,本文使用的所有技术和科学术语具有与本发明所属领域普通技术人员通常理解的相同的意思。
纳米颗粒组合物
本发明提供包括纳米颗粒的组合物,其中该纳米颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白,例如人血清白蛋白)。
在一些实施方式中,组合物包括纳米颗粒,其中该纳米颗粒包括药物和载体蛋白(诸如白蛋白,例如人血清白蛋白)。在一些实施方式中,药物是紫杉烷。在一些实施方式中,药物不是紫杉烷。在一些实施方式中,药物是紫杉醇。在一些实施方式中,药物不是紫杉醇。在一些实施方式中,药物是多西紫杉醇。在一些实施方式中,药物不是多西紫杉醇。
在一些实施方式中,为包括纳米颗粒的组合物,其中该纳米颗粒包括疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白,例如人血清白蛋白)。在一些实施方式中,疏水药物衍生物是疏水紫杉烷衍生物。在一些实施方式中,疏水药物衍生物不是疏水紫杉烷衍生物。在一些实施方式中,疏水药物衍生物是疏水紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是疏水紫杉醇衍生物。在一些实施方式中,疏水药物衍生物是疏水的多西紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是疏水的多西紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(1)。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(2)。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水药物衍生物(例如疏水紫杉烷衍生物)和载体蛋白(诸如白蛋白,例如人血清白蛋白),其中疏水药物衍生物具有改进的与白蛋白的结合(与未改性的药物相比,诸如紫杉烷)。在一些实施方式中,组合物是药物组合物。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白,例如人血清白蛋白),其中该组合物与药物(例如紫杉烷)相比显示改进的治疗效果。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水药物衍生物(例如疏水紫杉烷衍生物)和载体蛋白(诸如白蛋白,例如人血清白蛋白),其中疏水药物衍生物是药物(例如紫杉烷)的前体药物。在一些实施方式中,疏水药物衍生物不是疏水紫杉烷衍生物。在一些实施方式中,疏水药物衍生物不是疏水的紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是疏水的多西紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(1)。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(2)。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括紫杉醇的疏水紫杉烷衍生物和载体蛋白(诸如白蛋白,例如人血清白蛋白)。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括多西紫杉醇的疏水紫杉烷衍生物和载体蛋白(诸如白蛋白,例如人血清白蛋白)。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水药物衍生物和载体蛋白(诸如白蛋白,例如人血清白蛋白),其中疏水药物衍生物不是疏水紫杉烷衍生物(例如不是疏水的紫杉醇衍生物和/或不是疏水的多西紫杉醇衍生物)。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水紫杉烷衍生物和载体蛋白,其中疏水紫杉烷衍生物具有连接到相应的紫杉烷2′-羟基位置的疏水基。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括疏水紫杉烷衍生物和载体蛋白,其中疏水紫杉烷衍生物具有连接到相应的紫杉烷2′-羟基位置的酰基。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式I的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式II的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式III的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式IV的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式V的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括式VI的化合物和载体蛋白。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括选自化合物1-23的化合物和载体蛋白。在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒包括化合物2和载体蛋白。
在一些实施方式中,提供包括纳米颗粒的组合物,其中该纳米颗粒不包括白蛋白结合的紫杉醇。在一些实施方式中,该组合物包括纳米颗粒,其中该纳米颗粒不包括白蛋白结合的化合物2。在一些实施方式中,该组合物包括纳米颗粒,其中该纳米颗粒不包括白蛋白结合的多西紫杉醇。在一些实施方式中,该组合物包括纳米颗粒,其中该纳米颗粒不包括白蛋白结合的紫杉醇。
在一些实施方式中,该纳米颗粒包括用载体蛋白,诸如白蛋白(例如人血清白蛋白)包被的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)。
本文描述的纳米颗粒与包括未被疏水基取代的药物(例如紫杉烷)的纳米颗粒组合物相比可具有显著不同的(例如较小的)直径(参见图8)。通过改变药物的疏水性质,可将纳米颗粒的大小变小,从而引起改进的和/或期望的治疗效果。纳米颗粒典型地具有不大于约1000纳米(nm)的平均直径(例如以干的形式),诸如不大于约900nm、800nm、700nm、600nm、500nm、400nm、300nm、200nm或100nm中的任何一个。在一些实施方式中,颗粒的平均直径不大于约200nm。在一些实施方式中,颗粒的平均直径在约20至约400nm之间。在一些实施方式中,颗粒的平均直径在约40至约200nm之间。在一些实施方式中,颗粒是消毒可滤过的。在一些实施方式中,本文描述的组合物中的纳米颗粒具有不大于约150nm的平均直径,包括例如不大于约100、90、80、70、60或50nm中的任何一个。如下面所描述的,较小的颗粒大小在帮助运输中可以是有益的。在一些实施方式中,组合物中的所有纳米颗粒的至少约50%(例如至少60%、70%、80%、90%、95%或99%中的任何一个)具有不大于约150nm的直径,包括例如不大于约100、90、80、70或60中的任何一个。在一些实施方式中,组合物中的所有纳米颗粒的至少约50%(例如至少约60%、70%、80%、90%、95%或99%中的任何一个)落入20-150nm的范围内,包括例如约30-140nm、40-130nm、50-120nm和60-100nm中的任何一个。本文描述的纳米颗粒可以是任何形状(例如球形的或非球形的形状)。在一些实施方式中,在血液浓度是约25、50、75、100、125、150、175、200、250、300、350或400μg/mL中的任何一个时,包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的纳米颗粒在血液循环中的平均直径不大于约1000纳米(nm),诸如不大于约900nm、800nm、700nm、600nm、500nm、400nm、300nm、200nm或100nm中的任何一个。在一些实施方式中,所有纳米颗粒的至少约50%(例如至少60%、70%、80%、90%、95%或99%中的任何一个)在体内具有不大于约150nm的直径,包括例如不大于100、90、80、70或60中的任何一个。在一些实施方式中,在血液浓度在约10μg/mL至300μg/mL之间、25μg/mL至150μg/mL之间或50μg/mL至100μg/mL之间中的任何一个时,包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的纳米颗粒在血液中的平均直径在约5nm至80nm之间、10nm至70nm之间、20nm至60nm之间、30至50nm之间或约45nm中的任何一个。
在一些实施方式中,载体蛋白具有能形成二硫键的巯基。在一些实施方式中,组合物的纳米颗粒部分中的载体蛋白的至少约5%(包括例如至少约10%、15%或20%中的任何一个)是交联的(例如通过S-S交联的)。
在一些实施方式中,组合物包括以纳米颗粒的形式和非纳米颗粒的形式的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物),其中超过全部疏水紫杉烷衍生物的约50%、60%、70%、80%、90%、95%或99%中的任何一个是以纳米颗粒的形式。在一些实施方式中,疏水药物衍生物(例如疏水紫杉烷衍生物)在重量上构成超过纳米颗粒的约50%、60%、70%、80%、90%、95%或99%中的任何一个。在一些实施方式中,纳米颗粒基本上没有聚合核心材料。在一些实施方式中,纳米颗粒中的疏水药物衍生物(例如疏水紫杉烷衍生物)是非晶形(无定形)的形式。在一些实施方式中,用于制备纳米颗粒组合物的衍生物是无水的形式。在一些实施方式中,纳米颗粒组合物的载体蛋白(诸如白蛋白)与疏水紫杉烷衍生物的重量比是约18∶1或更小、15∶1或更小、14∶1或更小、13∶1或更小、12∶1或更小、11∶1或更小、10∶1或更小、9∶1或更小、8∶1或更小、7.5∶1或更小、7∶1或更小、6∶1或更小、5∶1或更小、4∶1或更小、或3∶1或更小中的任何一个。在一些实施方式中,组合物中的载体蛋白(诸如白蛋白)与疏水药物衍生物(例如疏水紫杉烷衍生物)的重量比落在约1∶1至约18∶1、约2∶1至约15∶1、约3∶1至约13∶1、约4∶1至约12∶1、约5∶1至约10∶1中的任何一个的范围内。在一些实施方式中,组合物的纳米颗粒部分中的载体蛋白与疏水紫杉烷衍生物的重量比是约1∶2、1∶3、1∶4、1∶5、1∶10、1∶15或更小中的任何一个。
本文描述的纳米颗粒可存在于干制剂(例如冻干组合物)中或悬浮在生物相容性介质中。合适的生物相容性介质包括但并不限于水、缓冲的水介质、盐水、缓冲的盐水、任选地缓冲的氨基酸溶液、任选地缓冲的蛋白溶液、任选地缓冲的糖溶液、任选地缓冲的维生素溶液、任选地缓冲的合成聚合物的溶液、含有脂质的乳液和类似物。在一些实施方式中,组合物包括颗粒(例如纳米颗粒)的稳定的水悬液,该颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白,例如用白蛋白包被的疏水药物衍生物颗粒)。
在一些实施方式中,组合物基本上没有(诸如没有)表面活性剂(诸如Cremophor
Figure BPA00001480457000161
、Tween 80或用于紫杉烷给药的其它有机溶剂)。
本文描述的纳米颗粒组合物可允许提高的运输和/或疏水药物衍生物(例如疏水紫杉烷衍生物)和/或疏水药物衍生物的代谢物对细胞(例如肿瘤细胞)的结合。与正常的细胞相比,肿瘤细胞显示增强的蛋白摄取,所述蛋白包括,例如白蛋白和转铁蛋白。由于肿瘤细胞快速地分裂,与正常的细胞相比,它们需要额外的营养源。本发明的含有紫杉醇和人血清白蛋白的药物组合物的肿瘤研究显示高的白蛋白-紫杉醇摄取进肿瘤。已发现这是由于先前未被认识的由对白蛋白特异的糖蛋白60(“gp60”)受体引起的白蛋白-药物运输现象。
在一些实施方式中,纳米颗粒组合物包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和能结合gp60受体的载体蛋白(诸如白蛋白)。在另一个实施方式中,纳米颗粒组合物包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和能结合SPARC受体的载体蛋白(诸如白蛋白)。
在一些实施方式中,当与相应的非衍生的药物(例如紫杉烷诸如紫杉醇或多西紫杉醇)的纳米颗粒相比时,包括疏水药物衍生物(例如疏水紫杉烷衍生物)的纳米颗粒组合物具有不同的溶解特性,其能引起显著的优点。例如,某些含有疏水紫杉烷衍生物的纳米颗粒当与它们非衍生的对应物相比时已显示具有醒目地较低的溶解度(参见实施例21、表9和10、和图9-11)。降低的溶解度可使纳米颗粒在循环期间保持完整一段延长的时间。相应地,在一个实施方式中,纳米颗粒组合物包括疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白),其中该纳米颗粒与包括未被疏水基团取代(例如多西紫杉醇或紫杉醇)的药物(例如紫杉烷)的纳米颗粒组合物相比具有降低的水溶解速率(包括实质上降低的溶解速率)。在这些实施方式的一些实施方式中,当与包括未改性的药物(例如紫杉烷,诸如多西紫杉醇或紫杉醇)的纳米颗粒组合物相比时,包括疏水药物衍生物(例如疏水紫杉烷衍生物)的纳米颗粒组合物的水溶解被降低大于约2倍或3倍或5倍、7倍、10倍、12倍、15倍、17倍、20倍、25倍、30倍、35倍、40倍、50倍、75倍、100倍、200倍、500倍、或1000倍中的任何一个。在一些实施方式中,在5%HSA、37℃下的溶解度研究中,在约5、10、25或50μg/mL中的任何一个时,纳米颗粒具有约10nm至100nm、20至75nm、15至50nm中任何一个或超过约20nm、30nm、40nm、50nm中任何一个的平均颗粒大小,这是通过使用Malvern Zetasizer的动态光散射测量的。在一些实施方式中,在5%HSA、37℃下的溶解研究中,在约5、50、75或100μg/mL中的任何一个时,纳米颗粒具有约20nm至75nm或超过约30nm的平均颗粒大小。在一些实施方式中,当在5%HSA中37℃下测量时,纳米颗粒显示下面的溶解特性:(1)a)在200μg/mL时约40nm至75nm或超过约50nm;b)在100μg/mL时约30nm至60nm或超过约40nm;和c)在10μg/mL时约10nm至40nm或超过约20nm;或(2)a)在约400μg/mL时约50nm至100nm或超过约60nm;b)在约200μg/mL时约40nm至75nm或超过约50nm;c)在约100μg/mL时约30nm至60nm或超过约40nm;d)在约10μg/mL时约10nm至40nm或超过约超过20nm;和e)在约5μg/mL时约10nm至40nm或超过约20nm,如通过使用Malvern Zetasizer的动态光散射测量的。在一些实施方式中,当在5%HSA中37℃下测量时,纳米颗粒显示下面的溶解特性中的一个或多个:a)在200μg/mL时约40nm至75nm或超过约50nm;b)在100μg/mL时约30nm至60nm或超过约40nm;或c)在10μg/mL时约10nm至40nm或超过约20nm,如通过使用Malvern Zetasizer的动态光散射测量的。在一些实施方式中,当在5%HSA中37℃下测量时,纳米颗粒显示下面的溶解特性中的一个或多个:a)在约400μg/mL时约50nm至100nm或超过约60nm;b)在约200μg/mL时约40nm至75nm或超过约50nm;c)在约100μg/mL时约30nm至60nm或超过约40nm;d)在约10μg/mL时约10nm至40nm或超过约超过20nm;或e)在约5μg/mL时约10nm至40nm或超过约20nm,如通过使用MalvernZetasizer的动态光散射测量的。在一些实施方式中,当在5%HSA中37℃下通过使用Malvern Zetasizer的动态光散射测量时,纳米颗粒显示表9的溶解特性。在一些实施方式中,当在5%HSA中37℃下通过使用Malvern Zetasizer的动态光散射测量时,纳米颗粒组合物的溶解曲线的EC50(即一半的点)低于约200μg/mL、150μg/mL、120mg/mL、100μg/mL或50μg/mL中的任何一个。在一些实施方式中,当在5%HSA中37℃下测量时,纳米颗粒组合物的溶解曲线的EC50小于在相同的纳米颗粒制剂中未改性的药物(例如紫杉烷)的EC50的约75%、50%、25%、10%或5%中的任何一个。在一些实施方式中,当在5%HSA中37℃下通过使用Malvern Zetasizer的动态光散射测量时,纳米颗粒组合物的溶解曲线的E90(即90溶解点)低于约100μg/mL、75μg/mL、50μg/mL、30μg/mL、20μg/mL、15μg/mL或10μg/mL中的任何一个。在一些实施方式中,当静脉内给予时,纳米颗粒能保持约30nm至约50nm的平均直径至少约5分钟、10分钟或1小时。
上面描述的包括疏水药物衍生物(例如疏水紫杉烷衍生物)的纳米颗粒显著降低的颗粒大小和溶解作用可允许完整的纳米颗粒进入胞膜窖用于内皮运输入肿瘤细胞(其开孔大致30-50nm,内径100nm;参见Westermann et.al.Histochem CellBiol(1999)111:71-81,其内容在此通过引用并入)。相应地,包括疏水紫杉烷衍生物的纳米颗粒的运输较包括未被疏水基取代的药物(例如紫杉烷)的纳米颗粒的运输更有效。
在一些实施方式中,与含有未改性的药物(例如紫杉烷,诸如紫杉醇和/或多西紫杉醇)的纳米颗粒相比,含有疏水药物衍生物(例如疏水紫杉烷衍生物)的纳米颗粒具有改进的物理和/或化学稳定性。在一些实施方式中,纳米颗粒组合物包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白),其中该纳米颗粒在4℃(或25℃)和约6、7或8中的任一个pH中,5、10、30、60、90、120、180、270、360天中的任何一个或2、3、4、5、6、7、8、9或10年中的任何一个的储存之后处于基本上纯的形式(例如不超过组合物总量的约15%或不超过约10%或不超过约5%或不超过约3%或不超过约1%作为杂质和/或以不同的形式,诸如紫杉烷/紫杉烷衍生物的不同形式)。在一些实施方式中,在4℃(或25℃)下,5、10、30、60、90、120、180、270、360天中的任何一个或2、3、4、5、6、7、8、9或10年中的任何一个的储存之后,含有疏水药物衍生物(例如疏水紫杉烷衍生物)的纳米颗粒适于输注入人类。在一些实施方式中,含有药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的纳米颗粒在不进一步包括稳定剂(例如柠檬酸盐)的情况下是稳定的。
在一些实施方式中,给予灵长类动物约0.05小时至约0.3小时之后,纳米颗粒组合物在血液中具有最大浓度(Cmax)。在一些实施方式中,给予灵长类动物之后,纳米颗粒组合物显示在血液中分解,具有约1小时至约5小时的终末半衰期,包括例如约2小时至约4小时,诸如约3小时至约3.7小时。在一些实施方式中,给予灵长类动物之后,纳米颗粒组合物具有约2%至20%之间、约3%至10%之间或约4%至7%之间中的任何一个的代谢物转换率,用于从疏水紫杉烷衍生物中去除疏水基团。在一些实施方式中,灵长类动物是猴子。在一些实施方式中,灵长类动物是人类。
纳米颗粒组合物的药物
本文描述的一些纳米颗粒组合物包括药物和/或用疏水基取代的药物(疏水药物衍生物)。考虑在本文描述的任何一个纳米颗粒组合物中使用的药物和/或考虑用于改性为本文描述和应用的疏水药物衍生物的药物的非限制例子包括药学上有活性的试剂、诊断试剂、具有营养价值的试剂和类似物。
药学上有活性的试剂的例子包括:镇痛药/解热药(例如阿斯匹林、对乙酰氨基酚、布洛芬、萘普生钠、盐酸丁丙诺啡、盐酸丙氧芬、萘磺酸丙氧芬、盐酸哌替啶、盐酸二氢吗啡酮、硫酸吗啡、盐酸羟考酮、磷酸可待因、酒石酸二氢可待因、盐酸喷他佐辛、重酒石酸二氢可待因酮、酒石酸左啡诺、二氟尼柳、水杨酸三乙醇胺、盐酸纳布啡、甲芬那酸、酒石酸布托啡诺、水杨酸胆碱、布他比妥、柠檬酸苄苯醇胺、柠檬酸苯海拉明、甲氧异丁嗪、盐酸桂美君、甲丙氨酯和类似物);麻醉药(例如环丙烷、恩氟烷、三氟溴氯乙烷、异氟醚、甲氧氟烷、氧化亚氮、异丙酚和类似物);平喘药(例如氮卓斯汀、酮替芬、曲呫诺(Traxanox)、阿姆莱诺、色甘酸、异丁司特(Ibudilast)、孟鲁司特(Montelukast)、奈多罗米、奥沙米特、普仑司特(Pranlukast)、塞曲司特(Seratrodast)、Suplatast Tosylate、噻拉米特、杂复洛卡、齐留通(Zileuton)、倍氯米松、布地奈德、地塞米松、氟尼缩松、去炎松缩酮(Trimcinolone Acetonide)和类似物);抗生素(例如新霉素、链霉素、氯霉素、头孢菌素、氨苄西林、青霉素、四环素和类似物);抗抑郁药(例如萘福泮、奥昔哌汀、盐酸多塞平、阿莫沙平、盐酸曲唑酮、盐酸阿米替林、盐酸马普替林、硫酸苯乙肼、盐酸地昔帕明、盐酸去甲替林、硫酸反苯环丙胺、盐酸氟西汀、盐酸多塞平、盐酸丙米嗪、双羟萘酸丙咪嗪、去甲替林、盐酸阿米替林、异卡波肼、盐酸地昔帕明、马来酸曲米帕明、盐酸普洛替林和类似物);抗糖尿病药(例如双胍、激素、磺酰脲衍生物和类似物);抗真菌药(例如灰黄霉素、酮康唑、两性霉素B、制霉菌素、杀念珠菌素和类似物);抗高血压药(例如心得安、普罗帕酮、氧烯洛尔、硝苯地平、利血平、樟磺咪芬、盐酸酚苄明、盐酸优降宁、地舍平、二氮嗪、一硫酸胍乙啶、米诺地尔、瑞西那明、硝普钠、蛇根木、阿舍西隆、甲磺酸酚妥拉明、利血平和类似物);抗炎药(例如(非甾体的)吲哚美辛、萘普生、布洛芬、雷米那酮(ramifenazone)、吡罗昔康、(甾体的)可的松、地塞米松、氟扎可特、氢化可的松、泼尼松龙、泼尼松和类似物);抗肿瘤药(例如阿霉素、环磷酰胺、放线菌素、博来霉素、duanorubicin、亚德利亚霉素、表阿霉素、丝裂霉素、甲氨蝶呤、氟尿嘧啶、卡铂、卡莫司汀(BCNU)、甲基-CCNU、顺铂、依托泊甙、干扰素、喜树碱及其衍生物、胆甾醇对苯乙酸氮芥、红豆杉醇(Taxol)及其衍生物、泰索帝及其衍生物、长春碱、长春新碱、他莫昔芬、依托泊甙、哌泊舒凡和类似物);抗焦虑药(例如劳拉西泮、盐酸丁螺环酮、普拉西泮、盐酸氯氮草、奥沙西泮、二钾氯氮卓、地西泮、双羟萘酸羟嗪、盐酸羟嗪、阿普唑仑、氟哌利多(droperidol)、哈拉西泮、氯美扎酮、丹曲林和类似物);免疫抑制剂(例如环孢菌素、硫唑嘌呤、咪唑立宾、FK506(他克罗姆)和类似物);抗偏头痛药(例如麦角胺酒石酸盐、心得安、半乳糖二酸甲异辛烯胺、氯醛衍生物和类似物);镇静药/安眠药(例如巴比妥酸盐(例如戊巴比妥、戊巴比妥钠、司可巴比妥钠)、苯并二氧卓(例如盐酸氟西泮、三唑仑、tomazeparm、盐酸咪达唑仑和类似物);抗心绞痛药(例如β肾上腺能阻断剂、钙通道阻断剂(例如硝苯地平、盐酸地尔硫卓和类似物)、硝酸盐(例如硝酸甘油、硝酸异山梨酯、四硝基戊四醇、四硝赤藓酯(erythrityl tetranitrate)和类似物);抗精神病药(例如氟哌啶醇、洛沙平琥珀酸盐、盐酸洛沙平、硫利达嗪、盐酸硫利达嗪、替沃噻吨、盐酸氟奋乃静、癸氟奋乃静、氟奋乃静庚酯、盐酸三氟拉嗪、盐酸氯丙嗪、奋乃静、柠檬酸锂、丙氯拉嗪和类似物);抗躁狂药(例如碳酸锂);抗心律不齐药(例如溴苄铵托西酸盐、盐酸艾司洛尔、盐酸维拉帕米、胺碘酮、盐酸恩卡尼、地高辛、洋地黄毒甙、盐酸美西律、磷酸双异丙吡胺、盐酸普鲁卡因胺、硫酸奎尼丁、奎尼丁葡萄糖酸盐、奎尼丁聚半乳糖醛酸盐、醋酸氟卡尼、盐酸妥卡尼、盐酸利多卡因和类似物);抗关节炎药(例如保泰松、舒林酸、青霉胺、双水杨酯、吡罗昔康、硫唑嘌呤、吲哚美辛、甲氯灭酸钠、硫代苹果酸金钠、酮洛芬、金诺芬、金硫代葡萄糖、托美丁钠和类似物);抗痛风药(例如秋水仙碱、别嘌呤醇和类似物);抗凝剂(例如肝素、肝素钠、华法林钠和类似物);血栓溶解剂(例如尿激酶、链激酶、艾替普酶(altoplase)和类似物);抗纤溶药(例如氨基己酸);活血药(例如己酮可可豆碱);抗血小板剂(例如阿司匹林、安匹林(empirin)、ascriptin和类似物);抗惊厥药(例如丙戊酸、二丙戊酸钠(divalproate sodium)、苯妥英、苯妥英钠、氯硝西泮、扑米酮、苯巴比妥(phenobarbitol)、苯巴比妥钠、卡马西平、异戊巴比妥钠、甲琥胺、美沙比妥、甲苯比妥、美芬妥英、苯琥胺、甲乙双酮、乙苯妥英、苯乙酰脲、司可巴比妥钠、二钾氯氮卓、三甲双酮和类似物);抗帕金森病药(例如乙琥胺和类似物);抗阻胺药/止痒剂(例如盐酸羟嗪、盐酸苯海拉明、马来酸氯苯那敏、马来酸溴苯那敏、盐酸赛庚啶、特非那定、富马酸氯马斯汀、盐酸曲普利啶、马来酸卡比沙明、盐酸二苯拉林、酒石酸苯茚达明、阿扎他定马来酸盐、马来酸哌吡庚啶、盐酸曲吡那敏、马来酸右旋氯苯吡胺、盐酸甲地拉嗪、trimprazine tartrate和类似物);对钙调节有益的药剂(例如降钙素、甲状旁腺素和类似物);抗菌剂(例如硫酸阿米卡星、氨曲南、氯霉素、棕榈氯霉素、丁二酸钠氯霉素、盐酸环丙沙星、盐酸克林霉素、克林霉素棕榈酸酯、克林霉素磷酸酯、甲硝唑、盐酸甲硝唑、硫酸庆大霉素、盐酸林可霉素、硫酸妥布霉素、硫酸万古霉素、硫酸多粘菌素B、多粘菌素E甲磺酸钠、硫酸多粘菌素E和类似物);抗病毒药(例如干扰素γ、叠氮胸苷、盐酸金刚烷胺、利巴韦林、阿昔洛韦和类似物);抗微生物剂(例如头孢菌素类(例如头孢唑啉钠、头孢拉定、头孢克洛、头孢吡硫钠、头孢唑肟钠、头孢哌酮钠、头孢替坦二钠、cefutoxime azotil、头孢噻肟钠(cefutoxime sodium)、头孢羟氨苄、头孢他啶、头孢菌素、头孢菌素钠、盐酸头孢菌素一水化物(cephalexin hydrochloride monohydrate)、头孢孟多酯钠、头孢西丁钠、头孢尼西钠、头孢雷特、头孢曲松钠、头孢他啶、头孢羟氨苄、头孢拉定、头孢呋辛钠和类似物)、青霉素类(例如氨苄西林、阿莫西林、苄星青霉素G、环青霉素、氨苄西林钠、青霉素G钾、青霉素V钾、哌拉西林钠、苯唑西林钠、盐酸巴氨西林、氯唑西林钠、羧噻吩青霉素钠、阿洛西林钠、羧茚青霉素钠、青霉素G钾、普鲁卡因青霉素G、甲氧西林钠、萘夫西林钠和类似物)、红霉素类(例如红霉素乙基琥珀酸酯、红霉素、无味红霉素、乳糖酸红霉素、红霉素硬脂酸酯(erythromycin siearate)、红霉素乙基琥珀酸酯和类似物)、四环素类(例如盐酸四环素、盐酸多西环素、盐酸二甲胺四环素和类似物)和类似物);抗感染剂(例如GM-CSF);支气管扩张药(例如拟交感神经药(例如盐酸肾上腺素、硫酸异丙喘宁、硫酸特布他林、乙基异丙肾上腺素、甲磺酸乙基异丙肾上腺素、盐酸乙基异丙肾上腺素、硫酸舒喘灵、沙丁胺醇、比托特罗、盐酸异丙肾上腺素甲磺酸盐(mesylate isoprotcrenol hydrochloride)、硫酸特布他林、重酒石酸肾上腺素、硫酸异丙喘宁、肾上腺素、重酒石酸肾上腺素)、抗胆碱能药物(例如异丙托溴铵)、黄嘌呤类(例如氨茶碱、二羟丙茶碱、硫酸异丙喘宁、氨茶碱)、肥大细胞稳定剂(例如色甘酸钠)、吸入的皮质类固醇(例如氟尼缩松、二丙酸倍氯米松、丙酸倍氯米松一水化物)、沙丁胺醇、二丙酸倍氯米松(BDP)、异丙托溴铵、布地奈德、酮替芬、沙美特罗、昔萘酸盐(xinafoate)、硫酸特布他林、曲安西龙、茶碱、奈多罗米钠、硫酸异丙喘宁、沙丁胺醇、氟尼缩松和类似物);激素类(例如雄激素类(例如达那唑、环戊丙酸睾酮、氟甲睾酮、乙睾酮、庚酸睾丸酮、甲睾酮、氟甲睾酮、环戊丙酸睾酮)、雌激素类(例如雌二醇、硫酸雌酮哌嗪、结合的雌激素)、孕激素类(例如乙酸甲氧基孕酮、乙酸炔诺酮)、皮质类固醇类(例如曲安西龙、倍他米松、倍他米松磷酸钠、地塞米松、地塞米松磷酸钠、醋酸地塞米松、泼尼松、醋酸甲强的松悬液、丙酮缩去炎松、甲泼尼龙、强的松龙磷酸钠、琥珀酸钠甲基强的松龙、氢化可的松琥珀酸钠、琥珀酸钠甲基强的松龙、丙酮缩去炎松己酸酯、氢化可的松、环戊丙酸氢化可的松、泼尼松龙、醋酸氟可的松、醋酸对氟米松、强的松龙叔丁乙酯、醋酸泼尼松龙、强的松龙磷酸钠、氢化可的松琥珀酸钠和类似物)、甲状腺激素类(例如左旋甲状腺素钠)和类似物)和类似物;降血糖药(例如人胰岛素、纯化的牛胰岛素、纯化的猪胰岛素、格列本脲、氯磺丙脲、格列吡嗪、甲苯磺丁脲、妥拉磺脲和类似物);降血脂药(例如氯贝丁酯、右甲状腺素钠、普罗布考、洛伐他汀、尼克酸和类似物);蛋白质类(例如脱氧核糖核酸酶、藻酸酶、超氧化物歧化酶、脂肪酶和类似物);核酸类(例如编码任何在治疗上有用的蛋白质的有义或反义核酸,包括本文描述的任何蛋白质和类似物);对红细胞生成刺激有益的药剂(例如促红细胞生成素);抗溃疡/抗反流药(例如法莫替丁、西咪替丁、盐酸雷尼替丁和类似物);止恶心药/止吐药(例如盐酸氯苯甲嗪、大麻隆、丙氯拉嗪、茶苯海明、盐酸异丙嗪、硫乙哌丙嗪、东莨菪碱和类似物);油溶性维生素(例如维生素A、D、E、K和类似物);以及其它的药物诸如米托坦、维司那定(visadine)、halonitrosoureas、蒽环类化合物(anthrocyclines)、玫瑰树碱和类似物。
考虑在本发明的实施中使用的诊断试剂的例子包括超声显影剂、放射性显影剂(例如碘辛烷、卤烃(halocarbons)、雷纳格芬和类似物)、磁性显影剂(例如氟碳化合物、脂溶性顺磁化合物和类似物)、以及其它的诊断试剂,如果没有一些物理的和/或化学的改性以适应其基本上不溶解水的性质,这些诊断试剂不能被容易地递送。
在一些实施方式中,本文描述的组合物包括水溶性差的药物和/或疏水药物衍生物。例如,水溶性差的药物在约20-25℃时在水中的溶解度可小于约10mg/ml,包括例如小于约5、2、1、0.5、0.2、0.1、0.05、0.02或0.01mg/ml中的任一个。本文描述的差的水溶性药物可以是,例如,抗癌剂或抗肿瘤药、抗微管药、免疫抑制剂、麻醉药、激素、在心血管病中使用的药物、抗心律不齐药、抗生素、抗真菌药、抗高血压药、平喘药、抗炎药、抗关节炎药、血管活性药、镇痛药/解热药、抗抑郁药、抗糖尿病药、抗真菌药、抗炎药、抗焦虑药、免疫抑制剂、抗偏头痛药、镇静药、抗心绞痛药、抗精神病药、抗躁狂药、抗关节炎药、抗痛风药、抗凝剂、血栓溶解剂、抗纤溶药药、活血药、抗血小板药、抗惊厥药、抗帕金森病药、抗阻胺药/止痒药、对钙调节有益的药剂、抗病毒药、抗微生物剂、抗感染药、支气管扩张药、激素、降血糖药、降血脂药、抗溃疡/抗反流药、止恶心药/止吐药和油溶性维生素(例如维生素A、D、E、K和类似物)。
在一些实施方式中,水溶性差的药物是抗肿瘤药。在一些实施方式中,水溶性差的药物是化学治疗剂。
合适的水溶性差的药物包括但并不限于紫杉烷(诸如紫杉醇、多西紫杉醇、ortataxel和其它的紫杉烷)、埃博霉素(epothilones)、喜树碱、秋水仙碱、格尔德霉素、胺碘酮、甲状腺激素、两性霉素、皮质类固醇类、异丙酚、褪黑素、环孢菌素、雷帕霉素(西罗莫司(sirolimus))和衍生物、他克罗姆、霉酚酸(mycophenolicacids)、异环磷酰胺、长春瑞滨、万古霉素、耶西塔滨、SU5416、塞替派、博来霉素、诊断的放射性显影剂及其衍生物。例如,在美国专利号5,916,596、6,096,331、6,749,868和6,537,539中描述了在本发明的组合物中有用的其它水溶性差的药物试剂。水溶性差的药物试剂的另外的例子包括那些水溶性差的化合物和默克索引(Merck Index)(第12版,1996)的“治疗种类和生物活性索引(TherapeuticCategory and Biological Activity Index)”中列出的化合物。
在一些实施方式中,水溶性差的药物是(在一些实施方式中选自)紫杉醇、多西紫杉醇、ortataxel或其它的紫杉烷或紫杉烷类似物、17-烯丙基氨基格尔德霉素(17-AAG)、18-衍生的格尔德霉素、喜树碱、异丙酚、胺碘酮、环孢菌素、埃博霉素、根赤壳菌素、考布他汀(combretastatin)、雷帕霉素、两性霉素、三碘甲状腺氨酸、埃博霉素、秋水仙碱、硫代秋水仙碱和其二聚体、甲状腺激素、血管活性肠肽、皮质类固醇、褪黑素、他克罗姆、霉酚酸、埃博霉素、根赤壳菌素、考布他汀、和其类似物或衍生物中的任何一个。在一些实施方式中,水溶性差的药物是(在一些实施方式中选自)紫杉醇、多西紫杉醇、ortataxel或其它的紫杉烷、格尔德霉素、17-烯丙基氨基格尔德霉素、硫代秋水仙碱和其二聚体、雷帕霉素、环孢菌素、埃博霉素、根赤壳菌素和考布他汀。在一些实施方式中,水溶性差的药物是雷帕霉素。在一些实施方式中,水溶性差的药物是17-AAG。在一些实施方式中,水溶性差的药物是硫代秋水仙碱二聚体(诸如IDN5404)。
在一些实施方式中,水溶性差的药物是紫杉烷或其衍生物,其包括但并不限于紫杉醇、多西紫杉醇和IDN5109(ortataxel)、或其衍生物。在一些实施方式中,该组合物包括非结晶的和/或非晶形的(无定形的)紫杉烷(诸如紫杉醇或其衍生物)。在一些实施方式中,该组合物是通过使用无水紫杉烷(诸如无水多西紫杉醇或其衍生物)制备的。无水多西紫杉醇已显示比水合多西紫杉醇诸如多西紫杉醇三水合物或半水合物产生更稳定的制剂。
在本文描述的一些实施方式中,药物是紫杉烷。在本文描述的一些实施方式中,药物是紫杉醇:
Figure BPA00001480457000241
在本文描述的一些实施方式中,药物是多西紫杉醇:
在本文描述的一些实施方式中,药物不是紫杉烷。在本文描述的一些实施方式中,药物不是紫杉醇。在一些实施方式中,药物不是多西紫杉醇。
疏水药物衍生物
本文描述的纳米颗粒组合物可包括疏水药物衍生物。考虑的疏水药物衍生物包括描述的药物(例如在上面“纳米颗粒组合物药物”部分描述的任何药物,诸如水溶性差的药物和/或药学上有活性的药剂),其中,用一个或多个本文描述的疏水基改性该药物。本文描述的任何纳米颗粒组合物还包括WO2006/089207(2005年2月18日提交,其内容在此以其全部通过引用被并入)中描述的任何一个或多个疏水药物,诸如其中描述的化合物1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38和/或39中的任何一种。
例如,在一些实施方式中,疏水药物衍生物具有式:
Figure BPA00001480457000243
其中R是OH、OCOPh或OCO(CH2)4CH3
在一些实施方式中,疏水药物衍生物具有式:
其中R是OH、OCOPh或OCO(CH2)4CH3
在一些实施方式中,疏水药物衍生物具有式:
Figure BPA00001480457000251
其中,
R=H;R1=H
R=Et;R1=H
R=H;R1=COCH2CH3
R=H;R1=COCH2CH2CH3
R=H;R1=COCH(CH3)2
R=H;R1=COCH2CH2CH2CH2CH3
R=H;R1=COCH2NH-COOtBu
R=H;R1=COCH2OMe
R=H;R1=COCH2NH2
R=H;R1=COPh
R=Et;R1=COCH2CH3
R=H;R1=CO(CH2)4CH3
R=Et;R1=CO(CH2)8CH3
R=Et;R1=CO(CH2)12CH3
R=Et;R1=CO(CH2)10CH3
R=Et;R1=CO(CH2)16CH3
R=Et;R1=CO(CH2)3CH(CH3)CH2CH3
R=H;R1=CO(CH2)14CH3
在一些实施方式中,疏水药物衍生物具有式:
Figure BPA00001480457000252
其中,R1是H,R2是H或COPh。
在一些实施方式中,疏水药物衍生物具有式:
Figure BPA00001480457000261
其中,L是
Figure BPA00001480457000262
在一些实施方式中,疏水药物衍生物具有式:
Figure BPA00001480457000263
其中,R是OMe、NHCHCH2、NH(CH2)6CH3、N(CH2)5、NCH2CHCH3或NHCH(CH3)(CH2)4CH3
在一些实施方式中,疏水药物衍生物具有式:
(a):R1是H;R2是H
(b):R1是CO2H;R2是H
(c):R1是CO2H;H2是COCH3
(d):R1是H;R2是COCH3
(e):R1是H;R2是CO(CH2)4CH3
(f):R1是H;R2是CO(CH2)10CH3
(g):R1是H;R2是CO(CH2)6(CH2CH=CH)2(CH2)4CH3
(h):R1是H;R2是CO(CH2)7CH=CH(CH2)7CH3
在一些实施方式中,疏水药物衍生物是药物的前体药物。在一些实施方式中,前体药物是酯(例如疏水的酯)。在一些实施方式中,酯是烷基酯(例如C2-C10酯,诸如己酸酯或乙酸酯)或芳基酯(例如苯甲酸酯)。在一些实施方式中,疏水药物衍生物是药物的前体药物,并能以大于约1、2、3、4、5、8、10、12、15、18、20、25或30%中的任何一个被转化为药物,这是通过本领域已知的和/或本文实施例部分描述的方法测量的(例如通过人肝脏微粒体的转化)。
在一些实施方式中,疏水药物衍生物不是疏水紫杉烷衍生物。在一些实施方式中,疏水药物衍生物不是疏水的紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是疏水的多西紫杉醇衍生物。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(1)。在一些实施方式中,疏水药物衍生物不是本文描述的化合物(2)。
在这些实施方式中的一些实施方式中,疏水药物衍生物含有一个或多个疏水基团。在一些实施方式中,疏水药物衍生物含有多个疏水基团。在一些实施方式中,疏水药物衍生物只含有一个疏水基团。在一些实施方式中,疏水基团是-C(O)R6;其中R6是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。在一些实施方式中,R6独立地是选自烷基、链烯基、环烷基、环烷基-烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,R6是选自烷基、链烯基、环烷基、环烷基-烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,R6是选自烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,烷基、芳基和芳烷基是未取代的。在一些实施方式中,R6是未取代的C1-C15烷基或未取代的6-元芳基。在一些实施方式中,R6是未取代的C1-C10烷基或未取代的苯基。在一些实施方式中,R6是未取代的C1-C10烷基(例如C5烷基)。在一些实施方式中,R6是未取代的苯基。
本文描述的一些纳米颗粒组合物包括疏水紫杉烷衍生物(例如疏水的紫杉醇衍生物或疏水的多西紫杉醇衍生物)。包括紫杉醇和多西紫杉醇的紫杉烷的结构的例子显示在下面,用如本文所使用的常规编号系统:
Figure BPA00001480457000281
紫杉醇:R=Ph;R′=乙酰基
多西紫杉醇:R=-OtBu;R1=H
为了举例说明本文使用的命名法的例子,标志C2′或2′指上面显示的标记了“2′”的碳原子,A环是由包围字母A的最少数目的环碳形成的环构成的(即由C1、C15、C11、C12、C13和C14形成的环)。相应地,“2′-羟基”指连接到标记了“2′”的碳原子的羟基部分。悬垂侧链是由连接到C13氧原子的原子构成的部分(例如C1′、C2′、C3′等)。
在一些实施方式中,疏水紫杉烷衍生物是紫杉醇的衍生物。在一些实施方式中,疏水紫杉烷衍生物是多西紫杉醇的衍生物。
在一些实施方式中,疏水紫杉烷衍生物是紫杉烷的前体药物。在一些实施方式中,前体药物是酯(例如疏水的酯)。在一些实施方式中,酯是烷基酯(例如C2-C10酯,诸如己酸酯或乙酸酯)或芳基酯(例如苯甲酸酯)。在一些实施方式中,疏水紫杉烷衍生物是紫杉烷的前体药物(例如多西紫杉醇或紫杉醇)并能以大于约1、2、3、4、5、8、10、12、15、18、20、25或30%中的任何一个被转化为紫杉烷(例如多西紫杉醇或紫杉醇),这是通过本领域已知的和/或本文实施例部分描述的方法测量的(例如通过人肝脏微粒体的转化)。
在一些实施方式中,疏水紫杉烷衍生物含有连接到A环碳或直接连接到A环碳的环外原子的疏水基团。在一些实施方式中,疏水紫杉烷衍生物含有连接到B环碳或直接连接到B环碳的环外原子的疏水基团。在一些实施方式中,疏水紫杉烷衍生物含有连接到C环碳或直接连接到C环碳的环外原子的疏水基团。在一些实施方式中,疏水紫杉烷衍生物含有连接到悬垂侧链的疏水基团。
在这些实施方式的一些实施方式中,疏水紫杉烷衍生物含有一个或多个疏水基。在一些实施方式中,疏水紫杉烷衍生物含有多个疏水基团。在一些实施方式中,疏水紫杉烷衍生物只含有一个疏水基团。在一些实施方式中,疏水基团是-C(O)R6;其中R6是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。在一些实施方式中,R6独立地是选自烷基、链烯基、环烷基、环烷基-烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,R6是选自烷基、链烯基、环烷基、环烷基-烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,R6是选自烷基、芳基和芳烷基的取代的或未取代的部分。在一些实施方式中,烷基、芳基和芳烷基是未取代的。在一些实施方式中,R6是未取代的C1-C15烷基或未取代的6元芳基。在一些实施方式中,R6是未取代的C1-C10烷基或未取代的苯基。在一些实施方式中,R6是未取代的C1-C10烷基(例如C5烷基)。在一些实施方式中,R6是未取代的苯基。
在这些实施方式的一些实施方式中,疏水紫杉烷衍生物具有式:
Figure BPA00001480457000291
其中R1是苯基或-OtBu;R2、R3、R4和R5独立地是H或疏水基团;其中R2、R3、R4和R5中的至少一个不是H。
在一些实施方式中,式I的疏水紫杉烷衍生物含有限制条件,就是当R1是苯基,R2、R3和R5各自是H时,那么R4不是乙酰基部分。在一些实施方式中,R1是苯基。在一些实施方式中,R1是-OtBu。在一些实施方式中。R1是苯基,R2是疏水基团(诸如酰基,例如-C(O)-C4-C10烷基,特别地是未取代的-C(O)-C6烷基)。在一些实施方式中,R1是苯基,R2是疏水基团(诸如酰基,例如-C(O)-C4-C10烷基,特别地是未取代的-C(O)-C6烷基)。在一些实施方式中,R2、R3、R4和R5中的只有一个不是H。
在一些实施方式中,疏水紫杉烷衍生物具有式:
Figure BPA00001480457000292
其中R1是苯基或-OtBu;R2、R3、R4和R5独立地是H或-C(O)R6;每个R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;其中R2、R3、R4和R5中的至少一个不是H。
在一些实施方式中,式II的疏水紫杉烷衍生物含有限制条件,就是当R1是苯基,R2、R3和R5各自是H时,那么R4不是乙酰基部分。在一些实施方式中,R1是苯基。在一些实施方式中,R1是-OtBu。
在一些实施方式中,式II的每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基、-C1-C15炔基、-C1-C15环烷基、-C1-C15环烷基-烷基、芳基、5至7元杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的苯基或未取代的甲基。在一些实施方式中,每个R6独立地是未取代的芳基。在一些实施方式中,每个R6独立地是未取代的苯基。在一些实施方式中,每个R6独立地是未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的-C1-C10烷基,或-C4-C10烷基。在一些实施方式中,每个R6是-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3和-(CH2)8CH3中的任何一个。在一些实施方式中,R6是(CH2)4CH3
在一些实施方式中,式II中的R2、R3、R4和R5中只有一个不是H。在一些实施方式中,R2不是H。在一些实施方式中,R3不是H。在一些实施方式中,R4不是H。在一些实施方式中,R5不是H。在一些实施方式中,式II中的R2、R3、R4和R5中的只有两个不是H。在一些实施方式中,R2和R3不是H。在一些实施方式中,R2和R4不是H。在一些实施方式中,R3和R4不是H。在一些实施方式中,R4是乙酰基部分,R2、R3和R5中只有一个不是H。
在一些实施方式中,式II的R4是乙酰基部分;R1是苯基;R3和R5是H。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。
在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是取代的或未取代的芳基或取代的或未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是未取代的苯基或未取代的-C4-C10烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5是H;R6是未取代的芳基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是苯基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是未取代的-C1-C10烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是未取代的-C4-C10烷基。在一些实施方式中,R4是乙酰基部分;R1是苯基;R3和R5各自是H;R6是-(CH2)4CH3
在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是取代的或未取代的芳基或取代的或未取代的-C1-C15烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的苯基或未取代的-C4-C10烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的芳基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是苯基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的-C1-C15烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的-C1-C10烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是未取代的-C4-C10烷基。在一些实施方式中,式II的R1是-OtBu;R3、R4和R5各自是H;R6是-(CH2)4CH3
在一些实施方式中,疏水紫杉烷衍生物具有式:
Figure BPA00001480457000311
其中R2、R3和R4独立地是H或-C(O)R6;每个R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;其中R2、R3和R4中的至少一个不是H。
在一些实施方式中,式III的每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基、-C1-C15炔基、-C1-C15环烷基、-C1-C15环烷基-烷基、芳基、5至7元杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的苯基或未取代的甲基。在一些实施方式中,每个R6独立地是未取代的芳基。在一些实施方式中,每个R6独立地是未取代的苯基。在一些实施方式中,每个R6独立地是未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的-C1-C10烷基,或-C4-C10烷基。在一些实施方式中,每个R6是-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3和-(CH2)8CH3中的任何一个。在一些实施方式中,R6是(CH2)4CH3
在一些实施方式中,式III的R2、R3和R4中只有一个不是H。在一些实施方式中,R2不是H。在一些实施方式中,R3不是H。在一些实施方式中,R4不是H。在一些实施方式中,R2、R3和R4中只有两个不是H。在一些实施方式中,R2和R3不是H。在一些实施方式中,R2和R4不是H。在一些实施方式中,R3和R4不是H。在一些实施方式中,R4是H,R2和R3中只有一个不是H。
在一些实施方式中,式II的R3和R4各自是H。在一些实施方式中,R3和R4各自是H;R6是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,R3和R4各自是H;R6是取代的或未取代的芳基或取代的或未取代的-C1-C15烷基。在一些实施方式中,R3和R4各自是H;R6是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,R3和R4各自是H;R6是未取代的苯基或未取代的-C4-C10烷基。在一些实施方式中,R3和R4各自是H;R6是未取代的芳基。在一些实施方式中,R3和R4各自是H;R6是苯基。在一些实施方式中,R3和R4各自是H;R6是未取代的-C1-C15烷基。在一些实施方式中,R3和R4各自是H;R6是未取代的-C1-C10烷基。在一些实施方式中,R3和R4各自是H;R6是未取代的-C4-C10烷基。在一些实施方式中,R3和R4各自是H;R6是-(CH2)4CH3
在一些实施方式中,疏水紫杉烷衍生物具有式:
Figure BPA00001480457000321
其中R2、R3和R4独立地是H或-C(O)R6;每个R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;其中R2、R3和R4中的至少一个不是H。在一些实施方式中,当R2、R3和R5各自是H时,那么R4不是乙酰基部分。
在一些实施方式中,式IV的每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基、-C1-C15炔基、-C1-C15环烷基、-C1-C15环烷基-烷基、芳基、5至7元杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,每个R6独立地是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的苯基或未取代的甲基。在一些实施方式中,每个R6独立地是未取代的芳基。在一些实施方式中,每个R6独立地是未取代的苯基。在一些实施方式中,每个R6独立地是未取代的-C1-C15烷基。在一些实施方式中,每个R6独立地是未取代的-C1-C10烷基,或-C4-C10烷基。在一些实施方式中,每个R6是-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3和-(CH2)8CH3中的任何一个。在一些实施方式中,R6是(CH2)4CH3
在一些实施方式中、式IV的R2、R3和R4中只有一个不是H。在一些实施方式中,R2不是H。在一些实施方式中,R3不是H。在一些实施方式中,R4不是H。在一些实施方式中,R2、R3和R4中只有两个不是H。在一些实施方式中,R2和R3不是H。在一些实施方式中,R2和R4不是H。在一些实施方式中,R3和R4不是H。在一些实施方式中,R4是乙酰基部分,R2和R3中只有一个不是H。
在一些实施方式中,式IV的R4是乙酰基部分,R3是H。在一些实施方式中,R4是乙酰基部分,R3是H;R6是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,R4是乙酰基部分,R3是H;R6是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的苯基或未取代的-C4-C10烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的芳基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是苯基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的-C1-C15烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的-C1-C10烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是未取代的-C4-C10烷基。在一些实施方式中,R4是乙酰基部分,R3是H;R6是-(CH2)4CH3
在一些实施方式中,疏水紫杉烷衍生物具有式:
Figure BPA00001480457000331
其中R2是-C(O)R6;R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;或药学上可接受的盐、异构体或其溶剂合物。
在一些实施方式中,式V和式VI的R6是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。在一些实施方式中,R6是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。在一些实施方式中,R6是未取代的芳基或未取代的-C1-C15烷基。在一些实施方式中,R6是未取代的苯基或未取代的甲基。在一些实施方式中,R6是未取代的芳基(例如苯基)。在一些实施方式中,R6是未取代的-C1-C15烷基。在一些实施方式中,R6是未取代的-C1-C10烷基(例如-CH3、-CH2CH3、-(CH2)2CH3、-(CH2)3CH3、-(CH2)4CH3、-(CH2)5CH3、-(CH2)6CH3、-(CH2)7CH3和-(CH2)8CH3)。
在一些实施方式中,疏水紫杉烷衍生物是下面的化合物中的任何一个:
Figure BPA00001480457000341
Figure BPA00001480457000351
Figure BPA00001480457000371
载体蛋白
本文描述的纳米颗粒组合物能利用合适的天然存在或合成的载体蛋白。合适的载体蛋白例子包括血液或血浆中正常发现的蛋白,包括但并不限于白蛋白、包括IgA在内的免疫球蛋白、脂蛋白、载脂蛋白B、α-酸性糖蛋白、β-2-巨球蛋白、甲状腺球蛋白、转铁蛋白(transferin)、纤连蛋白、玻连蛋白、纤维蛋白原、因子VII、因子VIII、因子IX、因子X和类似物。在一些实施方式中,载体蛋白是非血液蛋白,诸如酪蛋白、α-乳清蛋白或β-乳球蛋白。载体蛋白可以是天然来源的或合成制备的。在一些实施方式中,药物可接受的载体包括白蛋白,诸如人血清白蛋白(HSA)。HSA是分子量(Mr)65K的高度可溶的球形蛋白,由585个氨基酸组成。HSA是血浆中最丰富的蛋白,占人血浆胶体渗透压的70-80%。HSA的氨基酸序列含有总共17个二硫桥、一个自由巯基(Cys 34)和一个色氨酸(Trp 214)。考虑了其它的白蛋白,诸如牛血清白蛋白。这样的非人类白蛋白的使用将是适当的,例如,在这些组合物在非人类哺乳动物中的使用的背景下,诸如兽医动物(包括家庭宠物和农业动物)。在一些实施方式中,合适的蛋白包括胰岛素、血红蛋白、溶菌酶、免疫球蛋白、oc-2-巨球蛋白、酪蛋白和类似物,以及其任何两个或多个的组合。在一些实施方式中,合适的蛋白选自白蛋白、包括IgA在内的免疫球蛋白、脂蛋白、载脂蛋白B、β-2-巨球蛋白和甲状腺球蛋白。在一些实施方式中,药学上可接受的载体包括白蛋白(例如人血清白蛋白)。包括白蛋白在内的适合于本发明的蛋白可以是天然来源的或合成制备的。
人血清白蛋白(HSA)具有多个疏水性结合位点(总共八个用于HSA的内源性配体——脂肪酸),并结合各种不同的药物,尤其是中性的和带负电荷的疏水化合物(Goodman et al.,The Pharmacological Basis of Therapeutics,9th ed,McGraw-HillNew York(1996))。已经提出了在HSA的子域IIA和IIIA中的两个高亲和性结合位点,它们是在接近表面具有带电荷的赖氨酸和精氨酸残基的高度延长的疏水口袋,这些残基充当极性配体特性的连接点(参见例如Fehske et al.,Biochem.Pharmcol,30,687-92(1981)、Vorum,Dan.Med.Bull.,46,379-99(1999)、Kragh-Hansen,Dan.Med.Bull.,1441、131-40(1990)、Curry et al.,Nat.Struct.Biol.,5,827-35(1998)、Sμgio et al.,Protein.Eng.,12、439-46(1999)、He et al.,Nature,358、209-15(1992)和Carter et al.,Adv.Protein.Chem.,45、153-203(1994))。
组合物中的载体蛋白(例如白蛋白)通常充当药物诸如疏水药物衍生物的载体,即与不包括载体蛋白的组合物相比,组合物中的载体蛋白使药物(例如疏水紫杉烷衍生物)更容易地悬浮在水介质中或有助于保持悬浮。这能避免用于对疏水紫杉烷衍生物增溶的有毒溶剂的使用,并由此能减少将衍生物给予个体(例如人类)的一个或多个副作用。在一些实施方式中,组合物基本上没有(例如没有)有机溶剂或表面活性剂。如果将组合物给予个体时,组合物中的有机溶剂或表面活性剂的量不足以在个体中引起一个或多个副作用(或多个),那么组合物“基本上没有有机溶剂”或“基本上没有表面活性剂”。在一些实施方式中,组合物中的纳米颗粒具有固体核心。在一些实施方式中,组合物中的纳米颗粒具有不是水性的核心(即除水性核心外)。在一些实施方式中,组合物的纳米颗粒缺少聚合基质。在一些实施方式中,组合物的纳米颗粒是滤器可灭菌的。在一些实施方式中,组合物中的纳米颗粒包括至少一个交联的载体蛋白。在一些实施方式中,组合物中的纳米颗粒包括至少10%交联的载体蛋白。
如果药物,例如疏水药物衍生物(例如疏水紫杉烷衍生物)在水介质中保持悬浮(例如没有可见的沉淀或沉降)持续一段延长的时间,诸如持续至少约0.1、0.2、0.25、0.5、1、2、3、4、5、6、7、8、9、10、11、12、24、36、48、60或72小时中的任何一个,那么它在水悬液中是“稳定的”。悬浮液通常但不是必须地适于给予个体(例如人类)。通常(但不是必须地)在储存温度,诸如室温(例如20-25℃)或冷藏条件(例如4℃)评价悬浮液的稳定性。例如,如果在悬浮液制备后约15分钟,悬浮液显示没有肉眼可见的絮凝或颗粒凝聚,或在1000倍光学显微镜下观察时没有絮凝或颗粒凝聚,那么它在储存温度是稳定的。还能在加速试验条件下,诸如在高于约40℃的温度时评价稳定性。
在一些实施方式中,组合物包括纳米颗粒,该纳米颗粒包括(在各种变化中基本上由其组成)药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白。当衍生物处于液体形式时,颗粒或纳米颗粒还被称作微滴或纳米滴。在一些实施方式中,疏水紫杉烷衍生物包被有载体蛋白。水溶性差的药物试剂的颗粒(诸如纳米颗粒)已在,例如美国专利号5,916,596、6,506,405、6,096,331、6,749,868和6,537,579中;美国专利申请公开号2005/0004002A1中和PCT申请公开号WO98/14174、WO99/00113、WO07/027941和WO07/027819中被公开。这些文件的内容在此以其全部通过引用被并入。
本文描述的组合物中的载体蛋白的量将根据,例如,具体的药物,例如疏水药物衍生物(例如疏水紫杉烷衍生物)、组合物中的其它成分和/或预期的给药途径而变化。在一些实施方式中,组合物包括足以在水悬液中稳定药物或衍生物的量的载体蛋白,例如,以稳定的胶体悬浮液的形式(例如稳定的纳米颗粒悬浮液)。在一些实施方式中,载体蛋白的量为降低水介质中药物或疏水药物衍生物(例如疏水紫杉烷衍生物)的沉积速率。在一些实施方式中,包括在组合物中的载体蛋白的量是有效地减少药物或疏水药物衍生物(例如疏水紫杉烷衍生物)的一个或多个副作用的量。载体蛋白的量还可依赖药物或疏水药物衍生物(例如疏水紫杉烷衍生物)的颗粒的大小和密度。
在一些实施方式中,液体形式的组合物包括按重量计约0.1%至约25%(例如按重量计约0.5%、按重量计约5%、按重量计约10%、按重量计约15%或按重量计约20%)的载体蛋白(例如白蛋白)。在一些实施方式中,液体形式的组合物包括按重量计约0.5%至约5%的载体蛋白(例如白蛋白)。组合物能被脱水,例如,通过冻干法、喷雾干燥、流化床干燥、湿制粒法和本领域已知的其它合适的方法。当以固体形式制备组合物时,诸如通过湿制粒法、流化床干燥、本领域技术人员已知的其它方法,将载体蛋白(例如白蛋白)作为溶液应用于活性的药物试剂和其它的赋形剂,如果其它的赋形剂存在的话。在一些实施方式中,溶液按重量计约0.1%至约25%(按重量计约0.5%、按重量计约5%、按重量计约10%、按重量计约15%或按重量计约20%的载体蛋白(例如白蛋白)。
在一些实施方式中,在纳米颗粒形式中,组合物包括多于、等于或小于约5%、约10%、约20%、约25%、约30%、约40%、约45%、约50%、约55%、约60%、约65%、约75%或约80%中的任何一个的载体蛋白(例如白蛋白)。
在一些实施方式中,载体蛋白以有效量存在以减少与没有载体蛋白的组合物相比,与药物或疏水药物衍生物(例如疏水紫杉烷衍生物)给予人类相关的一个或多个副作用。这些副作用包括但并不限于骨髓抑制、神经毒性、过敏性、炎症、静脉刺激、静脉炎、疼痛、皮肤刺激、中性白细胞减少性发热、超敏性反应、血液毒性、和脑或神经毒性和其组合。在一些实施方式中,提供减少与疏水紫杉烷衍生物的给予相关的超敏反应的方法,包括,例如,严重的皮疹、荨麻疹、潮红、呼吸困难、心动过速、肺动脉高压(例如淋巴瘤);胸痛;黑色柏油样便;疾病的总体感觉、呼吸短促;肿大的腺体;体重减轻;黄皮肤和眼睛、腹痛;无法解释的焦虑;血尿或混浊尿;骨痛;寒战;意识错乱;惊厥(癫痫发作);咳嗽;降低的排尿欲望;快的、减的或不规则的心跳;发热;频繁的排尿欲望;增加的口渴;食欲丧失;下背或腰痛(lower back or side pain);心情改变;肌肉痛或痛性痉挛;恶心或呕吐;嘴唇周围、手或脚麻木或麻刺感;疼痛或困难的排尿;疹;咽喉痛;嘴唇上或口中生疮或白色斑点;手、踝、脚或小腿肿胀;肿大的腺体;呼吸困难;不寻常的出血或擦伤;不寻常的疲劳或虚弱;腿虚弱或沉重、皮肤溃疡或生疮、体重增加、痤疮;便秘;腹泻;行动困难;头痛;活力丧失或虚弱;肌肉痛或僵硬;疼痛;振动或震颤;入睡困难;鼻出血;和/或脸肿胀。然而,这些副作用仅仅是示例性的,与疏水药物衍生物(例如疏水紫杉烷衍生物)相关的其它的副作用或副作用的组合能被减少。副作用可以是立即的或延迟的(诸如治疗开始之后的几天、几周、几个月或几年不发生)。
组合物中的抗微生物剂
在一些实施方式中,本发明的组合物还包括足以显著抑制(例如延迟、减少、放慢和/或阻止)组合物中微生物生长的量的抗微生物剂(例如除了疏水紫杉烷衍生物外的药剂),用于本文描述的治疗方法、给药方法和剂量方案中。用于微生物剂的示例性微生物剂和变化在美国专利申请公开号2007/0117744A1(诸如在其中[0036]至[0058]段描述的那些微生物剂)中公开,其内容在此以其全部作为引用被并入。在一些实施方式中,抗微生物剂是螯合剂,诸如EDTA、乙二胺四乙酸盐、柠檬酸盐、三胺五乙酸酯、氨基丁三醇、山梨酸酯、抗坏血酸盐、其衍生物或其混合物。在一些实施方式中,抗微生物剂是多齿螯合剂(polydentate chelatingagent)。在一些实施方式中,抗微生物剂是非螯合剂,诸如亚硫酸盐、苯甲酸、苯甲醇、氯丁醇和对羟苯甲酸酯中的任何一种。在一些实施方式中,本文描述的治疗方法、给药方法和剂量方案不含有或使用除上面讨论的紫杉烷外的抗微生物剂。
含糖组合物
在一些实施方式中,本发明的组合物包括糖用于本文描述的治疗方法中。在一些实施方式中,本发明的组合物包括糖和抗微生物剂用于本文描述的治疗方法中。用于糖的使用的示例性的糖和变化在美国专利申请公开号2007/0117744A1(诸如在其中[0084]至[0090]段描述的那些糖)中公开,其内容在此以其全部作为引用被并入。在一些实施方式中,糖充当重建增强剂,其使得冻干组合物较没有糖的冻干组合物更快地溶解或悬浮在水中和/或水性溶液中。在一些实施方式中,组合物是通过重建或重新悬浮干组合物获得的液体(例如水性的)组合物。在一些实施方式中,组合物中糖的浓度大于约50mg/ml。在一些实施方式中,与没有糖的组合物相比,糖的量为有效地增加组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物)的稳定性。在一些实施方式中,与没有糖的组合物相比,糖的量为有效地改进组合物的滤过率。
本文描述的含糖组合物可进一步包括一种或多种抗微生物剂,诸如本文或美国专利申请公开号2007/0117744A1中描述的抗微生物剂。除了一种或多种糖外,还能将其它的重建增强剂(诸如美国专利申请公开号2005/0152979中描述的那些糖,该公开在此以其全部作为引用被并入)加入到组合物中。在一些实施方式中,本文描述的治疗方法、给药方法和剂量方案不含有或使用糖。
组合物中的稳定剂
在一些实施方式中,本发明的组合物还包括稳定剂用于本文描述的治疗方法、给药方法和剂量方案中。在一些实施方式中,本发明的组合物包括抗微生物剂和/或糖和/或稳定剂,用于本文描述的治疗方法、给药方法和剂量方案中。用于稳定剂使用的示例性稳定剂和变化在美国2007/0082838(诸如其中[0038]至[0083]和[0107]至[0114]段描述的那些稳定剂)中公开。在另一个变化中本发明提供组合物和疏水药物衍生物(例如疏水紫杉烷衍生物)的制备方法,当暴露于某些条件诸如延长时间的储存、提高的温度或用于胃肠外给药的稀释时,该衍生物保留期望的治疗效果并保持物理上和/或化学上的稳定。稳定剂包括,例如,螯合剂(例如柠檬酸盐、苹果酸、乙二胺四乙酸盐或三胺五乙酸酯)、焦磷酸钠和葡萄糖酸钠。在一些实施方式中,本发明提供包括柠檬酸盐、焦磷酸钠、EDTA、葡萄糖酸钠、柠檬酸盐和/或氯化钠的疏水药物衍生物(例如疏水紫杉烷衍生物)的药物制剂。在另一个变化中,本发明提供包括疏水药物衍生物(例如疏水紫杉烷衍生物)的组合物,其中用于制备制剂的衍生物在被掺入到组合物之前处于无水的形式。
在一些实施方式中,本文描述的治疗方法、给药方法和剂量方案中不含有或使用稳定剂。
药物组合物和制剂
在制剂,诸如药物组合物或制剂的制备中,可通过将描述的纳米颗粒组合物(或多个)与药物可接受的载体、赋形剂、稳定剂和/或本领域已知的其它试剂结合来使用本文描述的组合物,用于本文描述的治疗方法、给药方法和剂量方案中。
为了通过增加纳米颗粒的负ζ电位而增加稳定性,可加入某些带负电荷的组分。这样的带负电荷的组分包括但并不限于胆盐、胆汁酸、甘氨胆酸、胆酸、鹅脱氧胆酸、牛磺胆酸、甘氨鹅脱氧胆酸、牛磺鹅脱氧胆酸、石胆酸(litocholic acid)、熊去氧胆酸、去氢胆酸,以及其它;包括基于卵磷脂(蛋黄)的磷脂在内的磷脂,包括下面的磷脂酰胆碱:棕榈酰油酰磷脂酰胆碱(palmitoyloleoylphosphatidylcholine)、棕榈酰亚油酰磷脂酰胆碱(palmitoyllinoleoylphosphatidylcholine)、硬脂酰亚油酰磷脂酰胆碱(stearoyllinoleoylphosphatidylcholine)、硬脂酰油酰磷脂酰胆碱(stearoyloleoylphosphatidylcholine)、硬脂酰花生酰磷脂酰胆碱(stearoylarachidoylphosphatidylcholine)和二棕榈酰磷脂酰胆碱。其它的磷脂包括L-α-二肉豆蔻酰磷脂酰胆碱(DMPC)、二油酰磷脂酰胆碱(dioleoylphosphatidylcholine)(DOPC)、二硬脂酰磷脂酰胆碱(DSPC)、氢化大豆磷脂酰胆碱(HSPC)和其它相关的化合物。带负电荷的表面活性剂或乳化剂也适合用作添加剂,例如胆甾酰硫酸钠(sodium cholesteryl sulfate)和类似物。
可用药学上可接受的表面活性剂来稳定本文描述的纳米颗粒组合物。如本文所使用的术语“表面活性剂”指两亲分子的表面活性基团(或多个)。表面活性剂可以是阴离子的、阳离子的、非离子的和两性离子的。任何合适的表面活性剂可包括在本发明的药物组合物中。合适的表面活性剂包括非离子的表面活性剂,诸如磷脂、聚氧乙烯山梨糖醇酯和聚乙二醇琥珀酸生育酚。在一些实施方式中,表面活性剂是鸡蛋卵磷脂、吐温80或维生素E-t d-ac-聚乙二醇1000琥珀酸生育酚(TPGS)。
合适的药物载体包括无菌水;盐水、葡萄糖;葡萄糖水溶液或葡萄糖盐水、每摩尔蓖麻油结合约30至约35摩尔环氧乙烷的蓖麻油和环氧乙烷缩合物;液态酸;低级链烯醇;油诸如玉米油;花生油、芝麻油和类似物,具有乳化剂诸如脂肪酸的甘油一酸酯或甘油二酸酯、或磷脂例如卵磷脂和类似物;乙二醇;聚亚烷基二醇(polyalkylene glycols);存在悬浮剂的水介质例如,羧甲基纤维素钠;海藻酸钠;聚乙烯吡咯烷酮;和类似物,单独的或与合适的分散剂诸如卵磷脂;聚氧乙烯硬脂酸酯和类似物一起。载体还可含有佐剂诸如保存稳定剂、湿润剂、乳化剂和类似物以及渗透促进剂。最终的形式可以是无菌的,还可以能容易地通过注射装置诸如空心针。通过溶剂或赋形剂的适当选择可取得和维持适当的粘性。而且,可利用分子或微粒包衣诸如卵磷脂的使用、分散液中颗粒大小的适当选择或具有表面活性剂性质的材料的使用。
本文描述的纳米颗粒组合物可包括其它的药剂、赋形剂或稳定剂以改进组合物的性质。合适的赋形剂和稀释剂的例子包括但并不限于乳糖、葡萄糖、蔗糖、山梨醇、甘露醇、甘露醇、淀粉、阿拉伯树胶、磷酸钙、藻酸盐、西黄蓍胶、明胶、硅酸钙、微晶纤维素、聚乙烯吡咯烷酮、纤维素、水、盐溶液、糖浆、甲基纤维素、羟苯甲酯或羟苯丙酯、滑石、硬脂酸镁和矿物油。该制剂能另外地包括润滑剂、湿润剂、乳化剂和悬浮剂、防腐剂、甜味剂或调味剂。乳化剂的例子包括生育酚酯诸如聚乙二醇琥珀酸生育酚和类似物、pluronic
Figure BPA00001480457000421
基于聚氧乙烯化合物的乳化剂、Span 80和相关的化合物和本领域已知的并批准在动物或人类剂型中使用的其它的乳化剂。能通过利用本领域熟知的方法配制组合物以在给予患者之后,提供有效成分的快速、持久或延迟的释放。
在一些实施方式中,将组合物配制成具有约4.5至约9.0范围的pH,包括例如约5.0至约8.0、约6.5至约7.5和约6.5至约7.0中任何一个范围的pH。在一些实施方式中,将组合物的pH配制成不小于约6,包括例如不小于约6.5、7或8(例如约8)中的任何一个。还可通过添加合适的张力改性剂,诸如甘油将组合物制备成与血液等渗的。
在一些实施方式中,组合物适于给予人。本发明的组合物有品种多样的合适的制剂(参见,例如美国专利号5,916,596和6,096,331,它们在此以其全部通过引用被并入)。下面的制剂和方法仅仅是示例性的,绝不是限制性的。
适于口服给药的制剂可包括(a)液体溶液,诸如有效量的溶解在稀释剂,诸如水、盐水或桔子汁中的化合物,(b)胶囊、囊剂或片剂,每种含有预设量的作为固体或颗粒的活性成分,(c)在适当液体中的悬液,(d)合适的乳状液,和(e)粉剂。片剂形式可包括下述的一种或多种:乳糖、甘露醇、玉米淀粉、马铃薯淀粉、微晶纤维素、阿拉伯树胶、明胶、胶体二氧化硅、交联羧甲纤维素钠、滑石、硬脂酸镁、硬脂酸和其它的赋形剂、色料、稀释剂、缓冲剂、湿润剂、防腐剂、调味剂和药理学上相容的赋形剂。锭剂形式可包括香味中的活性成分,通常是蔗糖和阿拉伯树胶或西黄蓍胶,以及包括惰性碱中的活性成分的锭剂,诸如明胶和甘油、或蔗糖和阿拉伯树胶、乳状液、凝胶和含有除了活性成分外本领域已知的这样的赋形剂的类似物。
可将本发明的纳米颗粒包在硬的或软的胶囊中、压缩进片剂或与饮料或食物掺合或另外掺合入饮食中。可通过将纳米颗粒与惰性药物稀释剂混合和将混合物插入到适当大小的硬明胶胶囊中来配制胶囊。如果想得到软胶囊,可通过机器将纳米颗粒与可接受的植物油、石油醚或其它惰性油的浆体封装入明胶胶囊。
适于胃肠外给药的制剂包括水性的和非水性的、等渗的无菌注射溶液,它们可含有抗氧化剂、缓冲液、抑菌剂、使制剂与预期接受者的血液相容的溶质、和可包括悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂的水性的和非水性的无菌悬浮液。制剂能在单位剂量或多剂量密封容器,诸如安瓿和管形瓶中存在,并能储存在冷冻干燥的(冻干的)条件下,只需要在使用之前一刻添加用于本文描述的治疗方法、给药方法和剂量方案的无菌液体赋形剂(即水),用于注射。能从先前描述的无菌粉剂、颗粒和片剂制备即时注射溶液和悬浮液。可注射的制剂是优选的。
本发明还包括适于吸入给药用于本发明方法的纳米颗粒组合物的制剂,该纳米颗粒组合物包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白。适于气溶胶给药的制剂包括本发明的组合物,包括水性的和非水性的、等渗的无菌注射溶液,它们可含有抗氧化剂、缓冲液、抑菌剂和溶质、以及可包括悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂的水性的和非水性的无菌悬浮液,单独或与其它合适的组分组合,能将制剂制备成气溶胶制剂以通过吸入给药。可将这些气溶胶制剂放置进加压的可接受的推进剂,诸如二氯二氟甲烷、丙烷、氮和类似物中。还能将它们配制成为用于非加压制备的药物,诸如在雾化器或喷雾器中。
本发明还包括以用于直肠给药的栓剂的形式给予的纳米颗粒组合物的制剂。可通过将试剂与合适的非刺激的赋形剂混合来制备这些制剂,该赋形剂在室温下是固态的,但在直肠温度下是液态的,因此将在直肠融化以释放药物。这样的物质包括可可脂、蜂蜡和聚乙二醇。
本发明还包括局部(外部,topiclly)给药的纳米颗粒组合物的制剂,尤其当治疗靶标包括通过局部应用容易到达的区域或器官,包括眼、皮肤或较低肠道的疾病。容易制备用于这些区域或器官中的每一个的合适的局部制剂。
用于较低肠道的局部应用能以直肠栓剂(参见上面)或合适的灌肠制剂实现。也可使用局部经皮贴片。
还提供了包括本文描述的组合物和制剂的单位剂型。这些单位剂型能以单个或多个单位剂量储存在合适的包装中,并且还可被进一步灭菌和密封。例如,药物组合物(例如剂量或单位剂型的药物组合物)可包括(i)包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白的纳米颗粒,和(ii)药学上可接受的载体。在一些实施方式中,药物组合物还包括一种或多种其它的化合物(或其药学上可接受的盐),这些化合物有益于治疗癌症。在各种变化中,组合物中疏水紫杉烷衍生物的量以下面范围的任何一个被包括:约5至约50mg、约20至约50mg、约50至约100mg、约100至约125mg、约125至约150mg、约150至约175mg、约175至约200mg、约200至约225mg、约225至约250mg、约250至约300mg、约300至约350mg、约350至约400mg、约400至约450mg或约450至约500mg。在一些实施方式中,组合物(例如剂量或单位剂型的药物组合物)中疏水紫杉烷衍生物的量为约5mg至约500mg的范围,诸如约30mg至约300mg或约50mg至约200mg的衍生物。在一些实施方式中,载体适于胃肠外给药(例如静脉内给药)。在一些实施方式中,疏水药物衍生物(例如疏水紫杉烷衍生物)是包含在组合物中的用于癌症治疗的唯一药学上有活性的药剂。
在一些实施方式中,本发明描述了用于癌症治疗的剂型(例如单位剂型)的特征,该剂型包括(i)包括载体蛋白和疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的纳米颗粒,其中单位剂型中的衍生物的量在约5mg至约500mg的范围内,和(ii)药学上可接受的载体。在一些实施方式中,单位剂型中的疏水药物衍生物(例如疏水紫杉烷衍生物)的量包括约30mg至约300mg。
还提供了在合适包装中的包括本文描述的组合物、制剂和单位剂量的制品,用于本文描述的治疗方法、给药方法和剂量方案中。用于本文描述的组合物的合适的包装是本领域已知的,包括,例如,管形瓶(诸如密封的管形瓶)、容器(诸如密封的容器)、安瓿、瓶子、罐、软包装(例如密封的聚脂薄膜或塑料袋)和类似物。这些制品可进一步灭菌和/或密封。
试剂盒
本发明还提供包括本文描述的组合物、制剂、单位剂量和制品的试剂盒,用于在本文描述的治疗方法、给药方法和剂量方案中。本发明的试剂盒包括一个或多个容器,该容器包括含有疏水紫杉烷衍生物的纳米颗粒组合物(制剂或单位剂型和/或制品),在一些实施方式中,进一步包括根据本文描述的任何治疗方法的使用说明书。在一些实施方式中,试剂盒包括i)包括纳米颗粒的组合物,该纳米颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白),和ii)同时和/或依次给予纳米颗粒和化学治疗剂用于癌症治疗的说明书。在各种变化中,试剂盒中的疏水药物衍生物(例如疏水紫杉烷衍生物)的量以下面范围的任何一个被包括:约5至约20mg、约20至约50mg、约50至约100mg、约100至约125mg、约125至约150mg、约150至约175mg、约175至约200mg、约200至约225mg、约225至约250mg、约250至约300mg、约300至约350mg、约350至约400mg、约400至约450mg或约450至约500mg。在一些实施方式中,试剂盒中的疏水紫杉烷衍生物的量为约5mg至约500mg的范围,诸如约30mg至约300mg或约50mg至约200mg。在一些实施方式中,试剂盒包括一种或多种其它的化合物(即除疏水药物衍生物外诸如除疏水紫杉烷衍生物外的一种或多种化合物),这些化合物有益于治疗癌症。
本发明试剂盒中提供的说明书典型地是标签或包装插件(例如包括在试剂盒中的纸张)上的书面说明,但是机器可读的说明书(例如在磁性或光学存储盘上携带的说明书)也是可接受的。与纳米颗粒组合物的使用相关的说明书通常包括关于用于预期治疗的剂量、给药方案和给药途径的信息。试剂盒可进一步包括选择合适的个体或治疗的说明书。
本发明还提供包括本文描述的组合物(或单位剂型和/或制品)的试剂盒,并可进一步包括关于使用该组合物的方法的说明书(或多个),诸如本文进一步描述的用途。在一些实施方式中,本发明的试剂盒包括上面描述的包装。在其它的变化中,本发明的试剂盒包括上面描述的包装和包括缓冲液的第二包装。它可进一步包括从商业和使用者立场期望的其它物质,包括其它的缓冲液、稀释剂、过滤器、针、注射器和具有用于进行本文描述的任何方法的说明书的包装插件。
对于本发明的联合治疗,试剂盒可含有用于同时和/或依次给予第一和第二治疗以获得有效的癌症治疗的说明书。第一和第二治疗能存在于分开的容器中或单个容器中。应理解为该试剂盒可包括一个不同的组合物或两个或多个组合物,其中一个组合物包括第一治疗,一个组合物包括第二治疗。
还可提供含有充足剂量的本文公开的疏水药物衍生物(例如疏水紫杉烷衍生物)的试剂盒以对个体提供延长时期的有效治疗,诸如1周、2周、3周、4周、6周、8周、3个月、4个月、5个月、6个月、7个月、8个月、9个月或更长中的任何一个。试剂盒还可包括多单位剂量的本文描述的疏水紫杉烷衍生物组合物、药物组合物和制剂和说明书,用于以足以储存和药房使用的量使用和包装,例如,医院药房和配药药房。在一些实施方式中,试剂盒包括干的(例如冻干的)组合物,该干的组合物能被重建、再悬浮或再水化以通常形成稳定的纳米颗粒水悬液,该纳米颗粒包括疏水药物衍生物(例如疏水紫杉烷衍生物)和白蛋白(例如包被白蛋白的疏水紫杉烷衍生物)。
本发明的试剂盒处于合适的包装中。合适的包装包括但并不限于管形瓶、瓶子、罐、软包装(例如密封的聚脂薄膜或塑料袋)和类似物。试剂盒可任选地提供另外的组分诸如缓冲液和说明性信息。
制备纳米颗粒组合物的方法
制备含有载体蛋白和水溶性差的药物试剂的组合物的方法是本领域已知的。例如,能在高剪力(例如超声处理、高压匀化或相似的方法)的条件下制备含有水溶性差的药物试剂和载体蛋白(例如白蛋白)的纳米颗粒。这些方法在,例如美国专利号5,916,596、6,096,331、6,749,868和6,537,579中,和PCT申请公开号WO98/14174、WO99/00113、WO07/027941和WO07/027819中公开了。这些公开的内容,特别地是关于制备含有载体蛋白的组合物的方法在此以其全部作为引用被并入。
简单地说,将药物(例如疏水药物衍生物,诸如疏水紫杉烷衍生物)溶解在有机溶剂中。合适的有机溶剂包括,例如,酮类、酯类、醚类、氯化溶剂和本领域已知的其它溶剂。例如,有机溶剂可以是二氯甲烷、氯仿/乙醇或氯仿/叔-丁醇(例如具有约1∶9、1∶8、1∶7、1∶6、1∶5、1∶4、1∶3、1∶2、1∶1、2∶1、3∶1、4∶1、5∶1、6∶1、7∶1、8∶1或9∶1中的任何一个比率或具有约3∶7、5∶7、4∶6、5∶5、6∶5、8∶5、9∶5、9.5∶5、5∶3、7∶3、6∶4或9.5∶0.5中的任何一个比率)。将溶液加入到载体蛋白(例如人血清白蛋白)中。将混合物进行高压匀化(例如使用Avestin、APV Gaulin、MicrofluidizerTM,诸如来自Microfluidics的MicrofluidizerTM Processor M-110EH、Stansted或Ultra Turrax匀化器)。可通过高压均浆器循环乳液约2至约100个循环,诸如约5至约50个循环或约8至约20个循环之间(例如约8、10、12、14、16、18或20个循环中的任何一个)。有机溶剂然后能通过利用用于该目的已知合适设备的蒸发被去除,该设备包括但并不限于旋转蒸发器、降膜蒸发器、刮膜蒸发器、喷雾干燥器和能以分批模式操作或连续操作的类似设备。在减压下(诸如在约25mm Hg、30mm Hg、40mm Hg、50mm Hg、100mm Hg、200mm Hg或300mm Hg中的任何一个),溶剂可被去除。可基于制剂的体积调节在减压下用于去除溶剂的时间量。例如,对于300mL规模生产的制剂,可以在约1至约300mmHg(例如约5-100mm Hg、10-50mm Hg、20-40mm Hg或25mm Hg中的任何一个)持续约5至约60分钟(例如约7、8、9、10、11、12、13、14、15、16、18、20、25或30分钟中的任何一个)去除溶剂。能将获得的分散液相进一步冻干。
如果期望,可将人白蛋白溶液加入到分散液中以调节人血清白蛋白与药物(例如多西紫杉醇)或疏水药物衍生物(例如疏水紫杉烷衍生物)之比,或调节疏水紫杉烷衍生物在分散液中的浓度。例如,能加入人血清白蛋白溶液(例如25%w/v)以调节人血清白蛋白与疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的比至约18∶1、15∶1、14∶1、13∶1、12∶1、11∶1、10∶1、9∶1、8∶1、7.5∶1、7∶1、6∶1、5∶1、4∶1或3∶1中的任何一个。例如,加入人血清白蛋白溶液(例如25%w/v)或另一种溶液以调节药物或疏水药物衍生物在分散液中的浓度至约0.5mg/ml、1.3mg/ml、1.5mg/ml、2mg/ml、3mg/ml、4mg/ml、5mg/ml、6mg/ml、7mg/ml、8mg/ml、9mg/ml、10mg/ml、15mg/ml、20mg/ml、25mg/ml、30mg/ml、40mg/ml或50mg/ml中的任何一个。可通过多个滤器连续过滤分散液,诸如1.2μm和0.8/0.2μm滤器的组合;1.2μm、0.8μm、0.45μm和0.22μm滤器的组合;或本领域已知的任何其它滤器的组合。能将获得的分散液进一步冻干。可使用分批法或连续法(例如组合物大规模的生产)制备纳米颗粒组合物。
如果期望,第二治疗(例如一种或多种有益于治疗癌症的化合物)、抗微生物剂、糖和/或稳定剂也能包括在组合物中。例如,该额外的试剂可以在疏水药物衍生物(例如疏水紫杉烷衍生物)/载体蛋白组合物的制备期间与疏水药物衍生物(例如疏水紫杉烷衍生物)和/或载体蛋白混合,或在制备疏水紫杉烷衍生物/载体蛋白组合物之后加入。在一些实施方式中,在冻干之前将试剂与疏水紫杉烷衍生物/载体蛋白组合物混合。在一些实施方式中,将试剂加入到冻干的疏水紫杉烷衍生物/载体蛋白组合物中。在一些实施方式中,当试剂的加入改变组合物的pH时,通常(但不是必需的)将组合物中的pH调节至期望的pH。组合物的示例性pH值包括,例如,约5至约8.5的范围。在一些实施方式中,将组合物的pH调节至不小于约6,包括例如不小于约6.5、7或8中的任何一个(例如约8)。
在本发明一些实施方式中提供了包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的乳液,该乳液包括:(a)包括纳米滴的第一相,该纳米滴包括溶解在用于疏水紫杉烷衍生物的有机溶剂中和用于疏水紫杉烷衍生物的醇溶剂中的疏水紫杉烷衍生物的至少一部分,和(b)包括水和生物相容聚合物的第二相,其中乳液基本上没有表面活性剂。
制备疏水药物衍生物的方法
可通过通常熟知的合成方法的适当组合来合成本发明的疏水药物衍生物(例如疏水紫杉烷衍生物)。在合成本发明的化合物中有用的技术对相关领域的技术人员来说是显然明显的和可得到的,特别地从本文描述的教导看来。提供下面的讨论以举例说明在装配本发明的化合物中某些可利用的不同方法。然而,该讨论不是试图限制在制备本发明的化合物中有用的反应或反应顺序的范围,也不是不限制化合物本身的范围。
在本发明中有用的一些化合物的合成公开在WO 2006/089207中,其内容,特别是关于公开的化合物和合成的实施例,在此以其全部作为引用被并入。
如方案1所示,可通过改性紫杉烷的2′-羟基合成在本发明中有用的一些疏水紫杉烷衍生物。存在碱(诸如三乙胺或吡啶)时,用约一当量的反应性疏水基团(例如苯甲基卤化物,诸如苯甲酰氯)处理紫杉烷(例如多西紫杉醇)提供期望的疏水紫杉烷衍生物。可选地,存在偶联剂(例如二环己基碳二亚胺)和任选地催化剂量的4-吡咯烷吡啶或4-二甲基氨基吡啶时,用约一当量的反应性疏水基团(例如苯甲酸)处理紫杉烷提供期望的疏水紫杉烷衍生物(例如方案1中显示的2′-苯甲酰基多西紫杉醇)。
Figure BPA00001480457000481
如方案2所示,可通过改性紫杉烷的位置7合成在本发明中有用的一些疏水紫杉烷衍生物。为了在位置7引入疏水基团的新官能性,可用保护基团阻断紫杉烷的2′-羟基的反应性。由于其通过用酸(例如甲醇中的盐酸或吡啶中的氢氟酸)处理容易地从2′-羟基去除,可使用选择的保护基团,诸如三乙基硅烷(triethylsilyl)的用途。因此,如方案2所示,存在碱(诸如三乙胺(TEA)或吡啶)下,用约一当量的三乙基氯硅烷(TESCl)对紫杉烷(例如多西紫杉醇)处理时,能以好的产量提供2′-受保护的羟基紫杉烷(例如2′-三乙基硅烷紫杉醇)。可选地,还能使用其它的保护基团,诸如2,2,2-三氯乙基-氧羰基衍生物,并随后用锌和酸(例如醋酸)处理将其去除。
含有2′-受保护的羟基的紫杉烷然后能经受本文描述的反应性疏水基团(例如在二环己基碳二亚胺和催化量的4-吡咯烷吡啶或4-二甲基氨基吡啶存在下的苯甲酸),以产生在位置7改性的疏水紫杉烷衍生物。通过去除保护基团(例如在弱酸性条件下)能容易地解放2′-受保护的羟基(例如2′-三乙基硅烷基),产生期望的产物。
如方案3所示,可通过改性紫杉烷的位置10合成在本发明中有用的一些疏水紫杉烷衍生物。为了在位置10引入疏水基团的新官能性,可用保护基团阻断紫杉烷的2′-羟基和7-羟基的反应性。存在碱(诸如吡啶)下,用约两当量的合适的保护基团(例如三乙基氯硅烷(TESCl))对紫杉烷(例如多西紫杉醇)处理时,能产生双重保护的紫杉烷(例如2′,7-二(三乙基硅烷)紫杉醇)。当该受保护的紫杉烷经受本文描述的反应性疏水基团(例如二环己基碳二亚胺和催化量的4-二甲基氨基吡啶存在下的苯甲酰氯/吡啶或苯甲酸),获得期望的10-酰基化产物(例如10-酰基化),两个保护基团能容易地从其中去除(例如在弱酸性条件下)。
Figure BPA00001480457000492
随着2′-和7-受保护的紫杉烷的可用性,通过使用不同的官能团来连接疏水基团和紫杉烷(例如酯、碳酸盐、氨基甲酸酯和类似物),能实现具有酰基官能性的位置10的进一步改性。
根据本发明的一个实施方式,根据本发明的方法,疏水基团,诸如苯甲酰基,可被结合到实际上任何药物化合物或诊断试剂、被配制和使用。药物试剂包括下面的种类和具体的例子。不是试图用具体的例子限制种类。根据本文提供的教导,本领域的普通技术人员将识别落入所述种类内并且根据本发明有用的为数众多的其它化合物。
本发明还包括由本文描述的方法制备的产物。
测量抗癌症活性的方法
能体外检测本文描述的化合物(例如疏水紫杉烷衍生物)或其纳米颗粒组合物的抗癌活性,例如,通过将癌细胞培养物与衍生物温育,然后评价培养物中的细胞生长抑制。用于这样的测试的合适的细胞包括鼠P388白血病细胞、B 16黑色素瘤细胞和Lewis肺癌细胞以及人乳房MCF7细胞、卵巢OVCAR-3细胞、A549肺癌细胞、MX-I(人乳腺肿瘤细胞)、HT29(结肠癌细胞系)、HepG2(肝癌细胞系)和HCTl 16(结肠癌细胞系)。可选地,例如,能体内检测疏水药物衍生物(或包括疏水药物衍生物的组合物)的抗肿瘤活性,例如,通过首先在合适的试验动物,例如裸鼠中建立肿瘤。适于建立肿瘤的细胞包括上面描述的用于体外测试的那些细胞,以及本领域中通常接受的用于建立肿瘤的其它细胞。随后,将药物或疏水药物衍生物(例如疏水紫杉烷衍生物)给予动物;然后测定ED50值,即,达到动物中50%肿瘤生长抑制需要的衍生物(或组合物)的量,如是存活率。由于本文描述的教导,在ED50和生存值这样的因子的基础上,普通技术人员能选择本文描述的特定化合物(或包括本文描述的化合物的纳米颗粒组合物)用于抵抗某些癌症的应用。
治疗方法
本发明的纳米颗粒组合物可用于治疗与细胞增殖或增殖过度相关的疾病,诸如癌症。在一些实施方式中,提供治疗个体中增生性疾病(例如癌症)的方法,包括给予个体有效量的包括纳米颗粒的组合物,其中该纳米颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白)。
用本发明的方法可治疗的癌症的例子包括但并不限于多发性骨髓瘤、肾细胞癌、前列腺癌、肺癌、黑素瘤、结肠癌、结肠直肠癌、卵巢癌、肝癌、肾癌、胃癌和乳腺癌。
在一些变化中,正为增生性疾病而进行治疗的个体已被鉴定为具有一个或多个本文描述的状况。熟练的技术人员进行的对本文描述的状况的鉴定在本领域是常规的(例如通过血液试验、X线、CT扫描、内窥镜检查、活组织检查等),个体或其它的人也可进行这些鉴定,例如,由于肿瘤生长、出血、溃疡形成、疼痛、增大的淋巴结、咳嗽、黄疸、肿胀、体重减轻、恶病质、出汗、贫血、癌旁现象、血栓形成等。在一些实施方式中,个体已被鉴定为对本文描述的一个或多个状况易感。个体的易感性可基于熟练的技术人员理解的许多危险因素和/或诊断方法中的一个或多个,包括但并不限于遗传分析谱(genetic profiling)、家族史、医疗史(例如相关状况的出现)、生活方式或习惯。
在一些实施方式中,与治疗之前同一个个体的相应的症状相比或与没有接受本文使用的方法和/或组合物的其它个体的相应的症状相比,本文使用的方法和/或组合物减少一个或多个与增生性疾病(例如癌症)相关的症状的严重性至少约10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或100%中的任何一个。
联合治疗
在一些实施方式中,本发明通过给予个体有效量的a)第一治疗和b)第二治疗的组合提供个体中治疗癌症的方法,其中a)第一治疗包括包含纳米颗粒的组合物,该纳米颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(诸如白蛋白);和b)第二治疗有益于治疗癌症。在一些实施方式中,第二治疗包括手术、辐射、基因治疗、免疫疗法、骨髓移植、干细胞移植、激素疗法、靶向疗法、冷冻疗法、超声疗法、光动力学疗法和/或化学疗法(例如有益于治疗癌症的一种或多种化合物)。应理解为,对下面治疗癌症的方法的引用和描述是示例性的,和该描述相等地适用于并包括使用联合治疗来治疗癌症的方法。
定药量配和给药方法
给予个体(诸如人类)的本发明组合物的量可随着特定的组合物、给药方法和进行治疗的复发癌症的特定类型而变化。该量应足以产生期望的有益效果。例如,在一些实施方式中,组合物的量有效地引起客观反应(诸如部分反应或完全反应)。在一些实施方式中,纳米颗粒组合物(例如包括疏水紫杉烷衍生物的组合物)的量足以在个体中引起完全反应。在一些实施方式中,组合物的量足以在个体中引起部分反应。在一些实施方式中,在用组合物治疗的个体的群体中,单独给予的组合物的量足以产生大于约40%、50%、60%或64%中的任何一个的总反应率。能测定个体对本文描述方法的治疗的反应,例如,基于RECIST或CA-125水平。例如,当使用CA-125时,能将完全反应定义为从预处理值到至少28天的正常范围值的返回。能将部分反应定义为从预处理值起持久的超过50%的减少。
在一些实施方式中,纳米颗粒组合物(例如包括疏水紫杉烷衍生物的组合物)的量足以延长个体的无进展存活(例如如RECIST或CA-125变化所测量的)。在一些实施方式中,纳米颗粒组合物(例如包括疏水紫杉烷衍生物的组合物)的量足以延长个体的总存活。在一些实施方式中,在用组合物治疗的个体的群体中,组合物的量足以产生超过约50%、60%、70%或77%中的任何一个的临床益处。
在一些实施方式中,当将组合物给予个体时,组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的量低于引起毒理学效应(即超过临床上可接受的毒性水平的效应)的水平或处于潜在的副作用能被控制或耐受的水平。在一些实施方式中,相同的给药方案之后,组合物的量接近组合物的最大耐受剂量(MTD)。在一些实施方式中,组合物的量超过MTD的约80%、90%、95%或98%中的任何一个。
在一些实施方式中,与治疗之前相同的受试者中的相应的肿瘤大小、癌细胞的数目或肿瘤的生长速率相比或与没有接受治疗的其它受试者中的相应活性相比,化合物和/或组合物的量足以减小肿瘤的大小、减少癌细胞的数目或降低肿瘤的生长速率至少约10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或100%中的任何一个。能使用标准的方法测量该效果的大小,诸如用纯化酶的体外测定、基于细胞的测定、动物模型或人类试验。
在一些实施方式中,组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的量包括在下面范围中的任何一个中:约0.5至约5mg、约5至约10mg、约10至约15mg、约15至约20mg、约20至约25mg、约20至约50mg、约25至约50mg、约50至约75mg、约50至约100mg、约75至约100mg、约100至约125mg、约125至约150mg、约150至约175mg、约175至约200mg、约200至约225mg、约225至约250mg、约250至约300mg、约300至约350mg、约350至约400mg、约400至约450mg或约450至约500mg。在一些实施方式中,有效量的组合物(例如单位剂型)中的疏水紫杉烷衍生物的量在约5mg至约500mg,诸如约30mg至约300mg或约50mg至约200mg的范围中。在一些实施方式中,组合物中疏水紫杉烷衍生物的浓度是稀释的(约0.1mg/ml)或浓缩的(约100mg/ml),包括例如约0.1至约50mg/ml、约0.1至约20mg/ml、约1至约10mg/ml、约2mg/ml至约8mg/ml、约4至约6mg/ml、约5mg/ml中的任何一个。在一些实施方式中,疏水紫杉烷衍生物的浓度是至少约0.5mg/ml、1.3mg/ml、1.5mg/ml、2mg/ml、3mg/ml、4mg/ml、5mg/ml、6mg/ml、7mg/ml、8mg/ml、9mg/ml、10mg/ml、15mg/ml、20mg/ml、25mg/ml、30mg/ml、40mg/ml或50mg/ml中的任何一个。
纳米颗粒组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的示例性有效量包括但并不限于约25mg/m2、30mg/m2、50mg/m2、60mg/m2、75mg/m2、80mg/m2、90mg/m2、100mg/m2、120mg/m2、160mg/m2、175mg/m2、180mg/m2、200mg/m2、210mg/m2、220mg/m2、250mg/m2、260mg/m2、300mg/m2、350mg/m2、400mg/m2、500mg/m2、540mg/m2、750mg/m2、1000mg/m2或1080mg/m2的疏水紫杉烷衍生物中的任何一个。在各种变化中,组合物包括小于约350mg/m2、300mg/m2、250mg/m2、200mg/m2、150mg/m2、120mg/m2、100mg/m2、90mg/m2、50mg/m2或30mg/m2的疏水紫杉烷衍生物中的任何一个。在一些实施方式中,每次给药的疏水紫杉烷衍生物的量小于约25mg/m2、22mg/m2、20mg/m2、18mg/m2、15mg/m2、14mg/m2、13mg/m2、12mg/m2、11mg/m2、10mg/m2、9mg/m2、8mg/m2、7mg/m2、6mg/m2、5mg/m2、4mg/m2、3mg/m2、2mg/m2或1mg/m2中的任何一个。在一些实施方式中,组合物中的疏水紫杉烷衍生物的有效量包括在下面范围中的任何一个中:约1至约5mg/m2、约5至约10mg/m2、约10至约25mg/m2、约25至约50mg/m2、约50至约75mg/m2、约75至约100mg/m2、约100至约125mg/m2、约125至约150mg/m2、约150至约175mg/m2、约175至约200mg/m2、约200至约225mg/m2、约225至约250mg/m2、约250至约300mg/m2、约300至约350mg/m2或约350至约400mg/m2。优选地,组合物中的疏水紫杉烷衍生物的有效量是约5至约300mg/m2,诸如约100至约150mg/m2、约120mg/m2、约130mg/m2或约140mg/m2。在一些实施方式中,包括紫杉醇的纳米颗粒不以300mg/m2或900mg/m2的剂量给药。
在任何上面方面的一些实施方式中,组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的有效量包括至少约1mg/kg、2.5mg/kg、3.5mg/kg、5mg/kg、6.5mg/kg、7.5mg/kg、10mg/kg、15mg/kg或20mg/kg中的任何一个。在各种变化中,组合物中的疏水紫杉烷衍生物的有效量包括小于约350mg/kg、300mg/kg、250mg/kg、200mg/kg、150mg/kg、100mg/kg、50mg/kg、25mg/kg、20mg/kg、10mg/kg、7.5mg/kg、6.5mg/kg、5mg/kg、3.5mg/kg、2.5mg/kg或1mg/kg的疏水紫杉烷衍生物中的任何一个。在一些实施方式中,包括化合物2的纳米颗粒不以60mg/kg或90mg/kg的剂量给药。
示例性的给药频率包括但并不限于下列中任何一个:每周一次不间断;四周中的三周每周一次;每三周一次;每两周一次;三周中的两周每周一次。在一些实施方式中,组合物给药约每2周一次、每3周一次、每4周一次、每6周一次或每8周一次。在一些实施方式中,组合物给药至少约一周1次、2次、3次、4次、5次、6次或7次(即每天)中的任何一个。在一些实施方式中,每次给药之间的间隔至少约6个月、3个月、1个月、20天、15天、12天、10天、9天、8天、7天、6天、5天、4天、3天、2天或1天中的任何一个。在一些实施方式中,每次给药之间的间隔大于约1个月、2个月、3个月、4个月、5个月、6个月、8个月或12个月中的任何一个。在一些实施方式中,给药方案中没有中断。在一些实施方式中,每次给药之间的间隔不大于约一周。
组合物的给药能延长超过延长的时期,诸如从约一个月直到约7年。在一些实施方式中,组合物给药超过至少约2、3、4、5、6、7、8、9、10、11、12、18、24、30、36、48、60、72或84个月中的任何一个时期。在一些实施方式中,组合物给药超过至少一个月的时期,其中每次给药之间的间隔不超过约一周,其中每次给药时疏水紫杉烷衍生物的剂量是约0.25mg/m2至约75mg/m2,诸如约0.25mg/m2至约25mg/m2或约25mg/m2至约50mg/m2
在一些实施方式中,当按3周的时间表给予时,纳米颗粒组合物中的药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的剂量可以在5-400mg/m2的范围内,或按每周一次的时间表给予时,在5-250mg/m2的范围内。例如,疏水紫杉烷衍生物的量是约60至约300mg/m2(例如约260mg/m2)。
纳米颗粒组合物(例如疏水紫杉烷衍生物/白蛋白纳米颗粒组合物)给药的其它示例性的给药时间表包括但并不限于100mg/m2,每周一次,没有中断;75mg/m2每周一次,4周中的3周;100mg/m2每周一次,4周中的3周;125mg/m2每周一次,4周中的3周;125mg/m2每周一次,3周中的2周;130mg/m2,每周一次,没有中断;175mg/m2,每2周一次;260mg/m2,每2周一次;260mg/m2,每3周一次;180-300mg/m2,每三周;60-175mg/m2,每周一次,没有中断;20-150mg/m2,一周两次;和150-250mg/m2,一周两次中的任何一个。基于给药医生的判断,可随着治疗进程调整组合物的给药频率。
本文描述的组合物允许组合物对个体的输注,输注时间少于约24小时。例如,在一些实施方式中,在小于约24小时、12小时、8小时、5小时、3小时、2小时、1小时、30分钟、20分钟或10分钟中的任何一个的输注时间给予组合物。在一些实施方式中,在约30分钟的输注时间给予组合物。
输注速度在本文描述的纳米颗粒组合物的大小和/或溶解曲线中起重要作用。例如,较短的输注时间可导致纳米颗粒组合物较高的血液浓度,这可导致稳定纳米颗粒、阻止或减少溶解和保持和/或增加纳米颗粒大小。用载体稳定药物或疏水药物衍生物的纳米颗粒形式并使纳米颗粒大小在输注之后减小可提高有效性(例如通过到期望受体位点的提高的递送,诸如gp60和/或SPARC)并产生期望的治疗效果。
一方面,在缩短的输注时间里将本文描述的组合物输注入个体。在一些实施方式中,将包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(例如白蛋白诸如人血清白蛋白)的本文描述的组合物在小于约30分钟、或20分钟、或10分钟、或7分钟、或5分钟、或3分钟、或2分钟或1分钟中的任何一个输注时间里输注给个体。在一些实施方式中,将包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(例如白蛋白,诸如人血清白蛋白)的本文描述的组合物在30分钟或更少、或20分钟或更少、或10分钟或更少、或7分钟或更少、或5分钟或更少、或3分钟或更少、或2分钟或更少、或1分钟或更少中的任何一个输注时间里输注给个体。在这些实施方式的一些中,组合物包括未改性的药物。在这些实施方式的一些中,组合物包括疏水药物衍生物。在这些实施方式的一些中,组合物包括药物(例如紫杉醇或多西紫杉醇)和载体蛋白(例如白蛋白诸如人血清白蛋白)。在这些实施方式的一些中,组合物包括除紫杉醇或多西紫杉醇外的药物和载体蛋白(例如白蛋白诸如人血清白蛋白)。在一些实施方式中,包括紫杉醇和载体蛋白(例如白蛋白诸如人血清白蛋白)的本文描述的纳米颗粒组合物不在约30分钟的输注时间里输注给个体。在这些实施方式的一些中,组合物包括疏水药物衍生物(例如疏水紫杉烷衍生物)和载体蛋白(例如白蛋白诸如人血清白蛋白)。在这些实施方式的一些中,组合物包括疏水紫杉醇衍生物或疏水多西紫杉醇衍生物(例如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(例如白蛋白诸如人血清白蛋白)。
在一些实施方式中,包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)的纳米颗粒在个体中的300mg/m3或900mg/m3剂量的输注速度足以在输注之后超过1min、或2min、或3min、或5min、或10min、或20min、或30min、或45min、或1hr、或2hr提供在血液中具有平均直径约5nm至900nm、10nm至800nm、20nm至700nm、30nm至600nm、40nm至500nm、50nm至250nm、75nm至200nm或100nm至150nm之间中的任何一个的纳米颗粒。
在一个实施方式中描述了治疗个体中的增生性疾病(例如癌症)的方法,包括在小于10分钟的时间里给予个体有效量的包括药物(例如约5至约300mg/m2,诸如约100至约150mg/m2、约120mg/m2、约130mg/m2或约140mg/m2的未用疏水基团改性的药物)和载体蛋白的组合物。在这些实施方式的一些中,药物是紫杉烷(例如诸如紫杉醇或多西紫杉醇)。在另一个实施方式中描述了治疗个体中的增生性疾病(例如癌症)的方法,包括在小于5分钟(或小于3分钟、或小于1分钟)的时间里给予个体(例如通过输注)有效量的包括紫杉醇或多西紫杉醇(例如约5至约300mg/m2,诸如约150至约250mg/m2)和载体蛋白(例如白蛋白)的组合物。在这些实施方式的任何实施方式中,以每月一次或每三周一次或每两周一次或每周一次或每周两次或每周三次的间隔实施本方法。
在另一个实施方式中描述了治疗个体中的增生性疾病(例如癌症)的方法,包括在小于30分钟(或小于20分钟、或小于10分钟、或小于5分钟、或小于2分钟)的时间里给予个体(例如通过输注)有效量的包括疏水药物衍生物(例如约5至约300mg/m2,诸如约100至约150mg/m2)和载体蛋白(例如白蛋白)的组合物。在这些实施方式的一些中,疏水药物衍生物是疏水紫杉烷衍生物(例如疏水的紫杉醇衍生物或疏水的多西紫杉醇衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)。在这些实施方式中的任何实施方式中,以每月一次或每三周一次或每两周一次或每周一次的间隔实施本方法。
在一个实施方式中描述治疗个体中的增生性疾病(例如癌症)的方法,包括在10分钟或更少的时间里给予个体有效量的包括药物(例如约5至约300mg/m2,诸如约100至约150mg/m2、约120mg/m2、约130mg/m2或约140mg/m2的未用疏水基团改性的药物)和载体蛋白的组合物。在这些实施方式的一些中,药物是紫杉烷(例如诸如紫杉醇或多西紫杉醇)。在另一个实施方式中描述了治疗个体中的增生性疾病(例如癌症)的方法,包括在5分钟或更少(或3分钟或更少、或1分钟或更少)的时间里给予个体(例如通过输注)有效量的包括紫杉醇或多西紫杉醇(例如约5至约300mg/m2,诸如约150至约250mg/m2)和载体蛋白(例如白蛋白)的组合物。在这些实施方式中任何实施方式中,以每月一次或每三周一次或每两周一次或每周一次或每周两次或每周三次的间隔实施本方法。
在另一个实施方式中描述了治疗个体中的增生性疾病(例如癌症)的方法,包括在30分钟或更少(或20分钟或更少、或10分钟或更少、或5分钟或更少、或2分钟或更少)的时间里给予个体(例如通过输注)有效量的包括疏水药物衍生物(例如约5至约300mg/m2,诸如约100至约150mg/m2)和载体蛋白(例如白蛋白)的组合物。在这些实施方式的一些中,疏水药物衍生物是疏水紫杉烷衍生物(例如疏水的紫杉醇衍生物或疏水的多西紫杉醇衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)。在这些实施方式中的任何实施方式中,以每月一次或每三周一次或每两周一次或每周一次的间隔实施本方法
在一些实施方式中,本发明提供通过胃肠外给予个体(例如人)有效量的包括纳米颗粒的组合物来治疗个体中癌症的方法,该纳米颗粒包括药物或疏水药物衍生物(例如疏水紫杉烷衍生物,诸如化合物1、2、3-23中的任何一种和式I、II、III、IV、V或VI中的任何化合物)和载体蛋白(例如白蛋白诸如人血清白蛋白)。本发明还提供通过静脉内、动脉内、肌肉内、皮下、吸入、口服、腹膜内、鼻或气管内给予个体(例如人)有效量的包括纳米颗粒的组合物来治疗个体中癌症的方法,该纳米颗粒包括药物,诸如疏水药物衍生物(例如疏水紫杉烷衍生物)和载体蛋白(例如白蛋白诸如人血清白蛋白)。在一些实施方式中,给药途径是腹膜内。在一些实施方式中,给药途径是静脉内、动脉内、肌肉内或皮下。在各种变化中,每个剂量给予约5mg至约500mg,诸如约30mg至约300mg或约50至约500mg的疏水紫杉烷衍生物。在一些实施方式中,疏水紫杉烷衍生物是用于癌症治疗的唯一药学上有活性的药剂,其包含在组合物中。
本文描述的组合物中的任何组合物能通过各种途径,包括,例如,静脉内、动脉内、腹膜内、肺内、口服、吸入、囊内、肌肉内、气管内、皮下、眼内、鞘内、经粘膜和经皮给予个体(例如人)。在一些实施方式中,可使用组合物的持久的连续释放制剂。在本发明的一个变化中,发明的化合物的纳米颗粒(诸如白蛋白纳米颗粒)能通过任何可接受的途径给药,包括但并不限于经口、肌肉内、经皮、静脉内、通过吸入器或其它的空气推动递送系统和类似物。
在一些实施方式中,含有药物的纳米颗粒(例如含有疏水紫杉烷衍生物的纳米颗粒)组合物可与第二治疗化合物和/或第二治疗一起给药。基于给药医生的判断,可随着治疗进程调整组合物和第二化合物的给药频率。在一些实施方式中,同时、依次或并存地给予第一和第二治疗。当分开给药时,纳米颗粒组合物(例如含有疏水紫杉烷衍生物的纳米颗粒组合物)和第二化合物能以不同的给药频率或间隔给药。例如,组合物能每周一次给药,而第二化合物能更频繁地给药或更不频繁地给药。在一些实施方式中,可使用含有疏水紫杉烷衍生物的纳米颗粒和/或第二化合物的持久的连续释放制剂。达到持久释放的各种制剂和装置是本领域已知的。能使用本文描述的给药配置的组合。
节拍型治疗方案
本发明还提供用于本文描述的治疗方法和给药方法中的任何方法的节拍型治疗方案。下面讨论了并在2006年2月21日提交的、作为美国公开号2006/0263434公开的U.S.S.N.11/359,286(诸如其中[0138]至[0157]段描述的那些方案)中公开了示例性的节拍型治疗方案和用于节拍型治疗方案的变型,该专利在此以其全部通过引用被并入。在一些实施方式中,传统的给药方案之后,给予纳米颗粒组合物超过至少一个月的时期,其中每次给药之间的间隔不超过约一周,其中每次给药的疏水紫杉烷衍生物的剂量是其最大耐受剂量的0.25%至约25%。在一些实施方式中,传统的给药方案之后,给予纳米颗粒组合物超过至少两个月,其中每次给药之间的间隔不超过约一周,其中每次给药的药物或疏水药物衍生物(例如疏水紫杉烷衍生物)的剂量是其最大耐受剂量的约1%至约20%。在一些实施方式中,每次给药的疏水紫杉烷衍生物的剂量小于最大耐受剂量的约25%、24%、23%、22%、20%、18%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%中的任何一个。在一些实施方式中,任何纳米颗粒组合物给药至少约一周1次、2次、3次、4次、5次、6次或7次(即每天)中的任何一个。在一些实施方式中,每次给药之间的间隔小于约6个月、3个月、1个月、20天、15天、12天、10天、9天、8天、7天、6天、5天、4天、3天、2天或1天中的任何一个。在一些实施方式中,每次给药之间的间隔大于约1个月、2个月、3个月、4个月、5个月、6个月、8个月或12个月中的任何一个。在一些实施方式中,组合物给药超过至少约2、3、4、5、6、7、8、9、10、11、12、18、24、30、36、48、60、72或84个月中的任何一个时期。
实施例
本发明的实施例意欲为纯粹示例性的并因此不应被认为以任何方式限制本发明,其还描述和详述上面讨论的本发明的各个方面和变型。已进行了尝试以确保关于使用的数目(例如,量、温度等)的准确度,但是应说明一些实验误差和偏差。除非另外指明,部分是按重量计的部分,分子量是重均分子量,温度是摄氏度数,压力是大气压或接近大气压。
实施例1:2′-苯甲酰基-多西紫杉醇(1)的制备
Figure BPA00001480457000581
在0℃时将三乙胺(42μL,0.30mmol)加入到多西紫杉醇(201mg,0.25mmol)的二氯甲烷(6mL)溶液中,接下来加入苯甲酰氯(29μL,0.25mmol)。将混合物在室温搅拌2h,此时TLC表明起始物质的消失。加入饱和碳酸氢钠溶液淬灭之后,用乙醚提取混合物。用盐水洗涤有机层,无水硫酸镁干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷∶DCM,1∶1)纯化残留物以得到作为白色泡沫的产物(181mg,80%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.5Hz,2H),7.98(d,J=7.6Hz,2H),7.61(t,J=7.4Hz,1H),7.50(t,J=7.9Hz,2H),7.45(t,J=7.8Hz,2H),7.41-7.36(m,4H),7.29-7.26(m,1H),6.25(t,J=8.6Hz,1H),5.67(d,J=7.0Hz,1H),5.58-5.45(m,3H),5.22(s,1H),4.94(dd,J=9.6,1.9Hz,1H),4.31(d,J=8.5Hz,1H),4.27(dd,J=10.9,6.6Hz,1H),4.19(s,1H),4.18(d,J=8.5Hz,1H),3.93(d,J=6.9Hz,1H),2.60-2.58(m,1H),2.43(s,3H),2.32-2.25(m,1H),2.17(s,3H),2.15-2.05(m,1H),1.98(s,3H),1.88-1.80(m,1H),1.75(s,3H),1.34(s,9H),1.22(s,3H),1.11(s,3H)。ESI-MS:计算C50H57NOi5Na(M+Na)+:934。发现(实测,found):934。
实施例2:2′-己酰多西紫杉醇(2)的制备
Figure BPA00001480457000582
在0℃时将三乙胺(0.95ml,6.80mmol)加入到多西紫杉醇(2.20g,2.72mmol)的二氯甲烷(220mL)溶液中,接下来加入己酰氯(0.38mL,2.72mmol)。将混合物在0℃搅拌1.5h,此时TLC表明起始物质的消失。加入饱和碳酸氢钠溶液淬灭之后,用二氯甲烷提取混合物。用盐水洗涤有机层,无水硫酸钠干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷中10-50%的醋酸乙酯)纯化残留物以得到作为白色固体的产物(2.0g,81%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.3Hz,2H),7.61(t,J=7.4Hz,1H),7.50(t,J=7.9Hz,2H),7.38(t,J=7.4Hz,2H),7.30(m,3H),6.25(t,J=8.6Hz,1H),5.69(d,J=7.1Hz,1H),5.46-5.37(m,3H),5.21(s,1H),4.96(dd,J=7.7,2.0Hz,1H),4.32(d,J=8.5Hz,1H),4.27(dd,J=10.9,6.6Hz,1H),4.19(d,J=8.5Hz,2H),3.93(d,J=7.2Hz,1H),2.60-2.58(m,1H),2.44(s,3H),2.39-2.30(m,3H),2.29-2.20(m,1H),2.07(s,3H),1.96-1.85(m,1H),1.75(s,3H),1.57-1.53(m,4H),1.33(s,9H),1.23(s,3H),1.26-1.17(m,4H),1.12(s,3H),0.85(t,J=7.1Hz,3H)。ESI-MS:计算C49H63NO15Na(M+Na)+:929。发现:929。
实施例3:2′-癸酰-多西紫杉醇(3)的制备
Figure BPA00001480457000591
在0℃时将三乙胺(134μL,0.96mmol)加入到多西紫杉醇(144mg,0.18mmol)的二氯甲烷(10mL)溶液中,接下来加入癸酰氯(37μL,0.18mmol)。将混合物在0℃搅拌4.5h,此时TLC表明起始物质的消失。加入饱和的碳酸氢钠溶液淬灭之后,用二氯甲烷提取混合物。用盐水洗涤有机层,无水硫酸钠干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷中10-50%的醋酸乙酯)纯化残留物以提得到为白色固体的产物(112mg,65%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.3Hz,2H),7.61(t,J=7.4Hz,1H),7.50(t,J=7.9Hz,2H),7.38(t,J=7.4Hz,2H),7.30(m,3H),6.25(t,J=8.6Hz,1H),5.69(d,J=7.1Hz,1H),5.46-5.37(m,3H),5.21(s,1H),4.96(d,J=7.7Hz,1H),4.32(d,J=8.5Hz,1H),4.27(m,1H),4.19(m,2H),3.93(d,J=7.2Hz,1H),2.60-2.58(m,1H),2.44(s,3H),2.39-2.30(m,3H),2.29-2.20(m,1H),2.07(s,3H),1.96-1.85(m,1H),1.75(s,3H),1.57-1.45(m,4H),1.33(s,9H),1.23(s,3H),1.26-1.21(m,12H),1.12(s,3H),0.85(t,J=7.1Hz,3H)。
实施例4:2′-戊酰-多西紫杉醇(4)的制备
Figure BPA00001480457000592
在0℃时将三乙胺(100μL,0.72mmol)加入到多西紫杉醇(144mg,0.18mmol)的二氯甲烷(10mL)溶液中,接下来加入戊酰氯(44μL,0.18mmol)。将混合物在0℃搅拌5.5h,此时TLC表明起始物质的消失。加入饱和的碳酸氢钠溶液淬灭之后,用二氯甲烷提取混合物。用盐水洗涤有机层,无水硫酸钠干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷中10-50%的醋酸乙酯)纯化残留物以得到作为白色固体的产物(100mg,62%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.3Hz,2H),7.61(t,J=7.4Hz,1H),7.50(t,J=7.9Hz,2H),7.38(t,J=7.4Hz,2H),7.30(m,3H),6.25(t,J=8.6Hz,1H),5.69(d,J=7.1Hz,1H),5.46-5.37(m,3H),5.21(s,1H),4.96(d,J=7.7Hz,1H),4.32(d,J=8.5Hz,1H),4.27(m,1H),4.19(m,2H),3.93(d,J=7.2Hz,1H),2.60-2.58(m,1H),2.44(s,3H),2.39-2.30(m,3H),2.29-2.20(m,1H),2.04(s,3H),1.96-1.85(m,1H),1.75(s,3H),1.57-1.45(m,4H),1.33(s,9H),1.23(s,3H),1.26-1.21(m,2H),1.12(s,3H),0.85(t,J=7.1Hz,3H)。
实施例5:2′-丙酰-多西紫杉醇(5)的制备
Figure BPA00001480457000601
在0℃时将三乙胺(100μL,0.72mmol)加入到多西紫杉醇(195mg,0.24mmol)的二氯甲烷(10mL)溶液中,接下来加入丙酰氯(20.8μL,0.24mmol)。将混合物在0℃搅拌5h,此时TLC表明起始物质的消失。加入饱和的碳酸氢钠溶液淬灭之后,用二氯甲烷提取混合物。用盐水洗涤有机层,无水硫酸钠干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷中10-50%的醋酸乙酯)纯化残留物以得到作为白色固体的产物(100mg,48%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.3Hz,2H),7.61(t,J=7.4Hz,1H),7.50(t,J=7.9Hz,2H),7.38(t,J=7.4Hz,2H),7.30(m,3H),6.25(t,J=8.6Hz,1H),5.69(d,J=7.1Hz,1H),5.46-5.37(m,3H),5.21(s,1H),4.96(d,J=7.7Hz,1H),4.32(d,J=8.5Hz,1H),4.27(m,1H),4.19(m,2H),3.93(d,J=7.2Hz,1H),2.60-2.58(m,1H),2.44(s,3H),2.39-2.30(m,3H),2.29-2.20(m,1H),2.04(s,3H),1.96-1.85(m,1H),1.75(s,3H),1.57-1.45(m,2H),1.33(s,9H),1.23(s,3H),1.12(s,3H),1.10(t,J=7.1Hz,3H)。
实施例6:2′-苯甲酰基-紫杉醇(6)的制备
Figure BPA00001480457000611
在0℃时将三乙胺(104μL,0.74mmol)加入到多西紫杉醇(502mg,0.62mmol)的二氯甲烷(5mL)溶液中,接下来加入苯甲酰氯(72μL,0.62mmol)。将混合物在室温搅拌2h,此时TLC表明起始物质的消失。加入饱和的碳酸氢钠溶液淬灭之后,用乙醚提取混合物。用盐水洗涤有机层,无水硫酸镁干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法(己烷/二氯甲烷,1/1)纯化残留物以得到为白色泡沫的产物(531mg,94%)。1H NMR(CDCl3,500MHz):δ8.10(d,J=7.6Hz,2H),7.99(d,J=7.5Hz,2H),7.76(d,J=7.1Hz,2H),7.62-7.56(m,2H),7.55-7.39(m,13H),7.32(d,J=7.1Hz,1H),7.05(d,J=9.0Hz,1H),6.30(s,1H),6.25(t,J=8.6Hz,1H),6.04(dd,J=8.9,3.8Hz,1H),5.68(d,J=3.8Hz,1H),5.67(d,J=7.6Hz,1H),4.94(dd,J=9.7,1.8Hz,1H),4.46(dd,J=10.9,6.6Hz,1H),4.30(d,J=8.4Hz,1H),4.19(d,J=8.5Hz,1H),3.81(d,J=7.1Hz,1H),2.56-2.48(m,1H),2.43(s,3H),2.36-2.31(m,1H),2.23(s,3H),2.17-2.12(m,1H),1.96(d,J=0.8Hz,3H),1.91-1.85(m,1H),1.67(s,3H),1.24(s,3H),1.13(s,3H)。ESI-MS:计算C54H55NOi5Na(M+Na)+:980。发现:980。
实施例7:7-苯甲酰基-多西紫杉醇(7)的制备
Figure BPA00001480457000612
将多西紫杉醇的二氯甲烷溶液在室温在氩气下与咪唑和三乙基甲硅烷基氯化物混合。将反应混合物在室温搅拌,用二氯甲烷稀释,用水、饱和含水氯化钠洗涤、干燥并浓缩。残留物的急骤色谱法产生2′-三乙基甲硅烷基多西紫杉醇。在环境温度在氩气下将二氯甲烷中的2′-三乙基甲硅烷基多西紫杉醇溶液与吡啶和苯甲酰氯混和。将反应混合物在室温搅拌,用乙醚稀释,并将有机层浓缩。进行残留物的急骤色谱以产生中间体2′-三乙基甲硅烷基7-苯甲酰基多西紫杉醇。
将中间体2′-三乙基甲硅烷基7-苯甲酰基多西紫杉醇的二氯甲烷溶液在0℃在氩气下与含水HCl混合,并将反应混合物在同一温度下搅拌。用乙醚和饱和的含水碳酸氢钠稀释之后,用盐水洗涤有机层,无水硫酸镁干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法纯化粗产物以产生7-苯甲酰基多西紫杉醇。
实施例8:10-苯甲酰基多西紫杉醇(8)的制备
Figure BPA00001480457000621
将多西紫杉醇的二氯甲烷和吡啶溶液在室温在氩气下与三乙基甲硅烷基氯化物混合。将反应混合物在室温搅拌,用二氯甲烷稀释,用水、饱和的含水氯化钠洗涤、干燥并浓缩。残留物的急骤色谱法产生2′,7-双(三乙基甲硅烷基)-多西紫杉醇。
首先将2′,7-双(三乙基甲硅烷基)-多西紫杉醇的二氯甲烷溶液在室温在氩气下与氢化钠混合,然后加入苯甲酰氯。将反应混合物在室温搅拌,用乙醚稀释,将有机层浓缩。进行残留物的急骤色谱以产生中间体2′,7-双(三乙基甲硅烷基)-10-苯甲酰基多西紫杉醇。
将中间体2′,7-双(三乙基甲硅烷基)-10-苯甲酰基多西紫杉醇的甲醇溶液在0℃在氩气下与含水HCl混合,并将反应混合物在室温搅拌。用乙醚和饱和碳酸氢钠稀释之后,用盐水洗涤有机层,无水硫酸镁干燥,过滤,在真空中浓缩。通过急骤硅胶柱色谱法纯化粗产物以产生10-苯甲酰基多西紫杉醇。
实施例9:对MX-I(人乳腺癌)细胞的体外生长抑制
使用Promega CellTiter Blue细胞生存力试验对细胞毒性试验进行定量。简言之,将细胞(5000细胞/孔)铺板到在补充了10%FBS的RPMI 1640培养基中的96孔微量滴定板上并在37℃潮湿的5%CO2气氛下温育。24hr之后,将细胞暴露于DMSO中各种浓度的疏水紫杉烷衍生物,并另外培养72hr。去除100uL培养基,并向每孔中加入20uL Promega CellTiter Blue试剂,摇动以混合。在37℃潮湿的5%CO2气氛下温育4小时之后,在544ex/620em读板。产生的荧光与活细胞的数目成比例。绘制产生的荧光对药物浓度图之后,计算IC50作为所得非线性回归的半衰期。数据呈现在表1中。
表1:疏水紫杉烷衍生物的细胞毒性
Figure BPA00001480457000631
实施例10:在人肝脏微粒体中疏水多西紫杉醇衍生物向多西紫杉醇的转化
样品制备和温育
将药物储液制备成在DMSO中的5mg/mL,当日使用。对于不含有微粒体的对照溶液,将药物储液掺加到下面的温育混合物:pH 7.4的83mM K2HPO4缓冲液、13.3mM MgCl2、NADPH再生体系(NRS)——含有1.3mM NADP+、3.3mM葡萄糖-6-磷酸、0.4U/mL葡萄糖-6-磷酸脱氢酶和0.05mM柠檬酸钠以产生具有1%DMSO的50μg/mL的最终药物浓度。对于不含有NADPH再生体系的对照溶液,将药物储液掺加到下面的温育混合物:pH 7.4的84mM K2HPO4缓冲液、10mMMgCl2、12.5mM蔗糖和1mg/mL人肝脏微粒体(HLM)以产生具有1%DMSO的50μg/mL的最终药物浓度。对于活性溶液,将药物储液掺加到下面的温育混合物:pH 7.4的78mM K2HPO4缓冲液、13.3mM MgCl2、NADPH再生体系(NRS)——含有1.3mM NADP+、3.3mM葡萄糖-6-磷酸、0.4U/mL葡萄糖-6-磷酸脱氢酶、0.05mM柠檬酸钠、12.5mM蔗糖和1mg/mL HLM以产生具有1%DMSO的50μg/mL的最终药物浓度。HLM的加入启动酶促反应。
在掺加进HLM之前将对照和活性溶液在热混合器(Thermomixer)中温育5分钟以启动反应。总样品体积在1至2.5mL之间。在不同的时间点取回对照和活性溶液的等分试样用于HPLC分析。在取回样品之前通过轻弹管形瓶短暂地涡旋以提高溶液的均一性。
取回样品之后,立即用乙腈(ACN)将反应等分试样按1∶2稀释以沉淀蛋白并淬灭酶促反应。将样品涡旋并以14,000rpm离心8分钟。将上清液转移至1mL自动加样瓶并注射进HPLC。
HPLC条件
使用Synergi Fusion-RP柱(Phenomenex、150×4.6mm,80A,4微米)和下面的流动相梯度达到HPLC分离:流动相A:水;流动相B:乙腈;以A/B(50∶50)开始,从0至10分钟:从10至30分钟达到A/B(10∶90);从30至40分钟保持在A/B(10∶90);在40分钟时回到A/B(50∶50);在50分钟时停止运行。流速是1mL/min。在228nm处检测。烘箱温度保持在35℃。样品注射体积是20uL。表2概述了各种疏水紫杉烷衍生物的HPLC保留时间。
表2:疏水紫杉烷衍生物的HPLC保留时间
Figure BPA00001480457000641
结果
通过HPLC色谱中检测到的多西紫杉醇峰面积的相对百分数测定疏水紫杉烷衍生物在人肝脏微粒体中的体外代谢引起的多西紫杉醇的产生。图1中为每个疏水紫杉烷衍生物绘制了产生的多西紫杉醇对温育时间的图。图的比较表明多西紫杉醇的产生依赖疏水紫杉烷衍生物的结构。多西紫杉醇侧链上有苯甲酰基取代的疏水紫杉烷衍生物(化合物-1)没有产生的多西紫杉醇。然而,多西紫杉醇侧链上有烷基取代的疏水紫杉烷衍生物产生大量的多西紫杉醇。烷基侧链的长度不能与产生的多西紫杉醇的百分数相关,而在人肝脏微粒体中温育2小时之后的多西紫杉醇的产生在具有C6侧链的化合物-2中是最显著的(~16%),随后是具有非常相似的转化率-11%的化合物-4(C5)和化合物-3(C9)。具有较短的(C3)侧链的化合物-5产生少得多的多西紫杉醇。令人惊奇的是化合物-2被代谢并产生最多的多西紫杉醇。这不能在侧链取代的基础上被预测。
多西紫杉醇的产生对疏水紫杉烷衍生物结构的依赖可能与R侧链在引起水解反应的酶的活性位点内适合(适配,fit)的能力有关。不受理论约束,在这五个多西紫杉醇疏水紫杉烷衍生物中,含有C6烷基取代的化合物-2可能在立体化学上最适合进入酶活性位点的疏水口袋。苯甲酰基的刚性性质可阻止其完全进入疏水口袋,或这个芳香酯的不同反应性可阻止酶促水解反应发生。
实施例11:通过高压匀化作用制备2′-苯甲酰基多西紫杉醇和白蛋白的纳米颗粒
将48.5mg 2′-苯甲酰基多西紫杉醇(实施例1中制备的)溶解在0.56mL的氯仿-叔-丁醇混合物(10.2∶1)中。将该溶液加入到10.0mL人血清白蛋白溶液(5%,w/v)中。为了形成粗乳液,将混合物以10,000rpm预匀化5分钟(VirTis匀化器,型号:Tempest I.Q.),然后转移至高压匀化器(Avestin)。用3.0mL水洗涤预匀化器的转子/定子组件的尖端和乳液的容器,将洗出液转移至高压匀化器(Avestin)。当再循环乳液3-12遍时,以18,000-20,000psi进行乳化。将所得的体系转移至旋转蒸发器中,在40℃在减压下(40mm Hg)快速地去除氯仿和叔-丁醇10分钟。所得的分散液是半透明的,发现所得的纳米颗粒的典型直径是121.7+1.4nm(Z-平均的,Malvern Zetasizer)。分散液通过0.22μm注射器式滤器(Costar,μstar,8110)可直接过滤。
将分散液进一步冻干48小时,任选地加或不加任何冷冻保护剂或冻干保护剂。通过无菌水或盐水的添加,能将所得的饼状物容易地重建成原来的分散液。重建后的颗粒大小与冻干之前相同。
实施例12:通过高压匀化作用制备2′-O-己酰多西紫杉醇和白蛋白的纳米颗粒
将64.9mg 2′-O-己酰多西紫杉醇溶解在0.56mL氯仿-叔-丁醇(10.2∶1,v/v)中。然后将该溶液加入到15mL 5%(w/v)HSA溶液中。为了形成粗乳液,将混合物以10,000rpm预匀化5分钟(Vitris匀化器,Tempest LQ.型),然后转移至高压匀化器(Avestin)。用3.0mL 5%(w/v)HSA溶液洗涤预匀化器的转子/定子组件的尖端和乳液的容器,将洗出液转移至高压匀化器(Avestin)。当再循环乳液3-12遍时,以18,000-20,000psi进行乳化。将所得的体系转移至旋转蒸发器中,在40℃在减压下(40mm Hg)快速地去除氯仿和叔-丁醇10分钟。用WFI将所得的悬浮液制成20mL,然后用显微镜表征并进行尺寸测量。显微镜下悬浮液的尺寸很小以至于很难观察颗粒。悬浮液可通过0.8μm过滤,滤过的组合物的大小是95nm。
实施例13.1:包括2′-O-己酰多西紫杉醇和白蛋白的药物制剂的制备
将用实施例12描述的方法在四个分开的批次中制备的~100mL 0.8μm的组合物通过0.45μm 1000mL大小的Steri-cup过滤。通过上面的滤器之一将全部的组合物过滤。将过滤的组合物转移至具有5mL的填充体积的20-mL血清瓶,并遵照下面的程序进行冻干:基本上在25℃第一次干燥840min和在30℃第二次干燥480min。这产生白色至灰白色的良好的饼状物。冻干的饼状物可在小于2min中用0.9%(w/v)盐水溶液重建成浅蓝色半透明溶液。颗粒的大小是107nm。该重建组合物在4℃保持其完整24h。在4℃储存24h之后,颗粒的大小是108nm,大小分布没有可察觉的变化。
实施例13.2:包括2′-O-己酰多西紫杉醇和白蛋白的药物制剂的制备
本研究中的添加剂选自可注射的赋形剂,即张力改性剂、NaCl和d-甘露醇。将用实施例12描述的方法制备的~20mL 0.8μm的组合物通过0.45μm的注射器式滤器过滤。将0.45μm滤过的组合物分成两个分开的部分,每部分20mL。将d-甘露醇加入到一个部分中至5%(w/v)的浓度,将NaCl加入到另一个部分中,使其具有150mM的浓度。将含有d-甘露醇和氯化钠的组合物转移至具有5mL填充体积的20-mL血清瓶,并在遵照下面的程序进行冻干:基本上在25℃第一次干燥840min和在30℃第二次干燥480min。这产生白色至灰白色的良好饼状物。冻干的饼状物可在小于2min中用WFI重建成浅蓝色的半透明溶液。该重建的组合物在4℃保持其完整24h。冻干前后和储存中,大小和大小分布没有可察觉的变化。
实施例13.3:包括2′-O-己酰多西紫杉醇和白蛋白的药物制剂的制备
该实施例显示包括2′-O-己酰多西紫杉醇和白蛋白的药物制剂的制备,其中组合物颗粒大小小于100nm,滤过率和回收率高。以下面的参数制备8批组合物,以列表的形式汇总其特性(表3)。例如,颗粒大小分布显示在图8中。
HSA浓度=5%(w/v);氯仿∶叔-丁醇=10.2∶1;%有机溶剂=3.6;批量大小=22.5mL;HSA∶药物=9-10
表3:2′-O-己酰多西紫杉醇/白蛋白组合物的分批制备
  分批名称   药物的量,mg   滤过的(0.45μm)Zav(nm)
  1   127.6   70.8
  2   122.9   67.4
  3   121.3   67.6
  4   121.4   68.0
  5   123.7   66.9
  6   121.5   73.7
  7   122.6   74.4
  8   121.7   71.8
将表3中所有0.45μm滤过的组合物混合在一起。混合的组合物的总体积是~150mL并可通过一个250-mL大小的Steri-cup(孔尺寸为0.22μm)过滤。将所有这些组合物放置在34个具有4mL填充体积的20-mL血清瓶中。将组合物冻干并重建,颗粒大小没有可察觉的变化。
实施例14:纳米颗粒稳定性
评价在2-8℃、室温(RT)和40℃储存的冻干的2′-O-己酰多西紫杉醇/白蛋白组合物的稳定性以建立储存温度/货架期并在用于建立处理方案和航运方案的加速条件下鉴别可能的降解产物。还进行了在2-8℃和室温时的重建稳定性以建立使用中的货架期。对视觉观察、重建时间、pH、RP-HPLC(用于效力和%降解)、通过Malvern Nanosizer的颗粒大小进行测量以确定含有白蛋白的制剂的完整性和稳定性。就饼状物外观、可重建性、大小和大小分布方面发现制剂稳定3个月。该研究的结果显示在表4中。
表4:2′-O-己酰多西紫杉醇/白蛋白组合物储存特性
实施例15:通过高压匀化作用制备2′-苯甲酰基紫杉醇纳米颗粒
将57.6mg 2′-苯甲酰基紫杉醇溶解在0.6mL氯仿-乙醇混合物中(9∶1,v/v)。将该溶液加入到12.0mL人血清白蛋白溶液(3%,w/v)中。为了形成粗乳液,将混合物以10000rpm预匀化5分钟,然后转移至高压匀化器。当再循环乳液3-12遍时,以18,000-20,000psi进行乳化。将匀化的乳液转移到旋转蒸发器的500mL烧瓶中,在40℃在减压下(40mm Hg)快速地去除氯仿和乙醇20分钟。所得的分散液是浅蓝色的半透明溶液。发现所得的苯甲酰基紫杉醇纳米颗粒的直径是86.7±3.1nm(Z-平均值,Malvern Zetasizer)。分散液通过0.22μm注射器式滤器(Costar,μstar,8110)可直接滤过的,纳米颗粒的大小是61.1±0.2nm。将分散液进一步地冻干,任选地加或不加任何冷冻保护剂或冻干保护剂。通过无菌水或盐水的添加,能将所得的饼状物容易地重建成最初的分散液。重建后的颗粒大小与冻干之前相同。
实施例16:包括2′-O-己酰多西紫杉醇和白蛋白的药物制剂的最大耐受剂量(MTD)
将盐水(对照)或nab-2(实施例12中制备的2′-己酰多西紫杉醇纳米颗粒)以15、30、60、90、120和150mg/kg(q4d×3)在第1天、第5天和第9天静脉内给予小鼠。死亡率对剂量使用S形方程拟合并显示在图7中。Nab-2制剂在q4d×3时间表上耐受良好,LD10=61mg/kg和LD50=113mg/kg。
实施例17:nab-2(实施例12中制备的2′-己酰多西紫杉醇纳米颗粒)抵抗乳腺癌异种移植物的抗癌活性
将1千万个MDA-MB-231细胞皮下植入到雌性裸鼠接近右胁腹处。十一天之后,按照q4d×3时间表用静脉内给予的盐水或变化剂量(60、90和120mg/kg)的Nab-2(实施例12中制备的)的或15mg/kg的Taxotere处理十组中的荷瘤小鼠(平均肿瘤大小=126mm3)。每周记录两次肿瘤测量结果和动物体重。
在MDA-MB-231乳腺癌模型中,在十只小鼠的九只中,处理的对照动物中的肿瘤良好地生长到评价大小,达到一个肿瘤倍增的中值时间为12.2天(图2;值是平均值+SEM)。观察到1.3%的最大平均体重减轻(图2B,值是平均值+SEM)。用Nab-2的处理有效地延缓MDA-MB-231人乳腺肿瘤的生长,在120mg/kg/注射、90mg/kg/注射和60mg/kg/注射的剂量时分别具有83.1天、80.7天和>84.8天的T-C值,与赋形剂对照相比具有>96%肿瘤生长抑制(与盐水对照比较P<0.0001,ANOVA统计)。Nab-2在试验的最高剂量120mg/kg/注射不被耐受,尽管具有显著的肿瘤生长抑制,其引起50%的死亡率。以90mg/kg/注射和60mg/kg/注射的剂量用Nab-2的处理是耐受良好的,分别具有5%和3%的最大平均体重减轻。在MDA-MB-231模型中,15mg/kg/注射剂量的Taxotere
Figure BPA00001480457000682
是耐受的,具有3.3%的最大平均体重减轻。Taxotere
Figure BPA00001480457000683
延缓MDA-MB-231乳腺肿瘤的生长,具有49.5天的T-C值,并降低肿瘤生长达88%(与盐水对照比较,P<0.0001)。Taxotere
Figure BPA00001480457000684
和Nab-2处理的动物之间肿瘤生长抑制没有显著性差异,然而,用Nab-2在等毒性剂量水平取得了30-40%肿瘤消退的优异抗肿瘤有效性(参见表5)。
表5:在裸鼠的皮下人乳腺癌异种移植模型中与Taxotere相比的Nab-2的抗肿瘤活性
Figure BPA00001480457000692
aTGI,肿瘤生长抑制;bBWLmax,最大体重减轻百分数;c处理之后肿瘤变成<其大小50%或变得不可触及,但是随后复发。d肿瘤变得不可触及;eNab,结合白蛋白的纳米颗粒。
实施例18:nab-2(实施例12中制备的2′-己酰多西紫杉醇纳米颗粒)抵抗肺癌异种移植物的抗癌活性
为了测定Nab-2对抗肺癌的有效性,将1百万个H358细胞皮下植入到雄性裸鼠接近右胁腹处。十一天之后,按照q4d×3时间表用静脉内给予的盐水或60mg/kg的Nab-2或15mg/kg的Taxotere
Figure BPA00001480457000693
处理七或九组中的荷瘤小鼠(平均肿瘤大小=422mm3)。每周记录两次肿瘤测量结果和动物体重。
在H358人非小细胞肺癌模型中,60mg/kg的Nab-2是良好耐受的,具有9.1%的最大体重减轻,并降低肿瘤生长53%(与盐水对照比较P<0.0001;图3(值是平均值+SEM)和表6)。90mg/kg的Nab-2导致100%的死亡率,10mg/kg的Taxotere
Figure BPA00001480457000694
尽管降低肿瘤生长93%(与盐水对照比较P<0.0001),但是它引起57%的死亡率。与Taxotere
Figure BPA00001480457000695
不同,Nab-2在60mg/kg剂量水平在九只动物中的六只中引起部分肿瘤消退,具有最小的毒性。
表6:在裸鼠的皮下人肺癌异种移植模型中与Taxotere
Figure BPA00001480457000696
相比的Nab-2的抗肿瘤活性
Figure BPA00001480457000697
Figure BPA00001480457000701
aTGI,肿瘤生长抑制;bBWLmax,最大体重减轻百分数;c处理之后肿瘤变成<其大小50%或变得不可触及,但是随后复发;d肿瘤变得不可触及;eNab,结合白蛋白的纳米颗粒,fNSCLC,非小细胞肺癌。
实施例19:nab-2(实施例12中制备的2′-己酰多西紫杉醇纳米颗粒)抵抗结肠直肠癌异种移植物的抗癌活性
进行两个分开的研究以测定Nab-2抵抗结肠直肠癌的有效性。
在研究编号CA-AB-6中,将1百万个HT29细胞皮下植入到雄性裸鼠右和左胁腹处。十五天之后,按照q4d×3时间表用静脉内给予的盐水或90mg/kg的Nab-2或22mg/kg的Nab-多西紫杉醇处理三组中的荷瘤小鼠(平均肿瘤大小=143mm3)。每周记录三次肿瘤测量结果和动物体重。
在研究编号ABS-18中,将1百万个HT29细胞皮下植入到雄性裸鼠接近右胁腹处。十一天之后,按照q4d×3时间表用静脉内给予的盐水或60mg/kg或90mg/kg的Nab-2或15mg/kg的Taxotere
Figure BPA00001480457000702
处理十组中的荷瘤小鼠(平均肿瘤大小=186mm3)。每周记录两次肿瘤测量结果和动物体重。
在HT29结肠肿瘤异种移植物中(研究编号ABS-18和CA-AB-6),Nab-2在60mg/kg或90mg/kg的剂量水平诱导显著的肿瘤生长抑制(95-99%)和肿瘤生长延迟(与盐水对照比较P<0.0001;图4-6(值是平均值+SEM)和表7)。用90mg/kg或60mg/kg的Nab-2处理的十只荷瘤小鼠中的九只发生部分肿瘤消退,具有11.6%的最大体重减轻(ABS-18)。在90mg/kg的剂量水平时,一只动物死亡,一只被处死。在相同的实验条件下,15mg/kg的Taxotere
Figure BPA00001480457000703
引起94%TGI和19%的体重降低。
表5.在裸鼠的皮下人结肠癌异种移植模型中与Nab-多西紫杉醇和Taxotere
Figure BPA00001480457000704
相比的Nab-2的抗肿瘤活性
Figure BPA00001480457000705
Figure BPA00001480457000711
aTGI,肿瘤生长抑制;bBWLmax,最大体重减轻百分数;c处理之后肿瘤变成<其大小的50%或变得不可触及,但是随后复发;d肿瘤变得不可触及;eNab,结合白蛋白的纳米颗粒。
Nab-2、Nab-多西紫杉醇和Taxotere在HT29结肠肿瘤模型(研究编号CA-AB-6)中的比较有效性研究显示了Nab-多西紫杉醇和Taxotere
Figure BPA00001480457000713
的剂量限制性毒性,具有27%平均体重减轻,尽管具有86%至91%的TGI(与盐水对照相比P<0.01)。相比之下,90mg/kg剂量水平的Nab-2引起完全的肿瘤消退,具有19%的最大体重减轻(与盐水对照比较P<0.0001)。因此,和Nab-2不同,Taxotere
Figure BPA00001480457000714
和Nab-多西紫杉醇在其MTD′s时在HT-29结肠肿瘤模型中不引起部分或完全的肿瘤消退,但导致显著的体重减轻。
实施例20:Nab-2在猴子中的药物代谢动力学和安全性
材料和方法
将初始剂量给予的日期指定为研究第1天,将随后的日期连续编号。将初始剂量给予之前的研究的日期以顺应的最后一天作为第-1天连续编号。
将被确认先前未暴露于白蛋白的三只非首次接受的
Figure BPA00001480457000715
雄性短尾猴分到如下面显示的表6中详细说明的剂量组。在研究开始时,动物重5.4-6.7kg,年龄4至7岁。
表6.药物代谢动力学研究设计
Figure BPA00001480457000716
所有的动物每周一次,在第1、8和15天给药。分别给予第3组和第4组的动物5mg/kg和10mg/kg的Nab-2(lot:ABI139-2-83),给予第5组的动物20mg/kg、10mg/kg和10mg/kg的Nab-2(分别在第1、8和15天),通过30分钟的静脉内输注。本研究自始至终每天进行两次临床观察,每周一次记录体重。在第1和15天,对于第1组的动物,在8个时间点收集用于药物代谢动力学分析的连续的血样,对于第3、4和5组的动物,在9个时间点收集血样。
结果和结论
在第3和第4组动物的体重或临床观察中未发现与处理相关的效果。一般而言,经口和静脉重复剂量给药之后,nab-2检品被良好地耐受。5mg/kg和10mg/kg静脉内给药之后,Nab-2检品被良好地耐受。
相比之下,20mg/kg的Nab-2的单次静脉内给药(第5组)导致不良临床体征和体重的降低。因为这些原因,该动物的剂量水平降至10mg/kg,在第8和15天给药。第5组动物中的不良临床观察包括呕吐、血便、粘液便、软便和液态粪便,和食欲不振。在第7天,观察到第5组动物躺下,在第17天观察到弓起背部的姿势。在第7天,食欲不振和总状况的下降与其体重大约7%的减轻相关联(与给药前体重测量值相比),并在第15天与其给药前体重的大约15%的减轻相关联。
分析物和PK分析分别显示在下面的表7和8中。Nab-2显示在血液中分解,具有3.0-3.7hr的终末半衰期和在0.083hr的最早收集时间的Tmax。在Cmax和AUC中,Nab-2和其代谢产物(多西紫杉醇)显示剂量成比例的增加。化合物2显示7-11L/kg的Vz的大的分布体积。代谢产物转换率(多西紫杉醇AUCinf/化合物2AUCinf的比)是4.8-5.9%。
这些数据清楚地显示Nab-2在具有剂量成比例的PK的10mg/kg或120mg/m2能安全地给药。化合物2显示产生多西紫杉醇,具有4.8-5.9%的转换率。
表7.来自Nab-2静脉内给药的分析物数据
  时间(hr)   浓度(ng/mL)   剂量(mg/kg)-分析物
  0   0   5-化合物2
  0.083   1074.29   5-化合物2
  0.25   939.925   5-化合物2
  0.5   774.415   5-化合物2
  1   534.319   5-化合物2
  2   421.84   5-化合物2
  8   136.199   5-化合物2
  0   0   5-多西紫杉醇
  0.083   36.706   5-多西紫杉醇
  0.25   40.729   5-多西紫杉醇
  0.5   35.458   5-多西紫杉醇
  1   32.11   5-多西紫杉醇
  2   34.063   5-多西紫杉醇
  8   1.154   5-多西紫杉醇
  0   0   10-化合物2
  0.083   1547.177   10-化合物2
  0.25   1300.995   10-化合物2
  0.5   935.651   10-化合物2
  1   733.656   10-化合物2
  2   657.257   10-化合物2
  8   202.185   10-化合物2
  0   0   10-多西紫杉醇
  0.083   99.44   10-多西紫杉醇
  0.25   70.117   10-多西紫杉醇
  0.5   63.362   10-多西紫杉醇
  1   47.475   10-多西紫杉醇
  2   44.227   10-多西紫杉醇
  8   0   10-多西紫杉醇
  0   0   20-化合物2
  0.083   2387.681   20-化合物2
  0.25   2617.855   20-化合物2
  0.5   1819.776   20-化合物2
  1   1365.583   20-化合物2
  2   958.369   20-化合物2
  8   264.147   20-化合物2
  0   0   20-多西紫杉醇
  0.083   381.848   20-多西紫杉醇
  0.25   231.964   20-多西紫杉醇
  0.5   157.466   20-多西紫杉醇
  1   90.505   20-多西紫杉醇
  2   69.21   20-多西紫杉醇
  8   0   20-多西紫杉醇
表8.来自Nab-2静脉内给药的药物代谢动力学
Figure BPA00001480457000731
实施例21:Nab-2和Nab-多西紫杉醇的溶解分布
进行了Nab-2和Nab-多西紫杉醇的溶解实验(Nab-2和Nab-多西紫杉醇分别参见表9/图9和表10/图10)。在测试的最低浓度(5μg/mL)时Nab-2的颗粒保持完整。相比之下,在100μg/mL时,nab-多西紫杉醇快速地降解成白蛋白-药物复合体,没有可检测的纳米颗粒(稳定性20倍的差别)。相应地,nab-2的EC50(溶解分布的半点)是103μg/mL,nab-多西紫杉醇的EC50是230μg/mL(图11)——2×的差别。nab-2的EC90——90%溶解——是16μg/ml,nab-多西紫杉醇的EC90是121μg/ml——7.6×的差别。Nab-2和Nab-多西紫杉醇的标准化溶解曲线显示在图11中。
表9:Nab-2的溶解数据
Figure BPA00001480457000742
Figure BPA00001480457000751
表10:Nab-多西紫杉醇的溶解数据
Figure BPA00001480457000752
实施例22:Nab-紫杉醇的溶解分布
用20mL 0.9%的氯化钠冲洗将Nab-紫杉醇(Abraxane;100mg)重建以获得如包装插件中规定的紫杉醇悬浮液(5mg/mL)。用Malvern Zetasizer 3000通过准弹性激光散射(DLS)测量Abraxane的纳米颗粒大小。用Malvern Zetasizer 3000测量ζ电势。通过透射电子显微镜检查(TEM)和冰冻-TEM表征Abraxane纳米颗粒。通过X线粉末衍射分析紫杉醇和nab-紫杉醇。通过TEM和DLS测定130nm的纳米颗粒平均大小。XRD研究确定纳米颗粒中的紫杉醇处于非结晶的、非晶形的(无定形)和容易生物可用的状态。稀释时,nab-紫杉醇纳米颗粒很快地解离成具有与天然白蛋白相似大小的可溶性白蛋白-紫杉醇复合物。结果显示在图12-14中。
为了进行体外溶解研究,将nab-紫杉醇悬浮液(5mg/mL,在0.9%氯化钠溶液中)在模拟的血浆(5%HSA)、猪血浆和猪全血中稀释成不同的浓度。通过3000rpm离心15分钟将猪血处理成血浆。用Malvern Zetasizer 3000通过DLS测量颗粒大小。为了在猪全血中的溶解,将含有Nab-紫杉醇的新鲜的柠檬酸盐抗凝的猪全血以3000rpm离心15min,这允许血液的细胞组分完全去除,不引起Abraxane纳米颗粒的沉降。通过DLS测量各种浓度的Abraxane的颗粒大小。体外溶解研究确定了阈浓度,在这阈浓度之下,nab-紫杉醇纳米颗粒将快速地溶解成:模拟的血浆中的50-60μg/mL、猪血浆中的100μg/mL和猪全血中的150μg/mL。结果显示在图15至17中。
为了进行体内溶解研究,Yucatan小型猪通过耳静脉输注接受300mg/m2(最大耐受剂量,MTD)或900mg/m2剂量的nab-紫杉醇,给药超过30分钟。输注之前并在指定的时间点从腔静脉(300mg/m2)或对侧的颈静脉(900mg/m2)获得双份的柠檬酸盐抗凝的血样。将血样在3000rpm离心15min以获得血浆并用MalvernZetasizer 3000通过DLS分析颗粒大小,并用HPLC分析血中紫杉醇浓度。体内,以300mg/m2(MTD)或900mg/m2输注nab-紫杉醇之后,循环中的紫杉醇峰浓度分别是10.5和31.4μg/mL,充分低于溶解阈值。所以,在任何时间点从接受nab-紫杉醇给药的猪的血样中未检测到纳米颗粒。结果显示在图18。
实施例23:2′-己酰多西紫杉醇的组织分布
将90mg/kg Nab-2(Nab 2′-己酰多西紫杉醇)通过尾静脉注射给荷瘤(HT29)小鼠)。在24hr处死动物,使用LC/MS/MS分析各种组织2′-己酰多西紫杉醇、多西紫杉醇和其它代谢产物的存在。相对于其它的器官,在肿瘤中发现了主要的代谢产物多西紫杉醇的大多数浓度。结果显示在图19中。

Claims (77)

1.包括纳米颗粒的组合物,其中所述纳米颗粒包括疏水紫杉烷衍生物和载体蛋白。
2.根据权利要求1所述的组合物,其中所述疏水紫杉烷衍生物是紫杉烷前体药物。
3.根据权利要求1或2所述的组合物,其中所述载体蛋白是白蛋白。
4.根据权利要求3所述的组合物,其中所述白蛋白是人血清白蛋白。
5.根据前述权利要求中任一项所述的组合物,其中所述组合物包括以纳米颗粒形式和非纳米颗粒形式的载体蛋白,并且其中小于约25%的所述载体蛋白是以纳米颗粒形式。
6.根据前述权利要求中任一项所述的组合物,其中所述组合物中的所述纳米颗粒的平均直径小于约200nm。
7.根据前述权利要求中任一项所述的组合物,其中所述组合物中的所述纳米颗粒的平均直径小于约100nm。
8.根据前述权利要求中任一项所述的组合物,其中所述组合物中大于80%的所述纳米颗粒具有小于约100nm的直径。
9.根据前述权利要求中任一项所述的组合物,其中所述组合物中大于90%的所述纳米颗粒具有小于约100nm的直径。
10.根据前述权利要求中任一项所述的组合物,其中所述疏水紫杉烷衍生物具有式:
Figure FPA00001480456900011
其中
R1是苯基或-OtBu;
R2、R3、R4和R5独立地是H或疏水基团;
并且其中R2、R3、R4和R5中的至少一个不是H;
限制条件是,当R1是苯基,且R2、R3和R5各自是H时,那么R4不是乙酰基部分;
或其药学上可接受的盐、异构体或溶剂合物。
11.根据前述权利要求中任一项所述的组合物,其中所述疏水紫杉烷衍生物具有式:
其中
R1是苯基或-OtBu;
R2、R3、R4和R5独立地是H或-C(O)R6
每个R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;
和其中R2、R3、R4和R5中的至少一个不是H;
限制条件是,当R1是苯基,且R2、R3和R5各自是H时,那么R4不是乙酰基部分;
或其药学上可接受的盐、异构体或溶剂合物。
12.根据权利要求11所述的组合物,其中R1是苯基。
13.根据权利要求11所述的组合物,其中R1是-OtBu。
14.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基、-C1-C15炔基、-C1-C15环烷基、-C1-C15环烷基-烷基、芳基、5至7元杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分。
15.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。
16.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是取代的或未取代的芳基,或取代的或未取代的-C1-C15烷基。
17.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的芳基或未取代的-C1-C15烷基。
18.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的苯基或未取代的甲基。
19.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的芳基。
20.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的苯基。
21.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的-C1-C15烷基。
22.根据权利要求11-13中任一项所述的组合物,其中每个R6独立地是未取代的-C1-C10烷基。
23.根据权利要求11-13中任一项所述的组合物,其中每个R6是-CH3
24.根据权利要求11-13中任一项所述的组合物,其中每个R6是-CH2CH3
25.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)2CH3
26.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)3CH3
27.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)4CH3
28.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)5CH3
29.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)6CH3
30.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)7CH3
31.根据权利要求11-13中任一项所述的组合物,其中每个R6是-(CH2)8CH3
32.根据权利要求11-31中任一项所述的组合物,其中R2、R3、R4和R5中只有一个不是H。
33.根据权利要求11-32中任一项所述的组合物,其中R2不是H。
34.根据权利要求11-33中任一项所述的组合物,其中R3不是H。
35.根据权利要求11-34中任一项所述的组合物,其中R4不是H。
36.根据权利要求11-35中任一项所述的组合物,其中R5不是H。
37.根据权利要求11-36中任一项所述的组合物,其中R4是乙酰基部分,且R2、R3和R5中只有一个不是H。
38.根据权利要求1-10中任一项所述的组合物,其中所述疏水紫杉烷衍生物具有式:
Figure FPA00001480456900041
其中R2是-C(O)R6
并且R6独立地是选自烷基、链烯基、炔基、环烷基、环烷基-烷基、芳基、杂芳基、芳烷基和杂芳烷基的取代的或未取代的部分;
或其药学上可接受的盐、异构体或溶剂合物。
39.根据权利要求38所述的组合物,其中R6是选自-C1-C15烷基、-C1-C15链烯基和芳基的取代的或未取代的部分。
40.根据权利要求38所述的组合物,其中R6是取代的或未取代的芳基或取代的或未取代的-C1-C15烷基。
41.根据权利要求38所述的组合物,其中R6是未取代的芳基或未取代的-C1-C15烷基。
42.根据权利要求38所述的组合物,其中R6是未取代的苯基或未取代的甲基。
43.根据权利要求38所述的组合物,其中R6是未取代的芳基。
44.根据权利要求38所述的组合物,其中R6是未取代的苯基。
45.根据权利要求38所述的组合物,其中R6是未取代的-C1-C15烷基。
46.根据权利要求38所述的组合物,其中R6是未取代的-C1-C10烷基。
47.根据权利要求38所述的组合物,其中R6是-(CH2)3CH3
48.根据权利要求38所述的组合物,其中R6是-(CH2)4CH3
49.根据权利要求38所述的组合物,其中R6是-(CH2)5CH3
50.根据权利要求1-10中任一项所述的组合物,其中所述疏水紫杉烷衍生物具有式:
或其药学上可接受的盐、异构体或溶剂合物。
51.根据权利要求1-10中任一项所述的组合物,其中所述纳米颗粒在37度、5%HSA的通过HPLC的溶解研究中在10μg/ml时具有超过约20nm的大小。
52.根据权利要求1-10中任一项所述的组合物,其中所述纳米颗粒在37度、5%HSA的通过HPLC的溶解研究中在50μg/ml时具有超过约30nm的大小。
53.根据权利要求1-10中任一项所述的组合物,其中当在37度、5%HSA中通过HPLC测量时,所述纳米颗粒显示一个或多个下面的溶解特性:a)在200μg/ml时超过约50nm;b)在100μg/ml时超过约40nm;和c)在10μg/ml时超过约20nm。
54.根据权利要求1-10中任一项所述的组合物,其中当在37度、5%HSA中通过HPLC测量时,所述纳米颗粒显示一个或多个下面的溶解特性:a)在400μg/ml时超过约60nm;b)在200μg/ml时超过约50nm;c)在100μg/ml时超过约40nm;d)在10μg/ml时超过约20nm;和c)在5μg/ml时超过约20nm。
55.根据权利要求1-10中任一项所述的组合物,其中当在37度、5%HSA中测量时,所述溶解特性的EC50小于在相同的纳米颗粒制剂中的未改性紫杉烷的EC50的约25%。
56.根据权利要求1-10中任一项所述的组合物,其中当给予灵长类时,所述纳米颗粒组合物在给药之后约0.05小时至约0.3小时之间时在血液中显示Cmax。
57.根据权利要求1-10中任一项所述的组合物,其中当给予灵长类时,所述纳米颗粒组合物显示在血液中分解,具有约1小时至约5小时的终末半衰期。
58.治疗个体中增生性疾病的方法,包括给予所述个体有效量的前述权利要求中任一项所述的组合物。
59.根据权利要求58所述的方法,其中所述增生性疾病是癌症。
60.根据权利要求59所述的方法,其中所述癌症是实体肿瘤。
61.根据权利要求59所述的方法,其中所述癌症选自多发性骨髓瘤、肾细胞癌、前列腺癌、肺癌、黑素瘤、结肠癌、卵巢癌和乳腺癌。
62.根据权利要求59所述的方法,其中所述癌症是乳腺癌。
63.根据权利要求59所述的方法,其中所述癌症是卵巢癌。
64.根据权利要求59所述的方法,其中所述癌症是结肠癌。
65.根据权利要求58-64中任一项所述的方法,其中胃肠外给予组合物。
66.根据权利要求65所述的方法,其中静脉内给予组合物。
67.包括疏水紫杉烷衍生物的乳液,所述乳液包括:(a)包括纳米滴的第一相,该纳米滴包括溶解在用于所述疏水紫杉烷衍生物的有机溶剂中和用于所述疏水紫杉烷衍生物的醇溶剂中的所述疏水紫杉烷衍生物的至少一部分,和(b)包括水和生物相容聚合物的第二相,其中所述乳液基本上没有表面活性剂。
68.包括纳米颗粒的组合物,其中所述纳米颗粒包括疏水药物衍生物和载体蛋白。
69.权利要求68所述的组合物,其中所述载体蛋白是白蛋白。
70.治疗个体中增生性疾病的方法,包括在10分钟或更少的时间里给予所述个体有效量的包括药物和载体蛋白的组合物。
71.权利要求70所述的方法,其中所述药物是紫杉烷。
72.权利要求71所述的方法,其中所述紫杉烷是紫杉醇或多西紫杉醇。
73.权利要求71所述的方法,其中所述药物在5分钟或更少的时间里通过输注给予。
74.权利要求70所述的方法,其中所述药物是疏水紫杉烷衍生物。
75.权利要求1-57中任一项的一种或多种组合物用于制备治疗或预防增生性疾病的药物的用途。
76.权利要求1-57中任一项的一种或多种组合物用于治疗或预防增生性疾病的用途。
77.权利要求75或76所述的用途,其中所述增生性疾病是癌症。
CN2010800259726A 2009-04-10 2010-04-09 纳米颗粒制剂及其用途 Pending CN102458112A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16854009P 2009-04-10 2009-04-10
US61/168,540 2009-04-10
PCT/US2010/030596 WO2010118365A1 (en) 2009-04-10 2010-04-09 Nanoparticle formulations and uses therof

Publications (1)

Publication Number Publication Date
CN102458112A true CN102458112A (zh) 2012-05-16

Family

ID=42936607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800259726A Pending CN102458112A (zh) 2009-04-10 2010-04-09 纳米颗粒制剂及其用途

Country Status (12)

Country Link
US (3) US20130195983A1 (zh)
EP (1) EP2416650B1 (zh)
JP (2) JP2012523433A (zh)
KR (1) KR20120005505A (zh)
CN (1) CN102458112A (zh)
AU (2) AU2010233097B2 (zh)
BR (1) BRPI1014160A2 (zh)
CA (1) CA2758200A1 (zh)
ES (1) ES2788298T3 (zh)
IL (1) IL215665A0 (zh)
MX (1) MX2011010673A (zh)
WO (1) WO2010118365A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104306339A (zh) * 2014-10-22 2015-01-28 南京大学 一种载有胸苷酸合酶抑制剂的白蛋白纳米微球及其制法
CN105727303A (zh) * 2014-12-12 2016-07-06 四川科伦药物研究院有限公司 一种高载卡巴他赛药物的白蛋白组合物及其制剂和制备方法
CN109890422A (zh) * 2016-09-06 2019-06-14 梅约医学教育与研究基金会 紫杉醇-白蛋白-结合剂组合物及使用和制备该组合物的方法
CN111511350A (zh) * 2017-07-07 2020-08-07 埃皮辛特瑞柯斯公司 用于治疗剂的肠胃外施用的组合物
CN112789057A (zh) * 2018-07-24 2021-05-11 詹纽瑞治疗公司 纳米颗粒组合物

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853260B2 (en) 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
CN104587479A (zh) 2002-12-09 2015-05-06 阿布拉西斯生物科学有限责任公司 组合物和传递药剂的方法
US8916546B2 (en) 2003-08-29 2014-12-23 Therapeutic Research Llc Materials and methods for treatment and diagnosis of disorders associated with oxidative stress
ATE531365T1 (de) 2005-02-18 2011-11-15 Abraxis Bioscience Llc Kombinationen und modi zur verabreichung therapeutischer mittel und kombinationstherapie
US8735394B2 (en) 2005-02-18 2014-05-27 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
DK3311805T3 (da) * 2005-08-31 2020-04-14 Abraxis Bioscience Llc Sammensætninger, der omfatter svært vandopløselige farmaceutiske midler og antimikrobielle midler
CA2672618C (en) 2006-12-14 2021-03-02 Abraxis Bioscience, Llc Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane
SI2131821T1 (sl) * 2007-03-07 2018-11-30 Abraxis Bioscience, Llc Nanodelci, ki zajemajo rapamicin in albumin kot sredstvo proti raku
EP2155188B1 (en) * 2007-06-01 2013-10-09 Abraxis BioScience, LLC Methods and compositions for treating recurrent cancer
RU2559570C2 (ru) 2009-04-15 2015-08-10 АБРАКСИС БАЙОСАЙЕНС, ЭлЭлСи Композиции без приона на основе наночастиц и способы их получения
AU2011230512B2 (en) 2010-03-26 2016-09-15 Abraxis Bioscience, Llc Methods of treatment of hepatocellular carcinoma
CN105147613A (zh) 2010-03-29 2015-12-16 阿布拉科斯生物科学有限公司 增强药物递送和治疗剂有效性的方法
PL2552415T3 (pl) 2010-03-29 2017-03-31 Abraxis Bioscience, Llc Sposoby leczenia nowotworu
MY162903A (en) 2010-06-04 2017-07-31 Abraxis Bioscience Llc Methods of treatment of pancreatic cancer
KR20200051841A (ko) 2011-04-28 2020-05-13 아브락시스 바이오사이언스, 엘엘씨 나노입자 조성물의 혈관내 전달 및 그의 용도
US9427477B2 (en) 2011-05-09 2016-08-30 Mayo Foundation For Medical Education And Research Cancer treatments
BR112014014323A2 (pt) 2011-12-14 2017-06-13 Abraxis Bioscience Llc uso de excipientes poliméricos para liofilização ou congelamento de partículas
ES2899643T3 (es) 2012-10-01 2022-03-14 Mayo Found Medical Education & Res Tratamientos para el cáncer
JP6423353B2 (ja) * 2012-11-09 2018-11-14 ハズ トゥー,エルエルシー 潰瘍性大腸炎の治療のための長期安定性を有する浣腸剤組成物
US9149455B2 (en) 2012-11-09 2015-10-06 Abraxis Bioscience, Llc Methods of treating melanoma
US9511046B2 (en) 2013-01-11 2016-12-06 Abraxis Bioscience, Llc Methods of treating pancreatic cancer
NZ630392A (en) 2013-03-12 2016-10-28 Abraxis Bioscience Llc Methods of treating lung cancer
JP6309610B2 (ja) 2013-03-14 2018-04-11 アブラクシス バイオサイエンス, エルエルシー 膀胱がんを処置する方法
US20160346389A1 (en) * 2013-09-12 2016-12-01 Albert Einstein College Of Medicine Inc. Modified paramagnetic nanoparticles for targeted delivery of therapeutics and methods thereof
KR101534929B1 (ko) 2013-10-17 2015-07-07 현대자동차주식회사 차량용 다 부품 자동운반장치
CN113134095A (zh) 2014-06-16 2021-07-20 梅约医学教育与研究基金会 治疗骨髓瘤
US9446148B2 (en) 2014-10-06 2016-09-20 Mayo Foundation For Medical Education And Research Carrier-antibody compositions and methods of making and using the same
US10527604B1 (en) 2015-03-05 2020-01-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and paclitaxel
US10705070B1 (en) 2015-03-05 2020-07-07 Abraxis Bioscience, Llc Methods of assessing suitability of use of pharmaceutical compositions of albumin and poorly water soluble drug
DK3313401T3 (da) 2015-06-29 2021-11-15 Abraxis Bioscience Llc Nanopartikler omfattende sirolimus og albumin til anvendelse i behandling af epithelioide celletumorer
TW201707725A (zh) 2015-08-18 2017-03-01 美國馬友醫藥教育研究基金會 載體-抗體組合物及其製造及使用方法
TW201713360A (en) 2015-10-06 2017-04-16 Mayo Foundation Methods of treating cancer using compositions of antibodies and carrier proteins
BR112018011476B1 (pt) * 2015-12-10 2022-04-12 Dsm Ip Assets B.V. Tabletes comprimidos compreendendo pelo menos uma partícula sólida de vitamina e seu uso
WO2017120501A1 (en) 2016-01-07 2017-07-13 Mayo Foundation For Medical Education And Research Methods of treating cancer with interferon
EP3413874A4 (en) 2016-02-12 2020-01-22 Mayo Foundation for Medical Education and Research HEMATOLOGICAL CANCER TREATMENTS
EP3432928A4 (en) 2016-03-21 2019-11-20 Mayo Foundation for Medical Education and Research PROCESS FOR IMPROVING THE THERAPEUTIC INDEX FOR CHEMOTHERAPEUTIC
EP3432926A4 (en) 2016-03-21 2019-11-20 Mayo Foundation for Medical Education and Research METHODS OF REDUCING THE TOXICITY OF A CHEMOTHERAPEUTIC MEDICAMENT
US10618969B2 (en) 2016-04-06 2020-04-14 Mayo Foundation For Medical Education And Research Carrier-binding agent compositions and methods of making and using the same
JP2019526578A (ja) 2016-09-01 2019-09-19 マヨ ファウンデーション フォー メディカル エデュケーション アンド リサーチMayo Foundation For Medical Education And Research キャリアー−pd−l1結合剤組成物及び癌を処置する為にそれを使用する方法
EP3506950A1 (en) 2016-09-01 2019-07-10 Mayo Foundation for Medical Education and Research Methods and compositions for targeting t-cell cancers
CA3035655A1 (en) 2016-09-06 2018-03-15 Mayo Foundation For Medical Education And Research Methods of treating pd-l1 expressing cancer
WO2018048815A1 (en) 2016-09-06 2018-03-15 Nantibodyfc, Llc Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins
WO2018195416A1 (en) 2017-04-21 2018-10-25 Mayo Foundation For Medical Education And Research Polypeptide-antibody complexes and uses thereof
KR20200135410A (ko) 2018-03-20 2020-12-02 아브락시스 바이오사이언스, 엘엘씨 mTOR 억제제 및 알부민의 나노입자의 투여를 통한 중추 신경계 장애의 치료 방법
KR20220106758A (ko) 2019-10-28 2022-07-29 아브락시스 바이오사이언스, 엘엘씨 알부민 및 라파마이신의 제약 조성물
CA3157484A1 (en) * 2019-11-05 2021-05-14 Ulagaraj Selvaraj Nanoparticles comprising prodrugs stabilized by albumin for treatment of cancer and other diseases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
CN1515246A (zh) * 1997-06-27 2004-07-28 �Ϻ���ͨ��ѧ 药剂的新制剂及其制备和应用方法
CN1925874A (zh) * 2002-12-09 2007-03-07 美国生物科学公司 组合物和传递药剂的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749868B1 (en) * 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5558071A (en) * 1994-03-07 1996-09-24 Combustion Electromagnetics, Inc. Ignition system power converter and controller
US8137684B2 (en) * 1996-10-01 2012-03-20 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
IL134830A0 (en) * 2000-03-01 2001-05-20 Chay 13 Medical Res Group N V Peptides and immunostimulatory and anti-bacterial pharmaceutical compositions containing them
CA2402733A1 (en) * 2000-03-14 2001-09-20 Burkhard Goke Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility
CN104587479A (zh) * 2002-12-09 2015-05-06 阿布拉西斯生物科学有限责任公司 组合物和传递药剂的方法
CN103143069B (zh) * 2005-02-18 2016-05-04 阿布拉西斯生物科学公司 用于整合入医疗装置的疏水性改善的药物
BRPI0615292A8 (pt) * 2005-08-31 2018-03-06 Abraxis Bioscience Llc composições e métodos para preparação de fármacos de má solubilidade em água com estabilidade aumentada
JP5765884B2 (ja) * 2006-09-25 2015-08-19 アーチャー−ダニエルズ−ミッドランド カンパニー 超吸収性表面処理カルボキシアルキル化多糖類及びその製造方法
US20130084243A1 (en) * 2010-01-27 2013-04-04 Liliane Goetsch Igf-1r specific antibodies useful in the detection and diagnosis of cellular proliferative disorders
WO2010036702A1 (en) * 2008-09-25 2010-04-01 Cephalon, Inc. Liquid formulations of bendamustine
US20110028412A1 (en) * 2009-08-03 2011-02-03 Cappellos, Inc. Herbal enhanced analgesic formulations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795909A (en) * 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
CN1515246A (zh) * 1997-06-27 2004-07-28 �Ϻ���ͨ��ѧ 药剂的新制剂及其制备和应用方法
CN1925874A (zh) * 2002-12-09 2007-03-07 美国生物科学公司 组合物和传递药剂的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104306339A (zh) * 2014-10-22 2015-01-28 南京大学 一种载有胸苷酸合酶抑制剂的白蛋白纳米微球及其制法
CN105727303A (zh) * 2014-12-12 2016-07-06 四川科伦药物研究院有限公司 一种高载卡巴他赛药物的白蛋白组合物及其制剂和制备方法
CN105727303B (zh) * 2014-12-12 2019-06-28 四川科伦药物研究院有限公司 一种高载卡巴他赛药物的白蛋白组合物及其制剂和制备方法
CN109890422A (zh) * 2016-09-06 2019-06-14 梅约医学教育与研究基金会 紫杉醇-白蛋白-结合剂组合物及使用和制备该组合物的方法
US11311631B2 (en) 2016-09-06 2022-04-26 Mayo Foundation For Medical Education And Research Paclitaxel-albumin-binding agent compositions and methods for using and making the same
CN111511350A (zh) * 2017-07-07 2020-08-07 埃皮辛特瑞柯斯公司 用于治疗剂的肠胃外施用的组合物
CN111511350B (zh) * 2017-07-07 2023-10-13 埃皮辛特瑞柯斯公司 用于治疗剂的肠胃外施用的组合物
CN112789057A (zh) * 2018-07-24 2021-05-11 詹纽瑞治疗公司 纳米颗粒组合物

Also Published As

Publication number Publication date
US20170172975A1 (en) 2017-06-22
US20140080901A1 (en) 2014-03-20
AU2016204693A1 (en) 2016-07-28
JP2017114913A (ja) 2017-06-29
JP2012523433A (ja) 2012-10-04
EP2416650A4 (en) 2014-01-01
MX2011010673A (es) 2012-02-21
ES2788298T3 (es) 2020-10-21
AU2010233097B2 (en) 2016-04-07
WO2010118365A1 (en) 2010-10-14
IL215665A0 (en) 2012-01-31
US20130195983A1 (en) 2013-08-01
CA2758200A1 (en) 2010-10-14
KR20120005505A (ko) 2012-01-16
EP2416650B1 (en) 2020-02-26
AU2010233097A1 (en) 2011-11-24
EP2416650A1 (en) 2012-02-15
BRPI1014160A2 (pt) 2015-08-25

Similar Documents

Publication Publication Date Title
CN102458112A (zh) 纳米颗粒制剂及其用途
CN102056596B (zh) 纳米颗粒制剂及其用途
CN101291658B (zh) 用于制备稳定性增加的水难溶性药物的组合物和方法
JP2011517683A (ja) 疎水性タキサン誘導体の組成物およびその使用
CN105007912A (zh) 白蛋白和紫杉醇的纳米颗粒组合物
CN103054798A (zh) 用于制备稳定性增加的水难溶性药物的组合物和方法
CA2779166C (en) Submicro emulsion of paclitaxel using steroid complex as intermediate carrier
NZ586859A (en) Drug delivery system for administration of poorly water soluble pharmaceutically active substances
JP5759464B2 (ja) オキサリプラチンのナノ粒子及びその製造方法
US20180344645A1 (en) Prepartion of nanocrystals and nanaoparticles of narrow distribution and uses thereof
CN104274401A (zh) 一种基于hcpt-peg的喜树碱类药物的高载药纳米混悬剂及其制备方法
JP2022508807A (ja) 腫瘍内注射製剤
US20080171687A1 (en) Compositions And Methods For The Preparation And Administration Of Poorly Water Soluble Drugs
JP2011507839A (ja) 水溶性、カチオン性および両親媒性の薬学的に活性な物質を投与するためのドラッグ・デリバリー・システム
JP2011529930A (ja) 注射可能タキサン医薬品組成物
CN109700782B (zh) 一种高载药量双硫仑纳米粒及其在肿瘤防治中的应用
CN105616384A (zh) 一种包载紫杉醇的tpgs-还原性白蛋白纳米粒制剂及制备方法
WO2017000770A1 (zh) 药物组合物及其制备方法和用途
WO2013149538A1 (zh) 药用组合物
CN113018268B (zh) 一种注射用德拉沙星葡甲胺冻干制剂及其制备方法
JP2023504821A (ja) エレメンを含む医薬組成物、その調製方法、及びその使用
CN117136063A (zh) 药物组合物及阿瑞匹坦注射液和冻干粉针注射剂
CN108148097A (zh) 含有吡啶的苯并咪唑类化合物钴配合物及其应用
CN115252551A (zh) 一种紫杉醇注射用微乳、冻干粉及其制备方法
CN108218925A (zh) 咪唑并吡啶类化合物钴配合物及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120516